Coverage for /wheeldirectory/casa-6.7.0-11-py3.10.el8/lib/py/lib/python3.10/site-packages/casatools/imagepol.py: 55%

82 statements  

« prev     ^ index     » next       coverage.py v7.6.4, created at 2024-10-23 15:54 +0000

1##################### generated by xml-casa (v2) from imagepol.xml ################## 

2##################### 3b7437629b45930681a8977ca52048f2 ############################## 

3from __future__ import absolute_import 

4from .__casac__.imagepol import imagepol as _imagepol 

5 

6from .errors import create_error_string 

7from .typecheck import CasaValidator as _validator 

8_pc = _validator( ) 

9from .coercetype import coerce as _coerce 

10from .image import image as _wrap_image 

11 

12class imagepol: 

13 _info_group_ = """images""" 

14 _info_desc_ = """Polarimetric analysis of images""" 

15 ### self 

16 def __init__(self, *args, **kwargs): 

17 """The constructor takes an image as its input. This can be specified as 

18 either the name of a disk file, or you can give a pre-existing Image 

19 tool. If you give a disk file name, the disk image file may 

20 be in casa, fits or Miriad format. 

21  

22 The input image must have a Stokes axis. The exact collection of Stokes 

23 that the image has, determines what the Imagepol tool can compute. 

24 Stokes I, Q, U, and V refer to total intensity, two components of linear 

25 polarization, and circular polatization, respectively. Therefore, if 

26 you ask for linear polarization and the image only has Stokes I and V, 

27 you will get an error. 

28  

29 The input image may contain data at many frequencies. For example, the 

30 image may be a 4D image with axes RA, DEC, Stokes and Frequency (order 

31 not important) where the Frequency axis is regularly sampled. However, 

32 the image may also contain many frequencies at irregular intervals. 

33 Such an image may be created with the Image tool constructor called 

34 imageconcat. It enables you to concatenate 

35 images along an axis, and it allows irregular coordinate values along that 

36 axis. 

37 """ 

38 self._swigobj = kwargs.get('swig_object',None) 

39 if self._swigobj is None: 

40 self._swigobj = _imagepol() 

41 

42 def imagepoltestimage(self, outfile='imagepol.iquv', rm=[ float(0.0) ], pa0=float(0.0), sigma=float(0.01), nx=int(32), ny=int(32), nf=int(32), f0=float(1.4e9), bw=float(128.0e6)): 

43 """This function can be used to generate a test image and then 

44 attach the Imagepol tool to it. 

45  

46 The test image is 4-dimensional (RA, DEC, Stokes and Frequency). The 

47 Stokes axis holds I,Q,U and V. The source is just a constant I (if you 

48 don't add noise all spatial pixels will be identical) and V. Q and U 

49 vary with frequency according to the specified Rotation Measure 

50 components (no attempt to handle bandwidth smearing within channels is 

51 made). The actual values of I,Q,U, and V are chosen arbitrarily 

52 otherwise (could be added as arguments if desired). 

53  

54 You can use this image, in particular, to explore the Rotation Measure 

55 algorithms in functions rotationmeasure and 

56 fourierrotationmeasure. 

57  

58 If you don't specify the Rotation Measure, then it is chosen for you so 

59 that there is no position angle ambiguity between adjacent channels 

60 (the value will be sent to the Logger). 

61  

62 The noise added to the image is specified as a fraction of the total 

63 intensity (constant). Gaussian noise with a standard deviation of 

64 {stfaf sigma * $I_{max}$} is then added to the image. 

65 """ 

66 return self._swigobj.imagepoltestimage(outfile, rm, pa0, sigma, nx, ny, nf, f0, bw) 

67 

68 def complexlinpol(self, outfile): 

69 """This function produces 

70 the complex linear polarization; $Q+iU$ and writes 

71 it to a disk image file. 

