Build: #128 failed

Job: Test Linux failed

Stages & jobs

  1. Default Stage

Build log

The build generated 82,565 lines of output.The output is too long and has been truncated to the last 1,000 lines. Download or view full build log.

28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:52.163365 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:51.281894 End time: 2023-01-28 16:43:52.163365
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:53.053136 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:52.184240 End time: 2023-01-28 16:43:53.053136
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:53.927326 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:53.074147 End time: 2023-01-28 16:43:53.927326
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:54.789525 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:53.938798 End time: 2023-01-28 16:43:54.789525
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:55.680611 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:54.811578 End time: 2023-01-28 16:43:55.680611
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:56.535844 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:55.692791 End time: 2023-01-28 16:43:56.535844
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:43:57.402736 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:43:56.546470 End time: 2023-01-28 16:43:57.402736
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:04.365458 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:03.580066 End time: 2023-01-28 16:44:04.365458
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:05.141552 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:04.377724 End time: 2023-01-28 16:44:05.141552
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:05.942669 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:05.152762 End time: 2023-01-28 16:44:05.942669
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:06.711476 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:05.953901 End time: 2023-01-28 16:44:06.711476
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:07.510847 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:06.729321 End time: 2023-01-28 16:44:07.510847
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:08.271665 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:07.520725 End time: 2023-01-28 16:44:08.271665
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:09.081120 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:08.293776 End time: 2023-01-28 16:44:09.081120
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:09.831233 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:09.091584 End time: 2023-01-28 16:44:09.831233
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:10.609439 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:09.851829 End time: 2023-01-28 16:44:10.609439
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:11.352100 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:10.619106 End time: 2023-01-28 16:44:11.352100
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:12.126215 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:11.367670 End time: 2023-01-28 16:44:12.126215
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:12.906027 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:12.146934 End time: 2023-01-28 16:44:12.906027
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:13.705048 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:12.928701 End time: 2023-01-28 16:44:13.705048
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:14.470899 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:13.727508 End time: 2023-01-28 16:44:14.470899
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:15.236646 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:14.490122 End time: 2023-01-28 16:44:15.236646
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:16.026939 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:15.258728 End time: 2023-01-28 16:44:16.026939
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:16.765941 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:16.038574 End time: 2023-01-28 16:44:16.765941
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:17.471163 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:16.777541 End time: 2023-01-28 16:44:17.471163
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:18.230138 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:17.482578 End time: 2023-01-28 16:44:18.230138
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:18.949151 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:18.240128 End time: 2023-01-28 16:44:18.949151
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:19.714206 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:18.960411 End time: 2023-01-28 16:44:19.714206
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:20.530200 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:19.736182 End time: 2023-01-28 16:44:20.530200
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:21.287751 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:20.541762 End time: 2023-01-28 16:44:21.287751
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:22.099791 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:21.308565 End time: 2023-01-28 16:44:22.099791
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:22.914088 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:22.122364 End time: 2023-01-28 16:44:22.914088
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:23.701681 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:22.936458 End time: 2023-01-28 16:44:23.701681
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:24.444160 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:23.711277 End time: 2023-01-28 16:44:24.444160
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:30.396944 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:29.587526 End time: 2023-01-28 16:44:30.396944
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:31.159688 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:30.408801 End time: 2023-01-28 16:44:31.159688
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:31.931132 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:31.171003 End time: 2023-01-28 16:44:31.931132
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:32.694479 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:31.941783 End time: 2023-01-28 16:44:32.694479
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:33.466133 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:32.705813 End time: 2023-01-28 16:44:33.466133
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:34.209324 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:33.476125 End time: 2023-01-28 16:44:34.209324
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:34.962022 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:34.218986 End time: 2023-01-28 16:44:34.962022
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:35.730085 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:34.972993 End time: 2023-01-28 16:44:35.730085
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:36.485317 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:35.740356 End time: 2023-01-28 16:44:36.485317
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:37.232622 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:36.495251 End time: 2023-01-28 16:44:37.232622
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:37.938270 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:37.242422 End time: 2023-01-28 16:44:37.938270
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:38.692640 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:37.948346 End time: 2023-01-28 16:44:38.692640
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:39.461317 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:38.703040 End time: 2023-01-28 16:44:39.461317
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:40.212301 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:39.471213 End time: 2023-01-28 16:44:40.212301
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:40.971298 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:40.223115 End time: 2023-01-28 16:44:40.971298
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:41.737821 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:40.982075 End time: 2023-01-28 16:44:41.737821
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:42.548610 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:41.747958 End time: 2023-01-28 16:44:42.548610
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:43.277255 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:42.558254 End time: 2023-01-28 16:44:43.277255
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:44.106579 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:43.291448 End time: 2023-01-28 16:44:44.106579
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:44.852306 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:44.116280 End time: 2023-01-28 16:44:44.852306
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:45.566831 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:44.863797 End time: 2023-01-28 16:44:45.566831
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:46.323812 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:45.576582 End time: 2023-01-28 16:44:46.323812
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:47.083563 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:46.333584 End time: 2023-01-28 16:44:47.083563
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:47.850094 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:47.094052 End time: 2023-01-28 16:44:47.850094
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:48.633160 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:47.862050 End time: 2023-01-28 16:44:48.633160
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:49.385657 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:48.643075 End time: 2023-01-28 16:44:49.385657
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:50.152219 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:44:49.397451 End time: 2023-01-28 16:44:50.152219
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:44:57.361147 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:44:56.535701 End time: 2023-01-28 16:44:57.361147
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:01.900822 :: 128 :: mstransform :: Task mstransform complete. Start time: 2023-01-28 16:44:57.375216 End time: 2023-01-28 16:45:01.900822
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:03.136076 :: 128 :: flagmanager :: Task flagmanager complete. Start time: 2023-01-28 16:45:02.022721 End time: 2023-01-28 16:45:03.136076
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:10.308954 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:03.206810 End time: 2023-01-28 16:45:10.308954
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:17.275572 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:10.355951 End time: 2023-01-28 16:45:17.275572
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:19.314716 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:17.311303 End time: 2023-01-28 16:45:19.314716
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:26.553822 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:19.378652 End time: 2023-01-28 16:45:26.553822
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:33.275732 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:26.583151 End time: 2023-01-28 16:45:33.275732
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:35.293507 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:33.294405 End time: 2023-01-28 16:45:35.293507
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:41.273952 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:35.356211 End time: 2023-01-28 16:45:41.273952
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:43.300824 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:41.293306 End time: 2023-01-28 16:45:43.300824
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:49.353250 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:43.369889 End time: 2023-01-28 16:45:49.353250
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:51.363557 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:49.371917 End time: 2023-01-28 16:45:51.363557
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:57.480656 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:51.381620 End time: 2023-01-28 16:45:57.480656
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:45:58.300259 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:45:57.498911 End time: 2023-01-28 16:45:58.300259
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:02.500655 :: 128 :: mstransform :: Task mstransform complete. Start time: 2023-01-28 16:45:58.313791 End time: 2023-01-28 16:46:02.500655
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:07.403856 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:46:04.669641 End time: 2023-01-28 16:46:07.403856
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:10.690541 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:46:07.429575 End time: 2023-01-28 16:46:10.690541
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:14.044973 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:46:10.713259 End time: 2023-01-28 16:46:14.044973
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:21.847928 :: 128 :: split :: Task split complete. Start time: 2023-01-28 16:46:14.771694 End time: 2023-01-28 16:46:21.847928
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:24.709981 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:46:22.903634 End time: 2023-01-28 16:46:24.709981
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:35.114047 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:46:24.725007 End time: 2023-01-28 16:46:35.114047
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:46:39.138912 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:46:35.138844 End time: 2023-01-28 16:46:39.138912
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:05.345282 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:46:39.546941 End time: 2023-01-28 16:47:05.345282
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:09.596723 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:47:05.370102 End time: 2023-01-28 16:47:09.596723
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:12.426049 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:11.536513 End time: 2023-01-28 16:47:12.426049
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:13.304695 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:12.446579 End time: 2023-01-28 16:47:13.304695
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:14.207187 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:13.325939 End time: 2023-01-28 16:47:14.207187
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:15.052205 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:14.219267 End time: 2023-01-28 16:47:15.052205
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:15.918572 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:15.070850 End time: 2023-01-28 16:47:15.918572
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:16.741267 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:15.929351 End time: 2023-01-28 16:47:16.741267
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:17.571373 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:16.751339 End time: 2023-01-28 16:47:17.571373
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:18.420093 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:17.586403 End time: 2023-01-28 16:47:18.420093
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:19.243504 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:18.431342 End time: 2023-01-28 16:47:19.243504
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:20.062703 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:19.258079 End time: 2023-01-28 16:47:20.062703
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:20.889438 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:20.072937 End time: 2023-01-28 16:47:20.889438
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:21.735862 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:20.904566 End time: 2023-01-28 16:47:21.735862
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:22.604811 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:21.754718 End time: 2023-01-28 16:47:22.604811
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:23.492857 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:22.626170 End time: 2023-01-28 16:47:23.492857
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:24.383620 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:23.513847 End time: 2023-01-28 16:47:24.383620
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:25.231558 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:24.396482 End time: 2023-01-28 16:47:25.231558
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:26.069617 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:25.247716 End time: 2023-01-28 16:47:26.069617
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:26.887706 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:26.079169 End time: 2023-01-28 16:47:26.887706
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:27.744170 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:26.906730 End time: 2023-01-28 16:47:27.744170
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:28.578841 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:27.759550 End time: 2023-01-28 16:47:28.578841
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:29.415687 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:28.588412 End time: 2023-01-28 16:47:29.415687
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:30.246187 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:29.428714 End time: 2023-01-28 16:47:30.246187
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:31.090748 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:30.261783 End time: 2023-01-28 16:47:31.090748
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:31.937806 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:31.106435 End time: 2023-01-28 16:47:31.937806
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:32.777191 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:31.953891 End time: 2023-01-28 16:47:32.777191
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:33.599005 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:32.788721 End time: 2023-01-28 16:47:33.599005
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:34.514915 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:33.609786 End time: 2023-01-28 16:47:34.514915
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:41.016280 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:40.191006 End time: 2023-01-28 16:47:41.016280
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:41.855046 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:41.031054 End time: 2023-01-28 16:47:41.855046
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:42.737508 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:41.866222 End time: 2023-01-28 16:47:42.737508
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:43.584127 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:42.748650 End time: 2023-01-28 16:47:43.584127
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:44.470551 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:43.595593 End time: 2023-01-28 16:47:44.470551
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:45.366578 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:44.492853 End time: 2023-01-28 16:47:45.366578
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:46.229842 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:45.388359 End time: 2023-01-28 16:47:46.229842
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:47.112505 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:46.250750 End time: 2023-01-28 16:47:47.112505
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:47.947634 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:47.122131 End time: 2023-01-28 16:47:47.947634
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:48.831700 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:47.962753 End time: 2023-01-28 16:47:48.831700
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:49.720166 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:48.844221 End time: 2023-01-28 16:47:49.720166
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:50.644692 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:49.735426 End time: 2023-01-28 16:47:50.644692
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:51.494189 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:50.654327 End time: 2023-01-28 16:47:51.494189
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:52.388851 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:51.508353 End time: 2023-01-28 16:47:52.388851
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:53.241254 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:52.403909 End time: 2023-01-28 16:47:53.241254
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:54.129927 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:53.261134 End time: 2023-01-28 16:47:54.129927
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:55.013712 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:54.150071 End time: 2023-01-28 16:47:55.013712
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:55.813922 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:55.024930 End time: 2023-01-28 16:47:55.813922
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:56.645119 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:55.835578 End time: 2023-01-28 16:47:56.645119
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:57.532439 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:56.663051 End time: 2023-01-28 16:47:57.532439
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:58.395524 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:57.553016 End time: 2023-01-28 16:47:58.395524
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:47:59.289082 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:58.417338 End time: 2023-01-28 16:47:59.289082
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:00.149338 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:47:59.304225 End time: 2023-01-28 16:48:00.149338
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:01.063804 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:48:00.162701 End time: 2023-01-28 16:48:01.063804
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:01.919305 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:48:01.086035 End time: 2023-01-28 16:48:01.919305
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:02.821158 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:48:01.941282 End time: 2023-01-28 16:48:02.821158
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:03.663560 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:48:02.834343 End time: 2023-01-28 16:48:03.663560
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:51.069701 :: 128 :: setjy :: Task setjy complete. Start time: 2023-01-28 16:48:09.859625 End time: 2023-01-28 16:48:51.069701
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:48:53.091893 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:48:51.195771 End time: 2023-01-28 16:48:53.091893
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:07.904169 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:48:53.108355 End time: 2023-01-28 16:49:07.904169
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:13.165756 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:49:07.925997 End time: 2023-01-28 16:49:13.165756
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:25.453490 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:49:13.187679 End time: 2023-01-28 16:49:25.453490
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:30.209365 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:49:25.475676 End time: 2023-01-28 16:49:30.209365
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:30.286629 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:49:30.242576 End time: 2023-01-28 16:49:30.286629
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:33.150039 :: 128 :: applycal :: Task applycal complete. Start time: 2023-01-28 16:49:30.291198 End time: 2023-01-28 16:49:33.150039
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:45.570149 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:49:33.156846 End time: 2023-01-28 16:49:45.570149
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:50.375406 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:49:45.592356 End time: 2023-01-28 16:49:50.375406
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:50.985001 :: 128 :: fluxscale :: Task fluxscale complete. Start time: 2023-01-28 16:49:50.415604 End time: 2023-01-28 16:49:50.985001
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:53.116377 :: 128 :: setjy :: Task setjy complete. Start time: 2023-01-28 16:49:51.009199 End time: 2023-01-28 16:49:53.116377
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:56.551214 :: 128 :: setjy :: Task setjy complete. Start time: 2023-01-28 16:49:53.124026 End time: 2023-01-28 16:49:56.551214
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:49:59.205239 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:49:58.452332 End time: 2023-01-28 16:49:59.205239
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:50:13.296789 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:49:59.236709 End time: 2023-01-28 16:50:13.296789
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:50:18.682118 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:50:16.444857 End time: 2023-01-28 16:50:18.682118
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:50:35.706474 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:50:18.703346 End time: 2023-01-28 16:50:35.706474
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:50:59.023182 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:50:35.739290 End time: 2023-01-28 16:50:59.023182
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:51:12.617792 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:50:59.066754 End time: 2023-01-28 16:51:12.617792
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:51:42.149039 :: 128 :: bandpass :: Task bandpass complete. Start time: 2023-01-28 16:51:12.652884 End time: 2023-01-28 16:51:42.149039
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:52:08.066477 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:51:42.183551 End time: 2023-01-28 16:52:08.066477
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:52:08.166714 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:52:08.125301 End time: 2023-01-28 16:52:08.166714
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:52:46.667737 :: 128 :: applycal :: Task applycal complete. Start time: 2023-01-28 16:52:08.173128 End time: 2023-01-28 16:52:46.667737
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:52:55.849502 :: 128 :: split :: Task split complete. Start time: 2023-01-28 16:52:46.690359 End time: 2023-01-28 16:52:55.849502
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:53:58.209503 :: 128 :: setjy :: Task setjy complete. Start time: 2023-01-28 16:52:56.048401 End time: 2023-01-28 16:53:58.209503