72  

73 The Image tool cannot yet handle Complex 

74 images. You must therefore write the Complex image to disk. The 

75 Viewer can display Complex images. Also the 

76 Table tool can access Complex images. 

77 """ 

78 return self._swigobj.complexlinpol(outfile) 

79 

80 def complexfraclinpol(self, outfile): 

81 """This function produces 

82 the complex fractional linear polarization; $(Q+iU)/I$ and writes 

83 it to a disk image file. 

84  

85 The Image tool cannot yet handle Complex 

86 images. You must therefore write the Complex image to disk. The 

87 Viewer can display Complex images. Also the 

88 Table tool can access Complex images. 

89 """ 

90 return self._swigobj.complexfraclinpol(outfile) 

91 

92 def depolratio(self, infile, debias=False, clip=float(10.0), sigma=float(-1), outfile=''): 

93 """This function returns the linear 

94 depolarization ratio computed from two frequencies; this is the ratio of 

95 the fractional linear polarization at the two frequencies. Generally 

96 this is done when you have generated two images, each at a different frequency 

97 (continuum work). Thus if the fractional linear polarization images are 

98 $m_{nu 1}$ and $m_{nu 2}$ then the depolarization ratio is 

99 $m_{nu 1}/ m_{nu 2}$. 

100  

101 This function operates with two images; the first (at frequency $nu 1$) 

102 is the one attached to your Imagepol tool. The second (at 

103 frequency $nu 2$) is supplied via the argument {stfaf infile}, which 

104 is a String holding the name of the 

105 imagefile. 

106  

107 In generating the depolarization ratio, you may optionally debias the 

108 linearly polarized intensity. This requires the standard deviation of 

109 the thermal noise. You can either supply it if you know it, or it will 

110 be worked out for you with outliers from the mean clipped at the 

111 specified level. 

112  

113 You can get the depolarization ratio error image with function 

114 sigmadepolratio. 

115 """ 

116 return _wrap_image(swig_object=self._swigobj.depolratio(infile, debias, clip, sigma, outfile)) 

117 

118 def close(self): 

119 """This function closes the imagepol tool. This means that it detaches 

120 the tool from its imagefile (flushing all the changes first). The 

121 imagepol tool is ``null'' after this change (it is not destroyed) and 

122 calling any toolfunction other than open will result in an 

123 error. 

124 """ 

125 return self._swigobj.close() 

126 

127 def done(self): 

128 """This function is the same as close(). 

129 """ 

130 return self._swigobj.done() 

131 

132 def fourierrotationmeasure(self, complex='', amp='', pa='', real='', imag='', zerolag0=False): 

133 """This function will only work if 

134 you attach the Imagepol tool (using open) to an image containing 

135 Stokes Q and U, and a regular frequency axis. It Fourier transforms 

136 the complex linear polarization (Q+iU) over the spectral axis to the 

137 rotation measure axis. Thus, if your input image contained 

138 RA/DEC/Stokes/Frequency, the output image would be 

139 RA/DEC/RotationMeasure. The Rotation Measure axis has as many pixels 

140 as the spectral axis. 

141  

142 This method enables you to see the polarization as a function of 

143 Rotation Meausure. Its main use is when searching for large RMs. See 

144 Killeen, Fluke, Zhao and Ekers (1999, preprint) for a description of 

145 this method (or http://www.atnf.csiro.au/verb+~+nkilleen/rm.ps) and its 

146 advantages over the traditional method 

147 (rotationmeasure) of 

148 extracting the Rotation Measure. 

149  

150 Although you can write out the complex polarization image with the 

151 argument {stfaf complex}, you can't do much with it because Image 

152 tools cannot handle complex images. Hence you can 

153 also write out the complex linear polarization image in any or all of 

154 the other forms. 

155  

156 The argument {stfaf zerolag0} allows you to force the zero lag (or 

157 central bin) of the Rotation Measure spectrum to zero (effectively by 

158 subtracting the mean of Q and U from the Q and U images). This may 

159 avoid Gibbs phenomena from any strong low Rotation Measure signal which 

160 would normally fall into the central bin. 