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:00.689868 :: 128 :: setjy :: Task setjy complete. Start time: 2023-01-28 16:53:58.231805 End time: 2023-01-28 16:54:00.689868
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:15.199821 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:54:00.704565 End time: 2023-01-28 16:54:15.199821
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:20.503760 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:54:15.221430 End time: 2023-01-28 16:54:20.503760
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:34.800591 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:54:20.525826 End time: 2023-01-28 16:54:34.800591
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:39.712858 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:54:34.822853 End time: 2023-01-28 16:54:39.712858
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:52.629810 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:54:39.736349 End time: 2023-01-28 16:54:52.629810
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:54:57.348753 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 16:54:52.651134 End time: 2023-01-28 16:54:57.348753
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:00.614520 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:54:59.815010 End time: 2023-01-28 16:55:00.614520
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:01.320626 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:00.636798 End time: 2023-01-28 16:55:01.320626
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:02.061093 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:01.340292 End time: 2023-01-28 16:55:02.061093
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:02.831186 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:02.083075 End time: 2023-01-28 16:55:02.831186
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:03.588805 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:02.847788 End time: 2023-01-28 16:55:03.588805
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:04.349081 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:03.610865 End time: 2023-01-28 16:55:04.349081
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:05.056181 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:04.359635 End time: 2023-01-28 16:55:05.056181
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:05.804770 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:05.076477 End time: 2023-01-28 16:55:05.804770
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:06.550474 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:05.826319 End time: 2023-01-28 16:55:06.550474
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:07.289751 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:06.571068 End time: 2023-01-28 16:55:07.289751
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:08.003640 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:07.304617 End time: 2023-01-28 16:55:08.003640
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:08.673230 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:08.013421 End time: 2023-01-28 16:55:08.673230
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:09.419572 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:08.682821 End time: 2023-01-28 16:55:09.419572
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:10.162166 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:09.440168 End time: 2023-01-28 16:55:10.162166
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:10.892176 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:10.172133 End time: 2023-01-28 16:55:10.892176
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:11.652507 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:10.911601 End time: 2023-01-28 16:55:11.652507
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:12.412618 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:11.662326 End time: 2023-01-28 16:55:12.412618
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:13.173172 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:12.433357 End time: 2023-01-28 16:55:13.173172
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:13.918113 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:13.190024 End time: 2023-01-28 16:55:13.918113
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:14.666881 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:13.938762 End time: 2023-01-28 16:55:14.666881
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:15.364787 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:14.686142 End time: 2023-01-28 16:55:15.364787
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:16.045500 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:15.374852 End time: 2023-01-28 16:55:16.045500
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:16.752724 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:16.055895 End time: 2023-01-28 16:55:16.752724
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:17.454880 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:16.764368 End time: 2023-01-28 16:55:17.454880
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:18.305324 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:17.466885 End time: 2023-01-28 16:55:18.305324
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:19.066168 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:18.318482 End time: 2023-01-28 16:55:19.066168
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:19.806000 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:19.085111 End time: 2023-01-28 16:55:19.806000
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:26.801277 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:25.966882 End time: 2023-01-28 16:55:26.801277
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:27.681787 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:26.823212 End time: 2023-01-28 16:55:27.681787
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:28.552589 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:27.704479 End time: 2023-01-28 16:55:28.552589
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:29.415278 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:28.563914 End time: 2023-01-28 16:55:29.415278
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:30.263577 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:29.437609 End time: 2023-01-28 16:55:30.263577
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:31.118787 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:30.275200 End time: 2023-01-28 16:55:31.118787
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:31.960476 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:31.141440 End time: 2023-01-28 16:55:31.960476
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:32.832568 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:31.981727 End time: 2023-01-28 16:55:32.832568
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:33.718099 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:32.854840 End time: 2023-01-28 16:55:33.718099
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:34.603291 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:33.740355 End time: 2023-01-28 16:55:34.603291
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:35.451535 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:34.618903 End time: 2023-01-28 16:55:35.451535
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:36.316352 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:35.472533 End time: 2023-01-28 16:55:36.316352
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:37.201049 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:36.336115 End time: 2023-01-28 16:55:37.201049
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:38.051149 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:37.222032 End time: 2023-01-28 16:55:38.051149
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:38.924177 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:38.060805 End time: 2023-01-28 16:55:38.924177
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:39.812625 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:38.946422 End time: 2023-01-28 16:55:39.812625
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:40.686231 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:39.822282 End time: 2023-01-28 16:55:40.686231
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:41.562270 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:40.708684 End time: 2023-01-28 16:55:41.562270
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:42.410148 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:41.575753 End time: 2023-01-28 16:55:42.410148
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:43.268862 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:42.425285 End time: 2023-01-28 16:55:43.268862
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:44.136617 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:43.290739 End time: 2023-01-28 16:55:44.136617
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:45.035749 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:44.159056 End time: 2023-01-28 16:55:45.035749
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:45.876313 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:45.058535 End time: 2023-01-28 16:55:45.876313
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:46.690614 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:45.889023 End time: 2023-01-28 16:55:46.690614
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:47.588627 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:46.712863 End time: 2023-01-28 16:55:47.588627
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:48.478600 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:47.611054 End time: 2023-01-28 16:55:48.478600
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:49.338873 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:48.502873 End time: 2023-01-28 16:55:49.338873
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:55.508822 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:54.716205 End time: 2023-01-28 16:55:55.508822
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:56.269484 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:55.527067 End time: 2023-01-28 16:55:56.269484
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:57.072848 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:56.290993 End time: 2023-01-28 16:55:57.072848
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:57.870758 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:57.092707 End time: 2023-01-28 16:55:57.870758
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:58.604747 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:57.882450 End time: 2023-01-28 16:55:58.604747
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:55:59.337601 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:58.614414 End time: 2023-01-28 16:55:59.337601
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:00.055977 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:55:59.352247 End time: 2023-01-28 16:56:00.055977
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:00.779847 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:00.066492 End time: 2023-01-28 16:56:00.779847
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:01.557789 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:00.790395 End time: 2023-01-28 16:56:01.557789
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:02.319934 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:01.569365 End time: 2023-01-28 16:56:02.319934
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:03.038892 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:02.330464 End time: 2023-01-28 16:56:03.038892
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:03.807472 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:03.049437 End time: 2023-01-28 16:56:03.807472
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:04.608254 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:03.829297 End time: 2023-01-28 16:56:04.608254
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:05.378230 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:04.618066 End time: 2023-01-28 16:56:05.378230
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:06.182314 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:05.395997 End time: 2023-01-28 16:56:06.182314
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:06.983602 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:06.204345 End time: 2023-01-28 16:56:06.983602
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:07.721561 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:06.993445 End time: 2023-01-28 16:56:07.721561
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:08.438109 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:07.733185 End time: 2023-01-28 16:56:08.438109
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:09.170773 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:08.453170 End time: 2023-01-28 16:56:09.170773
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:09.955910 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:09.193013 End time: 2023-01-28 16:56:09.955910
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:10.709820 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:09.967674 End time: 2023-01-28 16:56:10.709820
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:11.468664 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:10.719602 End time: 2023-01-28 16:56:11.468664
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:12.251359 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:11.491485 End time: 2023-01-28 16:56:12.251359
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:13.002087 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:12.262985 End time: 2023-01-28 16:56:13.002087
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:13.772184 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:13.013270 End time: 2023-01-28 16:56:13.772184
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:14.567684 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:13.791356 End time: 2023-01-28 16:56:14.567684
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:15.359274 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:14.579142 End time: 2023-01-28 16:56:15.359274
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:22.531767 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:21.754533 End time: 2023-01-28 16:56:22.531767
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:23.323296 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:22.554163 End time: 2023-01-28 16:56:23.323296
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:24.139402 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:23.333470 End time: 2023-01-28 16:56:24.139402
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:24.956852 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:24.150645 End time: 2023-01-28 16:56:24.956852
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:25.755365 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:24.979519 End time: 2023-01-28 16:56:25.755365
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:26.560468 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:25.775239 End time: 2023-01-28 16:56:26.560468
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:27.356850 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:26.570473 End time: 2023-01-28 16:56:27.356850
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:28.189226 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:27.376225 End time: 2023-01-28 16:56:28.189226
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:28.997128 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:28.211257 End time: 2023-01-28 16:56:28.997128
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:29.767041 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:29.007037 End time: 2023-01-28 16:56:29.767041
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:30.536049 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:29.789332 End time: 2023-01-28 16:56:30.536049
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:31.383315 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:30.546033 End time: 2023-01-28 16:56:31.383315
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:32.203977 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:31.405313 End time: 2023-01-28 16:56:32.203977
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:32.993358 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:32.214163 End time: 2023-01-28 16:56:32.993358
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:33.773951 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:33.002430 End time: 2023-01-28 16:56:33.773951
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:34.621734 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:33.796523 End time: 2023-01-28 16:56:34.621734
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:35.451823 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:34.631397 End time: 2023-01-28 16:56:35.451823
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:36.240233 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:35.472498 End time: 2023-01-28 16:56:36.240233
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:37.038500 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:36.250367 End time: 2023-01-28 16:56:37.038500
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:37.843684 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:37.058623 End time: 2023-01-28 16:56:37.843684
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:38.636816 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:37.864617 End time: 2023-01-28 16:56:38.636816
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:39.455028 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:38.646944 End time: 2023-01-28 16:56:39.455028
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:40.266248 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:39.475819 End time: 2023-01-28 16:56:40.266248
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:41.097280 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:40.288256 End time: 2023-01-28 16:56:41.097280
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:41.880028 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:41.118454 End time: 2023-01-28 16:56:41.880028
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:42.682299 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:41.901319 End time: 2023-01-28 16:56:42.682299
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:43.483763 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:42.693642 End time: 2023-01-28 16:56:43.483763
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:50.031457 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:49.167515 End time: 2023-01-28 16:56:50.031457
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:50.861265 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:50.043663 End time: 2023-01-28 16:56:50.861265
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:51.675726 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:50.872804 End time: 2023-01-28 16:56:51.675726
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:52.510084 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:51.686930 End time: 2023-01-28 16:56:52.510084
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:53.327241 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:52.520119 End time: 2023-01-28 16:56:53.327241
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:54.177821 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:53.343857 End time: 2023-01-28 16:56:54.177821
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:55.015859 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:54.193668 End time: 2023-01-28 16:56:55.015859
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:55.836361 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:55.027804 End time: 2023-01-28 16:56:55.836361
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:56.699515 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:55.858680 End time: 2023-01-28 16:56:56.699515
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:57.534773 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:56.712047 End time: 2023-01-28 16:56:57.534773
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:58.347121 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:57.544305 End time: 2023-01-28 16:56:58.347121
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:56:59.167668 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:58.361688 End time: 2023-01-28 16:56:59.167668
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:00.007672 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:56:59.181889 End time: 2023-01-28 16:57:00.007672
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:00.864295 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:00.027711 End time: 2023-01-28 16:57:00.864295
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:01.708454 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:00.881796 End time: 2023-01-28 16:57:01.708454
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:02.545922 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:01.723607 End time: 2023-01-28 16:57:02.545922
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:03.372154 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:02.558660 End time: 2023-01-28 16:57:03.372154
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:04.181652 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:03.383667 End time: 2023-01-28 16:57:04.181652
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:05.020181 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:04.196176 End time: 2023-01-28 16:57:05.020181
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:05.843682 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:05.034677 End time: 2023-01-28 16:57:05.843682
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:06.675730 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:05.856869 End time: 2023-01-28 16:57:06.675730
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:07.523473 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:06.705928 End time: 2023-01-28 16:57:07.523473
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:08.339141 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:07.533327 End time: 2023-01-28 16:57:08.339141
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:09.163480 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:08.351900 End time: 2023-01-28 16:57:09.163480
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:10.010513 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:09.179357 End time: 2023-01-28 16:57:10.010513
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:10.827535 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:10.020144 End time: 2023-01-28 16:57:10.827535
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:11.692929 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:10.845226 End time: 2023-01-28 16:57:11.692929
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:17.818624 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:17.105126 End time: 2023-01-28 16:57:17.818624
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:18.581036 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:17.837052 End time: 2023-01-28 16:57:18.581036
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:19.289026 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:18.590693 End time: 2023-01-28 16:57:19.289026
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:20.011015 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:19.299137 End time: 2023-01-28 16:57:20.011015
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:20.714144 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:20.021028 End time: 2023-01-28 16:57:20.714144
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:21.441660 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:20.726007 End time: 2023-01-28 16:57:21.441660
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:22.154803 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:21.459343 End time: 2023-01-28 16:57:22.154803
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:22.882475 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:22.165494 End time: 2023-01-28 16:57:22.882475
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:23.631792 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:22.901968 End time: 2023-01-28 16:57:23.631792
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:24.358923 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:23.647761 End time: 2023-01-28 16:57:24.358923
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:25.128404 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:24.381165 End time: 2023-01-28 16:57:25.128404
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:25.823796 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:25.143264 End time: 2023-01-28 16:57:25.823796
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:26.605614 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:25.846345 End time: 2023-01-28 16:57:26.605614
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:27.322748 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:26.616673 End time: 2023-01-28 16:57:27.322748
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:28.064726 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:27.334190 End time: 2023-01-28 16:57:28.064726
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:28.766047 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:28.074398 End time: 2023-01-28 16:57:28.766047
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:29.462545 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:28.775882 End time: 2023-01-28 16:57:29.462545
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:30.165078 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:29.472500 End time: 2023-01-28 16:57:30.165078
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:30.896630 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:30.175205 End time: 2023-01-28 16:57:30.896630
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:31.624550 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:30.912326 End time: 2023-01-28 16:57:31.624550
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:32.337311 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:31.634858 End time: 2023-01-28 16:57:32.337311
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:33.082692 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:32.353804 End time: 2023-01-28 16:57:33.082692
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:33.793338 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:33.092687 End time: 2023-01-28 16:57:33.793338
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:34.532298 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:33.810992 End time: 2023-01-28 16:57:34.532298
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:35.295917 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:34.542190 End time: 2023-01-28 16:57:35.295917
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:36.036621 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:35.307797 End time: 2023-01-28 16:57:36.036621
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:36.734470 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:36.050703 End time: 2023-01-28 16:57:36.734470