161 """ 

162 return self._swigobj.fourierrotationmeasure(complex, amp, pa, real, imag, zerolag0) 

163 

164 def fraclinpol(self, debias=False, clip=float(10.0), sigma=float(-1), outfile=''): 

165 """This function 

166 returns the fractional linear polarization; $sqrt{(Q^2+U^2)}/I$. 

167  

168 You may optionally debias the polarized intensity. This requires the 

169 standard deviation of the thermal noise. You can either supply it if 

170 you know it, or it will be worked out for you with outliers from the 

171 mean clipped at the specified level. 

172 """ 

173 return _wrap_image(swig_object=self._swigobj.fraclinpol(debias, clip, sigma, outfile)) 

174 

175 def fractotpol(self, debias=False, clip=float(10.0), sigma=float(-1), outfile=''): 

176 """This function 

177 returns the fractional linear polarization; $sqrt{(Q^2+U^2+V^2)}/I$. 

178  

179 You may optionally debias the polarized intensity. This requires the 

180 standard deviation of the thermal noise. You can either supply it if 

181 you know it, or it will be worked out for you with outliers from the 

182 mean clipped at the specified level. 

183  

184 If your image contains only Q and U, or only V, then just 

185 those components contribute to the total polarized intensity. 

186 """ 

187 return _wrap_image(swig_object=self._swigobj.fractotpol(debias, clip, sigma, outfile)) 

188 

189 def linpolint(self, debias=False, clip=float(10.0), sigma=float(-1), outfile='', region='', mask='', stretch=False): 

190 """This application returns the linearly polarized intensity; $sqrt{(Q^2+U^2)}$. 

191  

192 The linearly polarized intensity may optionally be debiased (if debias=True). 

193 This requires an estimate of the thermal noise level (sigma). The resulting 

194 image will be computed using 

195  

196 $sqrt{(Q^2 + U^2 - sigma^2)}$ 

197  

198 If the specified value of sigma is positive, that is the value that will 

199 be used for debiasing. If it is not, the value used for sigma is computed 

200 using the following algorithm: 

201  

202 1. First, a stokes plane(s) is chosen on which the sigma computation is performed. 

203 If the V plane exists, that is used to compute sigma. If not, then the value of 

204 sigma is computed to be the average of the sigma values of the Q and U planes. 

205  

206 2. For the relevant plane(s), the sigma value is computed for unmasked pixel values 

207 which lie within +/- (clip * stddev) values of the mean for that plane, where the mean 

208 and stddev (the standard deviation) are computed by using all unmasked pixel values 

209 in the relevant plane. In this way, outliers (eg pixels due to possible 

210 astronomical signals) are excluded in the computation of sigma. 

211  

212 In the output image, pixels for which the expression inside the square root is 

213 negative are masked, and their values are set to zero. 

214  

215 If a region and/or mask is specified, debias=True and sigma is not positive so 

216 that the value of sigma is determined using the algorithm above, the region and mask 

217 are applied first to the plane(s) from which the value of sigma is determined and 

218 then sigma is computed. 

219 """ 

220 return _wrap_image(swig_object=self._swigobj.linpolint(debias, clip, sigma, outfile, region, mask, stretch)) 

221 

222 def linpolposang(self, outfile='', region='', mask='', stretch=False): 

223 """This function returns the linearly polarized position angle image 0.5*arctan(U/Q) in degrees. 

224 The output image will not have a restoring beam, even if the input image does. 

225 """ 

226 return _wrap_image(swig_object=self._swigobj.linpolposang(outfile, region, mask, stretch)) 

227 

228 def makecomplex(self, complex, real='', imag='', amp='', phase=''): 

229 """This function generates a Complex imagefile from either 

230 a real and imaginary, or an amplitude and phase pair of images. 

231 If you give a linear position angle image for the phase, 

232 it will be multipled by two before the real and imaginary 

233 parts are formed. 