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:42.472269 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:41.746689 End time: 2023-01-28 16:57:42.472269
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:43.242303 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:42.492192 End time: 2023-01-28 16:57:43.242303
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:44.003155 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:43.264271 End time: 2023-01-28 16:57:44.003155
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:44.708689 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:44.013310 End time: 2023-01-28 16:57:44.708689
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:45.447169 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:44.726359 End time: 2023-01-28 16:57:45.447169
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:46.217993 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:45.464097 End time: 2023-01-28 16:57:46.217993
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:46.938182 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:46.234883 End time: 2023-01-28 16:57:46.938182
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:47.665561 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:46.955308 End time: 2023-01-28 16:57:47.665561
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:48.401713 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:47.675762 End time: 2023-01-28 16:57:48.401713
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:49.177367 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:48.421229 End time: 2023-01-28 16:57:49.177367
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:49.940768 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:49.197610 End time: 2023-01-28 16:57:49.940768
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:50.698188 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:49.958771 End time: 2023-01-28 16:57:50.698188
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:51.462924 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:50.719014 End time: 2023-01-28 16:57:51.462924
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:52.215073 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:51.483791 End time: 2023-01-28 16:57:52.215073
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:52.980032 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:52.236478 End time: 2023-01-28 16:57:52.980032
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:53.755626 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:53.002033 End time: 2023-01-28 16:57:53.755626
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:54.529568 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:53.773298 End time: 2023-01-28 16:57:54.529568
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:55.284803 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:54.550193 End time: 2023-01-28 16:57:55.284803
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:56.032749 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:55.294980 End time: 2023-01-28 16:57:56.032749
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:56.812880 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:56.051866 End time: 2023-01-28 16:57:56.812880
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:57.559844 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:56.825229 End time: 2023-01-28 16:57:57.559844
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:58.293807 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:57.576914 End time: 2023-01-28 16:57:58.293807
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:59.074159 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:58.313895 End time: 2023-01-28 16:57:59.074159
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:57:59.819695 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:59.084097 End time: 2023-01-28 16:57:59.819695
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:00.574106 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:57:59.841485 End time: 2023-01-28 16:58:00.574106
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:01.268082 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:00.584311 End time: 2023-01-28 16:58:01.268082
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:01.994683 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:01.284829 End time: 2023-01-28 16:58:01.994683
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:08.535534 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:07.749609 End time: 2023-01-28 16:58:08.535534
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:09.314360 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:08.557934 End time: 2023-01-28 16:58:09.314360
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:10.103751 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:09.328785 End time: 2023-01-28 16:58:10.103751
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:10.874038 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:10.124729 End time: 2023-01-28 16:58:10.874038
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:11.613646 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:10.885902 End time: 2023-01-28 16:58:11.613646
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:12.398860 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:11.634412 End time: 2023-01-28 16:58:12.398860
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:13.169318 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:12.416745 End time: 2023-01-28 16:58:13.169318
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:13.944508 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:13.190024 End time: 2023-01-28 16:58:13.944508
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:14.706021 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:13.963413 End time: 2023-01-28 16:58:14.706021
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:15.430887 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:14.715687 End time: 2023-01-28 16:58:15.430887
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:16.162799 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:15.453144 End time: 2023-01-28 16:58:16.162799
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:16.951117 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:16.182104 End time: 2023-01-28 16:58:16.951117
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:17.685749 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:16.967969 End time: 2023-01-28 16:58:17.685749
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:18.429869 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:17.695827 End time: 2023-01-28 16:58:18.429869
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:19.192162 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:18.448847 End time: 2023-01-28 16:58:19.192162
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:19.907840 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:19.201189 End time: 2023-01-28 16:58:19.907840
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:20.648303 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:19.920088 End time: 2023-01-28 16:58:20.648303
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:21.415705 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:20.669228 End time: 2023-01-28 16:58:21.415705
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:22.209286 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:21.438015 End time: 2023-01-28 16:58:22.209286
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:22.964572 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:22.225677 End time: 2023-01-28 16:58:22.964572
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:23.704703 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:22.981401 End time: 2023-01-28 16:58:23.704703
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:24.414035 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:23.716932 End time: 2023-01-28 16:58:24.414035
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:25.170912 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:24.424289 End time: 2023-01-28 16:58:25.170912
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:25.932591 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:25.192855 End time: 2023-01-28 16:58:25.932591
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:26.702335 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:25.953258 End time: 2023-01-28 16:58:26.702335
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:27.458798 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:26.725428 End time: 2023-01-28 16:58:27.458798
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:28.229583 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 16:58:27.471126 End time: 2023-01-28 16:58:28.229583
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 16:58:38.848722 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 16:58:34.177735 End time: 2023-01-28 16:58:38.848722
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:00:17.684539 :: 128 :: applycal :: Task applycal complete. Start time: 2023-01-28 16:58:38.855746 End time: 2023-01-28 17:00:17.684539
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:00:22.567542 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:00:17.752038 End time: 2023-01-28 17:00:22.567542
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:00:27.369396 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:00:22.587482 End time: 2023-01-28 17:00:27.369396
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:00:32.224119 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:00:29.667665 End time: 2023-01-28 17:00:32.224119
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:00:47.487607 :: 128 :: mstransform :: Task mstransform complete. Start time: 2023-01-28 17:00:32.238560 End time: 2023-01-28 17:00:47.487607
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:00:48.653855 :: 128 :: flagmanager :: Task flagmanager complete. Start time: 2023-01-28 17:00:47.678449 End time: 2023-01-28 17:00:48.653855
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:01:22.972887 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:00:48.750233 End time: 2023-01-28 17:01:22.972887
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:01:53.747902 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:01:23.006768 End time: 2023-01-28 17:01:53.747902
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:02:00.508904 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:01:53.775053 End time: 2023-01-28 17:02:00.508904
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:02:33.784205 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:02:00.595538 End time: 2023-01-28 17:02:33.784205
28-Jan-2023 12:29:57 INFO     log:task_logging.py:28 2023-01-28 17:03:04.566107 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:02:33.812846 End time: 2023-01-28 17:03:04.566107
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:03:11.084517 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:03:04.588670 End time: 2023-01-28 17:03:11.084517
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:03:38.944804 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:03:11.170838 End time: 2023-01-28 17:03:38.944804
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:03:45.467125 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:03:38.963662 End time: 2023-01-28 17:03:45.467125
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:04:13.494856 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:03:45.548863 End time: 2023-01-28 17:04:13.494856
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:04:20.106527 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:04:13.513805 End time: 2023-01-28 17:04:20.106527
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:14.152631 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:04:20.125559 End time: 2023-01-28 17:06:14.152631
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:16.771044 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:06:14.173404 End time: 2023-01-28 17:06:16.771044
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:27.038617 :: 128 :: mstransform :: Task mstransform complete. Start time: 2023-01-28 17:06:16.784807 End time: 2023-01-28 17:06:27.038617
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:32.737216 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:06:29.271390 End time: 2023-01-28 17:06:32.737216
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:37.506662 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:06:32.747637 End time: 2023-01-28 17:06:37.506662
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:42.137983 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:06:37.527979 End time: 2023-01-28 17:06:42.137983
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:06:47.816651 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:06:43.172733 End time: 2023-01-28 17:06:47.816651
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:14.267798 :: 128 :: statwt :: Task statwt complete. Start time: 2023-01-28 17:06:47.823319 End time: 2023-01-28 17:08:14.267798
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:18.994574 :: 128 :: flagdata :: Task flagdata complete. Start time: 2023-01-28 17:08:14.288148 End time: 2023-01-28 17:08:18.994574
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:24.236506 :: 128 :: split :: Task split complete. Start time: 2023-01-28 17:08:19.004148 End time: 2023-01-28 17:08:24.236506
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:30.663129 :: 128 :: gaincal :: Task gaincal complete. Start time: 2023-01-28 17:08:24.375992 End time: 2023-01-28 17:08:30.663129
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:46.788120 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:08:36.770036 End time: 2023-01-28 17:08:46.788120
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:54.464419 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:08:46.829062 End time: 2023-01-28 17:08:54.464419
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:08:59.475358 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:08:54.474713 End time: 2023-01-28 17:08:59.475358
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:09:01.473600 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:08:59.487959 End time: 2023-01-28 17:09:01.473600
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:09:12.730649 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:09:01.496214 End time: 2023-01-28 17:09:12.730649
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:09:22.312849 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:09:12.777360 End time: 2023-01-28 17:09:22.312849
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:09:40.607038 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:09:22.341843 End time: 2023-01-28 17:09:40.607038
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:09:50.149567 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:09:40.634649 End time: 2023-01-28 17:09:50.149567
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:08.453092 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:09:50.176501 End time: 2023-01-28 17:10:08.453092
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:10.821848 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:10:08.750040 End time: 2023-01-28 17:10:10.821848
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:29.850816 :: 128 :: plotms :: Task plotms complete. Start time: 2023-01-28 17:10:10.866518 End time: 2023-01-28 17:10:29.850816
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:35.067515 :: 128 :: visstat :: Task visstat complete. Start time: 2023-01-28 17:10:34.929489 End time: 2023-01-28 17:10:35.067515
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:36.139061 :: 128 :: visstat :: Task visstat complete. Start time: 2023-01-28 17:10:35.072600 End time: 2023-01-28 17:10:36.139061
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:37.101101 :: 128 :: visstat :: Task visstat complete. Start time: 2023-01-28 17:10:36.150746 End time: 2023-01-28 17:10:37.101101
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:37.365259 :: 128 :: visstat :: Task visstat complete. Start time: 2023-01-28 17:10:37.108483 End time: 2023-01-28 17:10:37.365259
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:39.266432 :: 128 :: visstat :: Task visstat complete. Start time: 2023-01-28 17:10:37.370038 End time: 2023-01-28 17:10:39.266432
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:10:41.875784 :: 128 :: visstat :: Task visstat complete. Start time: 2023-01-28 17:10:39.272156 End time: 2023-01-28 17:10:41.875784
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:12:45.435831 :: 128 :: tclean :: Task tclean complete. Start time: 2023-01-28 17:11:40.388419 End time: 2023-01-28 17:12:45.435831
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:19:20.143482 :: 128 :: tclean :: Task tclean complete. Start time: 2023-01-28 17:12:46.092203 End time: 2023-01-28 17:19:20.143482
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:19:47.605290 :: 128 :: tclean :: Task tclean complete. Start time: 2023-01-28 17:19:23.650968 End time: 2023-01-28 17:19:47.605290
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:21:00.707598 :: 128 :: tclean :: Task tclean complete. Start time: 2023-01-28 17:19:48.299988 End time: 2023-01-28 17:21:00.707598
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:21:20.553059 :: 128 :: flagmanager :: Task flagmanager complete. Start time: 2023-01-28 17:21:19.354170 End time: 2023-01-28 17:21:20.553059
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:21:35.216834 :: 128 :: exportfits :: Task exportfits complete. Start time: 2023-01-28 17:21:35.183090 End time: 2023-01-28 17:21:35.216834
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:21:35.281407 :: 128 :: exportfits :: Task exportfits complete. Start time: 2023-01-28 17:21:35.239042 End time: 2023-01-28 17:21:35.281407
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:21:35.330039 :: 128 :: exportfits :: Task exportfits complete. Start time: 2023-01-28 17:21:35.299507 End time: 2023-01-28 17:21:35.330039
28-Jan-2023 12:29:58 INFO     log:task_logging.py:28 2023-01-28 17:21:35.389898 :: 128 :: exportfits :: Task exportfits complete. Start time: 2023-01-28 17:21:35.348906 End time: 2023-01-28 17:21:35.389898
28-Jan-2023 12:29:58 =============================== warnings summary ===============================
28-Jan-2023 12:29:58 pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sortedlist.py:10
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sortedlist.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sortedset.py:6
28-Jan-2023 12:29:58 pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sortedset.py:6
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sortedset.py:6: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sorteddict.py:8
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sorteddict.py:8: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sorteddict.py:9
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sorteddict.py:9: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sorteddict.py:10
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/sortedcontainers-1.4.4-py3.6.egg/sortedcontainers/sorteddict.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/extern/findContinuum.py:216
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/findContinuum.py:216: DeprecationWarning: Please use `gaussian_filter` from the `scipy.ndimage` namespace, the `scipy.ndimage.filters` namespace is deprecated.
28-Jan-2023 12:29:58     from scipy.ndimage.filters import gaussian_filter
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/hifa/tasks/fluxscale/qa.py:622
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifa/tasks/fluxscale/qa.py:622: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     'boolean': numpy.bool,
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py:245
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/infrastructure/utils/regression-tester.py:245: SyntaxWarning: "is" with a literal. Did you mean "=="?
28-Jan-2023 12:29:58     if telescope is 'alma':
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py:247
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/infrastructure/utils/regression-tester.py:247: SyntaxWarning: "is" with a literal. Did you mean "=="?
28-Jan-2023 12:29:58     elif telescope is 'vla':
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hif/tasks/rawflagchans/rawflagchans.py:244: DeprecationWarning: `np.complex` is a deprecated alias for the builtin `complex`. To silence this warning, use `complex` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.complex128` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     data = np.zeros([len(corrs), nchans, nbaselines], np.complex)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hif/tasks/rawflagchans/rawflagchans.py:245: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     ndata = np.zeros([len(corrs), nchans, nbaselines], np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 85 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/commonresultobjects.py:72: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     self.flag_reason_plane = np.zeros(np.shape(data), np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 85 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/commonresultobjects.py:81: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     self.nodata = np.zeros(np.shape(self.data), np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 69 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/viewflaggers.py:483: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     flag_reason = np.zeros(np.shape(flag), np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 85 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/displays/image.py:302: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     sentinelvalues = np.array(list(sentinel_set), np.float) + 10.0
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 85 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/displays/image.py:316: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     sentinel_mask = np.zeros(np.shape(data), np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 49367 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/displays/image.py:638: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     sentinel_mask = np.zeros(np.shape(value), np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 69 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/displays/image.py:190: PendingDeprecationWarning: The set_constrained_layout_pads function will be deprecated in a future version. Use figure.get_layout_engine().set() instead.
28-Jan-2023 12:29:58     fig.set_constrained_layout_pads(w_pad=0.02, h_pad=0.02)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 11 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hif/heuristics/findrefant.py:668: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     far = numpy.array(list(distance.values()), numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 11 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hif/heuristics/findrefant.py:915: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     nGood = numpy.array(list(good.values()), numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 79 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/casatasks/private/task_plotbandpass.py:7094: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     type(selectedValues) == np.int):
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 2335 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/commonresultobjects.py:144: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     self.nodata = np.zeros(np.shape(self.data), np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 2335 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/commonresultobjects.py:149: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     self.noisychannels = np.zeros(np.shape(self.data), np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 40 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1216: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     stackmedianflag = np.ones(np.shape(spectrumstack)[1], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 68 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/commonresultobjects.py:114: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     self.flag = np.zeros(np.shape(data), np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 40 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1235: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     flag = np.ones([antenna_ids[-1]+1, len(times)], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1438: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     stackmedianflag = np.ones(np.shape(spectrumstack)[1], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1455: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     flag = np.ones([antenna_ids[-1]+1, len(times)], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 16 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1753: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     stackmedianflag = np.ones(np.shape(spectrumstack)[1], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1645: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     flag = np.ones([antenna_ids[-1]+1, len(times)], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__procedure_hsdn_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__procedure_hsdn_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1846: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     spw_medianflag = np.ones(np.shape(spw_spectrumstack)[1], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 31 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1860: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     ant_medianflag = np.ones(np.shape(ant_spectrumstack[antenna_id])[1], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1314: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     stackmedianflag = np.ones(np.shape(spectrumstack)[1], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/tsysflag/tsysflag.py:1333: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     flag = np.ones([antenna_ids[-1]+1, len(times)], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/viewflaggers.py:796: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     num_flagged = np.zeros([np.shape(data)[1]], np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 80 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/viewflaggers.py:817: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     i2flag = np.zeros([0], np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 80 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/viewflaggers.py:818: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     j2flag = np.zeros([0], np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/displays/slice.py:264: MatplotlibDeprecationWarning: Auto-removal of overlapping axes is deprecated since 3.6 and will be removed two minor releases later; explicitly call ax.remove() as needed.
28-Jan-2023 12:29:58     plt.subplot(nplots, 1, plotnumber)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 26 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/arrayflaggerbase.py:309: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     result = np.array([], np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/fromnumeric.py:3432: RuntimeWarning: Mean of empty slice.