234 """ 

235 return self._swigobj.makecomplex(complex, real, imag, amp, phase) 

236 

237 def open(self, image={ }): 

238 """Before polarimetric analysis can commence, an imagefile must be 

239 attached to the imagepol tool using the open function. Also, use this 

240 function when you are finished analyzing the current imagefile and 

241 want to attach to another one. This function detaches the imagetool 

242 from the current imagefile, if one exists, and reattaches it (opens) 

243 to the new imagefile. 

244  

245 The input image file may be in native casa, fits, or Miriad 

246 format. Look htmlref{here}{IMAGES:FOREIGNIMAGES} for more 

247 information on foreign images. 

248  

249 The input image must have a Stokes axis. The exact collection of 

250 Stokes that the image has, determines what the Imagepol tool can 

251 compute. Stokes I, Q, U, and V refer to total intensity, two 

252 components of linear polarization, and circular polatization, 

253 respectively. Therefore, if you ask for linear polarization and the 

254 image only has Stokes I and V, you will get an error. 

255  

256 The input image may contain data at many frequencies. For example, the 

257 image may be a 4D image with axes RA, DEC, Stokes and Frequency (order 

258 not important) where the Frequency axis is regularly sampled. However, 

259 the image may also contain many frequencies at irregular 

260 intervals. Such an image may be created with the Image tool function 

261 imageconcat. It enables you to concatenate images along an axis, and 

262 it allows irregular coordinate values along that axis. 

263 """ 

264 return self._swigobj.open(image) 

265 

266 def pol(self, which, debias=False, clip=float(10.0), sigma=float(-1), outfile=''): 

267 """This function just packages the other specific polarization 

268 functions into one where you specify an operation with the 

269 argument {stfaf which} (can be useful for scripts). 

270 This argument can take the values: 

271  

272 begin{itemize} 

273 item 'lpi' - linearly polarized intensity (function 

274 linpolint) 

275  

276 item 'tpi' - total polarized intensity (function 

277 totpolint) 

278  

279 item 'lppa' linearly polarized position angle (function 

280 linpolposang) 

281  

282 item 'flp' - fractional linear polarization (function 

283 fraclinpol) 

284  

285 item 'ftp' - fractional total polarized intensity (function 

286 fractotpol) 

287  

288 end{itemize} 

289 """ 

290 return _wrap_image(swig_object=self._swigobj.pol(which, debias, clip, sigma, outfile)) 

291 

292 def rotationmeasure(self, rm='', rmerr='', pa0='', pa0err='', nturns='', chisq='', sigma=float(-1), rmfg=float(0.0), rmmax=float(0.0), maxpaerr=float(1e30), plotter='', nx=int(5), ny=int(5)): 

293 """This function generates the rotation 

294 measure image from a collection of different frequencies. It will only 

295 work if the Imagepol tool is attached to an image containing 

296 Stokes $Q$ and $U$, and a frequency axis (regular or irregular) with at 

297 least 2 pixels. It will work out the position angle images for you. 

298  

299 See also the fourierrotationmeasure 

300 function for a new Fourier-based approach. 

301  

302 Rotation Measure algorithms that work robustly are not common. The main 

303 problem is in trying to account for the $n- pi$ ambiguity (see Leahy et 

304 al, Astronomy & Astrophysics, 156, 234 or Killeen et al; 

305 http://www.atnf.csiro.au/verb+~+nkilleen/rm.ps). 

306  

307 The algorithm that this function uses is that of Leahy et al. (see Appendix A.1). But as in all 

308 these algorithms, the basic process is that for each spatial pixel, a 

309 vector of position angles (i.e. at the different frequencies) is fit to 

310 determine the rotation measure and the position angle at zero wavelength 

311 (and their errors). An image containing 

312 the number of $n- pi$ turns that were added to the data 

313 at each spatial pixel and for which the best fit was found can be written. 

314 The reduced chi-squared image for the fits can also be written. 

315  

316 Note that no assessment of curvature (i.e. deviation 

317 from the simple linear position angle - $lambda^2$ functional form) 

318 is made. 