28-Jan-2023 12:29:58     return _methods._mean(a, axis=axis, dtype=dtype,
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/_methods.py:190: RuntimeWarning: invalid value encountered in double_scalars
28-Jan-2023 12:29:58     ret = ret.dtype.type(ret / rcount)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hif/tasks/lowgainflag/lowgainflag.py:469: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     flag = np.ones([nants, len(scans)], np.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/ma/core.py:851: RuntimeWarning: underflow encountered in multiply
28-Jan-2023 12:29:58     return umath.absolute(a) * self.tolerance >= umath.absolute(b)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 65 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/PIPE692.py:539: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     over = np.int(np.round(over / diffTime))
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/fromnumeric.py:758: UserWarning: Warning: 'partition' will ignore the 'mask' of the MaskedArray.
28-Jan-2023 12:29:58     a.partition(kth, axis=axis, kind=kind, order=order)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 26 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/tasks/common/manifest.py:59: DeprecationWarning: This method will be removed in future versions.  Use 'list(elem)' or iteration over elem instead.
28-Jan-2023 12:29:58     return self.piperesults.getchildren()[0]
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__procedure_hsdn_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/importdata/reader.py:650: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     NchanArray = numpy.fromiter((nchan_map[n] for n in Tif), dtype=numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/_methods.py:265: RuntimeWarning: Degrees of freedom <= 0 for slice
28-Jan-2023 12:29:58     ret = _var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/_methods.py:223: RuntimeWarning: invalid value encountered in divide
28-Jan-2023 12:29:58     arrmean = um.true_divide(arrmean, div, out=arrmean, casting='unsafe',
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/_methods.py:257: RuntimeWarning: invalid value encountered in double_scalars
28-Jan-2023 12:29:58     ret = ret.dtype.type(ret / rcount)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 18 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/simplegrid.py:277: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     index_ra = numpy.array((ras - min_ra) * igrid_ra_corr, dtype=numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 18 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/simplegrid.py:278: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     index_dec = numpy.array((decs - min_dec) * igrid_dec, dtype=numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 18 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/simplegrid.py:281: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     counter = numpy.zeros((ngrid_ra, ngrid_dec), dtype=numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 18 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/simplegrid.py:428: DeprecationWarning: `np.complex` is a deprecated alias for the builtin `complex`. To silence this warning, use `complex` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.complex128` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     StorageOut = numpy.zeros((nrow, nchan), dtype=numpy.complex)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 18 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/simplegrid.py:430: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     StorageNumSp = numpy.zeros((nrow), dtype=numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 18 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/simplegrid.py:431: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     StorageNumFlag = numpy.zeros((nrow), dtype=numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 41006 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/heuristics/linefinder.py:67: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     mask = np.array(mask, np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 41006 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/h/heuristics/linefinder.py:85: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     previous_line_indeces = np.array([], np.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 35148 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/detection.py:387: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     return numpy.array([data[i:i+Bin].mean() for i in range(offset, len(data)-Bin+1, Bin)], dtype=numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 35148 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/detection.py:368: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     return numpy.array([data[i:i+Bin].min() for i in range(offset, len(data)-Bin+1, Bin)], dtype=numpy.bool)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 12 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/validation.py:1379: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     Data = numpy.zeros((Obs.shape[0], NumParam), numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 12 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/validation.py:1383: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     Factor = numpy.ones(NumParam, numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 12 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/validation.py:1259: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     tmp = numpy.zeros((Data.shape[0]+Repeat*2, Data.shape[1]), numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 12 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/validation.py:1427: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     Range = numpy.zeros((C, 5), numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 12 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baseline/validation.py:1428: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     Stdev = numpy.zeros((C, 5), numpy.float)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/heuristics/fitorder.py:48: RuntimeWarning: invalid value encountered in double_scalars
28-Jan-2023 12:29:58     average = (spectrum * flag).sum() / float(flag.sum())
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 116 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/worker.py:412: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     statistics_array = dict((p, numpy.zeros((5, output_array_size), dtype=numpy.float)) for p in polids)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 4760 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/worker.py:516: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     RmaskOld = numpy.zeros(NCHAN, numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 4760 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/worker.py:518: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     RmaskNew = numpy.zeros(NCHAN, numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 4760 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/worker.py:552: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     LmaskOld = numpy.zeros(NCHAN, numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 4760 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/worker.py:554: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     LmaskNew = numpy.zeros(NCHAN, numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 116 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/worker.py:688: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     mask = numpy.ones((Nflag, Ndata), numpy.int)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 232 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/flagsummary.py:220: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     NPprows[key] = np.zeros( NROW, dtype=np.int )
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 232 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/flagsummary.py:221: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     NPptime[key] = np.zeros( NROW, dtype=np.float )
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 928 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/flagsummary.py:229: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     NPpdata[key] = np.zeros( NROW, dtype=np.float )
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 928 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/flagsummary.py:230: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     NPpflag[key] = np.zeros( NROW, dtype=np.int )
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/baselineflag/SDFlagPlotter.py:457: UserWarning: Attempting to set identical low and high ylims makes transformation singular; automatically expanding.
28-Jan-2023 12:29:58     ax[pol].axis( [xmin, xmax, ylim[0], ylim[1]] )
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 14 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/extern/sensitivity_improvement.py:230: DeprecationWarning: The 'warn' method is deprecated, use 'warning' instead
28-Jan-2023 12:29:58     LOG.warn("This is pre-Cycle 3 data, thus the averaging is not definitely known. I will instead use 1")
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__procedure_hsdn_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/imaging/detectcontamination.py:237: RuntimeWarning: invalid value encountered in divide
28-Jan-2023 12:29:58     peak_sn = (np.nanmax(cube_regrid, axis=0)) / rms_map
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__procedure_hsdn_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___mg2_20170525142607_180419__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/imaging/detectcontamination.py:262: RuntimeWarning: invalid value encountered in divide
28-Jan-2023 12:29:58     peak_sn2 = (np.nanmax(cube_regrid, axis=0)) / rms_map
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 19 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/imaging/display.py:1435: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     ROWS = numpy.zeros(NH * NV * NhPanel * NvPanel, dtype=numpy.int) - 1
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 99 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/imaging/display.py:100: MatplotlibDeprecationWarning: The draw_all function was deprecated in Matplotlib 3.6 and will be removed two minor releases later. Use fig.draw_without_rendering() instead.
28-Jan-2023 12:29:58     colorbar.draw_all()
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 30 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/imaging/display.py:695: RuntimeWarning: Mean of empty slice.
28-Jan-2023 12:29:58     Plot[x][y] = valid_sp.mean(axis=0)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 30 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/_methods.py:182: RuntimeWarning: invalid value encountered in divide
28-Jan-2023 12:29:58     ret = um.true_divide(
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f__procedure_hsd_calimage__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_X85c183_X36f_SPW15_23__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hsd/tasks/imaging/display.py:843: RuntimeWarning: invalid value encountered in divide
28-Jan-2023 12:29:58     data_weight_integ = numpy.ma.masked_array((data_integ / weight_integ), [not val for val in mask_integ],
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/syspower/syspower.py:298: RuntimeWarning: invalid value encountered in divide
28-Jan-2023 12:29:58     pdrq = p_diff / (rq ** 2)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 216 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/syspower/syspower.py:73: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     window_size = np.abs(np.int(window_size))
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 216 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/syspower/syspower.py:74: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
28-Jan-2023 12:29:58   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:29:58     order = np.abs(np.int(order))
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py: 216 warnings
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/matrixlib/defmatrix.py:69: PendingDeprecationWarning: the matrix subclass is not the recommended way to represent matrices or deal with linear algebra (see https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html). Please adjust your code to use regular ndarray.
28-Jan-2023 12:29:58     return matrix(data, dtype=dtype, copy=False)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/numpy/core/shape_base.py:65: UserWarning: Warning: converting a masked element to nan.
28-Jan-2023 12:29:58     ary = asanyarray(ary)
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:29:58   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/matplotlib/text.py:693: UserWarning: Warning: converting a masked element to nan.