319  

320 Any combination of output images can be written. 

321  

322 The argument {stfaf sigma} gives the thermal noise in Stokes Q and U. 

323 By default it is determined automatically using the image data. But if it proves 

324 to be inaccurate (maybe not many signal-free pixels), it may be specified. 

325 This is used for calculating the error in the 

326 position angles (propagation of Gaussian errors). 

327  

328 The argument {stfaf maxpaerr} specifies the maximum allowable error in 

329 the position angle that is acceptable. The default is an infinite 

330 value. From the standard propagation of errors, the error in the 

331 linearly polarized position angle is determined from the Stokes $Q$ and 

332 $U$ images (at each spatial pixel for each frequency). At each spatial 

333 pixel we do a fit to the position angle vector (i.e. at the different 

334 frequencies) to determine the rotation measure. If the position angle 

335 error for any pixel in the vector exceeds the specified value, it is 

336 dropped from the fit. The process generates an error for the 

337 fit and this is used to compute the errors in the output 

338 images. 

339  

340 Note that {stfaf maxpaerr} is {it not} used to specify that any pixel 

341 for which the output position angle error exceeds this value 

342 should be masked out. 

343  

344 The argument {stfaf rmfg} is used to specify a foreground RM value. For 

345 example, you may know the mean RM in some direction out of the Galaxy, 

346 then including this can aid the algorithm by reducing ambiguity. 

347  

348 The argument {stfaf rmmax} specifies the maximum absolute RM that 

349 should be solved for. This quite an important parameter. If you leave 

350 it at the default, zero, no ambiguity handling will be 

351 used. So some apriori information should be supplied; this 

352 is the basic problem with rotation measure algorithms. 

353 """ 

354 return self._swigobj.rotationmeasure(rm, rmerr, pa0, pa0err, nturns, chisq, sigma, rmfg, rmmax, maxpaerr, plotter, nx, ny) 

355 

356 def sigma(self, clip=float(10.0)): 

357 """This function returns the standard deviation from V, Q&U or I in that 

358 order of precedence. It is attempting to give you the best estimate of 

359 the thermal noise it can from the data. Outliers from the mean are 

360 clipped at the specified level. 

361 """ 

362 return self._swigobj.sigma(clip) 

363 

364 def sigmadepolratio(self, infile, debias=False, clip=float(10.0), sigma=float(-1), outfile=''): 

365 """This function returns the error 

366 in the linear depolarization ratio computed from two frequencies; this 

367 is the ratio of the fractional linear polarization at the two 

368 frequencies. Generally this is done when you have generated two 

369 images, each at a different frequency (continuum work). Thus if the 

370 fractional linear polarzation images are $m1$ and $m2$ then the 

371 depolarization ratio is $m1/m2$. 

372  

373 This function operates with two images; the first is attached 

374 to the Imagepol tool. The second is supplied via the 

375 argument {stfaf infile}, which is a String 

376 holding the name of the imagefile. 

377  

378 In generating the depolarization ratio, and hence its error, you may 

379 optionally debias the linearly polarized intensity. This requires the 

380 standard deviation of the thermal noise. You can either supply it if 

381 you know it, or it will be worked out for you with outliers from the 

382 mean clipped at the specified level. 

383  

384 You can get the depolarization ratio image with function 

385 depolratio. 

386 """ 

387 return _wrap_image(swig_object=self._swigobj.sigmadepolratio(infile, debias, clip, sigma, outfile)) 

388 

389 def sigmafraclinpol(self, clip=float(10.0), sigma=float(-1), outfile=''): 

390 """This function returns the 

391 error (standard deviation) of the fractional linear polarization. 

392 This result comes from standard propagation of errors. The result is 

393 an on-the-fly Image tool as the error is signal-to-noise ratio 

394 dependent. 

395  

396 This function requires the standard deviation of the thermal noise. You 

397 can either supply it if you know it, or it will be worked out for you 

398 with outliers from the mean clipped at the specified level. 