28-Jan-2023 12:29:58     posy = float(self.convert_yunits(self._y))
28-Jan-2023 12:29:58
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:29:58 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/casa-6.5.5-2-pipeline-2023.0.0.3/lib/py/lib/python3.8/site-packages/casatasks/private/task_flagdata.py:571: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
28-Jan-2023 12:30:27     if v == '':
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/fluxscale/fluxbootdisplay.py:328: UserWarning: Attempting to set identical low and high xlims makes transformation singular; automatically expanding.
28-Jan-2023 12:30:27     ax1.set_xlim(np.log10(np.array([minxlim, maxxlim])))
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/fluxscale/fluxbootdisplay.py:338: UserWarning: Attempting to set identical low and high xlims makes transformation singular; automatically expanding.
28-Jan-2023 12:30:27     ax2.set_xlim(np.log10(np.array([minxlim, maxxlim])))
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/fluxscale/fluxbootdisplay.py:218: UserWarning: Attempting to set identical low and high xlims makes transformation singular; automatically expanding.
28-Jan-2023 12:30:27     ax1.set_xlim(np.log10(np.array([minxlim, maxxlim])))
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/fluxscale/fluxbootdisplay.py:226: UserWarning: Attempting to set identical low and high xlims makes transformation singular; automatically expanding.
28-Jan-2023 12:30:27     ax2.set_xlim(np.log10(np.array([minxlim, maxxlim])))
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py: 726 warnings
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/statwt/renderer.py:107: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
28-Jan-2023 12:30:27   Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
28-Jan-2023 12:30:27     summary = np.array(whole[stat], dtype=np.float)
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py: 21 warnings
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/statwt/renderer.py:162: PendingDeprecationWarning: The get_cmap function will be deprecated in a future version. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
28-Jan-2023 12:30:27     cmap=cm.get_cmap(name='Reds')
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 pipeline/infrastructure/utils/regression-tester.py: 33 warnings
28-Jan-2023 12:30:27   /home/casatest/casa-build-utils/pipeline/workdir/pipeline/pipeline/hifv/tasks/statwt/renderer.py:164: PendingDeprecationWarning: The get_cmap function will be deprecated in a future version. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
28-Jan-2023 12:30:27     cmap=cm.get_cmap(name='Blues')
28-Jan-2023 12:30:27
28-Jan-2023 12:30:27 -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
28-Jan-2023 12:30:27 - generated xml file: /home/casatest/casa-build-utils/pipeline/workdir/pipeline_regression_test_result.xml -
28-Jan-2023 12:30:27 =========================== short test summary info ============================
28-Jan-2023 12:30:27 FAILED pipeline/infrastructure/utils/regression-tester.py::test_uid___A002_Xc46ab2_X15ae_repSPW_spw16_17_small__procedure_hifa_calimage__regression
28-Jan-2023 12:30:27 FAILED pipeline/infrastructure/utils/regression-tester.py::test_13A_537__procedure_hifv__regression
28-Jan-2023 12:30:27 FAILED pipeline/infrastructure/utils/regression-tester.py::test_13A_537__calibration__PPR__regression
28-Jan-2023 12:30:27 ==== 3 failed, 5 passed, 1 skipped, 230951 warnings in 20294.27s (5:38:14) =====
28-Jan-2023 12:30:27 Telemetry initialized. Telemetry will send anonymized usage statistics to NRAO.
28-Jan-2023 12:30:27 You can disable telemetry by adding the following line to the config.py file in your rcdir (e.g. ~/.casa/config.py):
28-Jan-2023 12:30:27 telemetry_enabled = False
28-Jan-2023 12:30:27 2023-01-28 17:29:59        INFO        ::casa        Terminating casaplotms, PID: 154
28-Jan-2023 12:30:27 2023-01-28 17:29:59        INFO        ::casa        Finished shutting down casaplotms. Poll return code: -9, PID: 154
28-Jan-2023 12:30:27 0
28-Jan-2023 12:30:34 Finished task 'Test' with result: Success
28-Jan-2023 12:30:34 Starting task 'JUnit Parser' of type 'com.atlassian.bamboo.plugins.testresultparser:task.testresultparser.junit'
28-Jan-2023 12:30:34 Parsing test results under /export/home/cbt-pipeline-test/ci-workspace/bamboohome/xml-data/build-dir/PIPE-TPM-JOB1...
28-Jan-2023 12:30:35 Failing task since 3 failing test cases were found.
28-Jan-2023 12:30:35 Finished task 'JUnit Parser' with result: Failed
28-Jan-2023 12:30:35 Starting task 'Cleanup' of type 'com.atlassian.bamboo.plugins.scripttask:task.builder.script'
28-Jan-2023 12:30:35
Beginning to execute external process for build 'Pipeline - Pipeline Main with Casa Master Test - Test Linux #128 (PIPE-TPM-JOB1-128)'
... running command line:
/export/home/cbt-pipeline-test/ci-workspace/bamboohome/temp/PIPE-TPM-JOB1-128-ScriptBuildTask-3220411289284001598.sh
... in: /export/home/cbt-pipeline-test/ci-workspace/bamboohome/xml-data/build-dir/PIPE-TPM-JOB1
28-Jan-2023 12:30:35 Starting cleanup
28-Jan-2023 12:30:35 Error response from daemon: No such container: pipeline-test
28-Jan-2023 12:30:35 Error: No such container: pipeline-test
28-Jan-2023 12:30:35 Cleanup complete
28-Jan-2023 12:30:35 Finished task 'Cleanup' with result: Success
28-Jan-2023 12:30:35 Running post build plugin 'Docker Container Cleanup'
28-Jan-2023 12:30:35
Beginning to execute external process for build 'Pipeline - Pipeline Main with Casa Master Test - Test Linux #128 (PIPE-TPM-JOB1-128)'
... running command line:
/usr/bin/docker rm -f pipelinetest
... in: /export/home/cbt-pipeline-test/ci-workspace/bamboohome/xml-data/build-dir/PIPE-TPM-JOB1
28-Jan-2023 12:30:55 pipelinetest
28-Jan-2023 12:30:55 Running post build plugin 'NCover Results Collector'
28-Jan-2023 12:30:55 Running post build plugin 'Clover Results Collector'
28-Jan-2023 12:30:55 Running post build plugin 'npm Cache Cleanup'
28-Jan-2023 12:30:55 Running post build plugin 'Artifact Copier'
28-Jan-2023 12:30:55 Publishing an artifact: Unit Test Result xml
28-Jan-2023 12:30:55 Finished publishing of artifact Required shared artifact: [Unit Test Result xml], pattern: [pipeline_regression_test_result.xml] anchored at: [pkgout/] in 170.2 ms
28-Jan-2023 12:30:55 Publishing an artifact: Regression Test Result
28-Jan-2023 12:30:56 Finished publishing of artifact Required shared artifact: [Regression Test Result], pattern: [pipeline_unit_test_result.xml] anchored at: [pkgout/] in 31.54 ms
28-Jan-2023 12:30:56 Finalising the build...
28-Jan-2023 12:30:56 Stopping timer.
28-Jan-2023 12:30:56 Build PIPE-TPM-JOB1-128 completed.
28-Jan-2023 12:30:56 Running on server: post build plugin 'NCover Results Collector'
28-Jan-2023 12:30:56 Running on server: post build plugin 'Build Hanging Detection Configuration'
28-Jan-2023 12:30:56 Running on server: post build plugin 'Clover Delta Calculator'
28-Jan-2023 12:30:56 Running on server: post build plugin 'Maven Dependencies Postprocessor'
28-Jan-2023 12:30:56 All post build plugins have finished
28-Jan-2023 12:30:56 Generating build results summary...
28-Jan-2023 12:30:56 Saving build results to disk...
28-Jan-2023 12:30:56 Store variable context...
28-Jan-2023 12:30:56 Indexing build results...
28-Jan-2023 12:30:56 Finished building PIPE-TPM-JOB1-128.