399 """ 

400 return _wrap_image(swig_object=self._swigobj.sigmafraclinpol(clip, sigma, outfile)) 

401 

402 def sigmafractotpol(self, clip=float(10.0), sigma=float(-1), outfile=''): 

403 """This function returns the 

404 error (standard deviation) of the fractional total polarization. This 

405 result comes from standard propagation of errors. The result is an 

406 on-the-fly Image tool as the error is signal-to-noise ratio dependent. 

407  

408 This function requires the standard deviation of the thermal noise. You 

409 can either supply it if you know it, or it will be worked out for you 

410 with outliers from the mean clipped at the specified level. 

411 """ 

412 return _wrap_image(swig_object=self._swigobj.sigmafractotpol(clip, sigma, outfile)) 

413 

414 def sigmalinpolint(self, clip=float(10.0), sigma=float(-1), outfile=''): 

415 """This function returns the error (standard 

416 deviation) of the linearly polarized intensity; $sqrt{(Q^2+U^2)}$. 

417 This result comes from standard propagation of statistical errors. 

418 The result is a float as the error is not signal-to-noise 

419 ratio dependent 

420  

421 This function requires the standard deviation of the thermal noise. You 

422 can either supply it if you know it, or it will be worked out for you 

423 with outliers from the mean clipped at the specified level. 

424 """ 

425 return self._swigobj.sigmalinpolint(clip, sigma, outfile) 

426 

427 def sigmalinpolposang(self, clip=float(10.0), sigma=float(-1), outfile=''): 

428 """This function returns the 

429 error (standard deviation) of the linearly polarized position angle 

430 ($0.5 tan^{-1}(U/Q)$$sqrt{(Q^2+U^2)}$) in degrees. This result 

431 comes from standard propagation of errors. The result is an 

432 on-the-fly Image tool as the error is signal-to-noise ratio dependent. 

433  

434 This function requires the standard deviation of the thermal noise. You 

435 can either supply it if you know it, or it will be worked out for you 

436 with outliers from the mean clipped at the specified level. 

437 """ 

438 return _wrap_image(swig_object=self._swigobj.sigmalinpolposang(clip, sigma, outfile)) 

439 

440 def sigmastokes(self, which, clip=float(10.0)): 

441 """This function returns the standard 

442 deviation of the noise for the specified Stokes. Outliers from the mean 

443 are clipped at the specified level. 

444 """ 

445 return self._swigobj.sigmastokes(which, clip) 

446 

447 def sigmastokesi(self, clip=float(10.0)): 

448 """This function returns the standard deviation of the noise for the 

449 Stokes I data. Outliers from the mean are clipped at the specified 

450 level. 

451 """ 

452 return self._swigobj.sigmastokesi(clip) 

453 

454 def sigmastokesq(self, clip=float(10.0)): 

455 """This function returns the standard deviation of the noise for the 

456 Stokes Q data. Outliers from the mean are clipped at the specified 

457 level. 

458 """ 

459 return self._swigobj.sigmastokesq(clip) 

460 

461 def sigmastokesu(self, clip=float(10.0)): 

462 """This function returns the standard 

463 deviation of the noise for the Stokes U data. Outliers from the mean 

464 are clipped at the specified level. 

465 """ 

466 return self._swigobj.sigmastokesu(clip) 

467 

468 def sigmastokesv(self, clip=float(10.0)): 

469 """This function returns the standard 

470 deviation of the noise for the Stokes V data. Outliers from the mean 

471 are clipped at the specified level. 

472 """ 

473 return self._swigobj.sigmastokesv(clip) 

474 

475 def sigmatotpolint(self, clip=float(10.0), sigma=float(-1)): 

476 """This function returns the error (standard 

477 deviation) of the total polarized intensity; $sqrt{(Q^2+U^2+V^2)}$. 

478 This result comes from standard propagation of statistical errors. 

479 The result is a float as the error is not signal-to-noise 

480 ratio dependent 

481  

482 This function requires the standard deviation of the thermal noise. You 

483 can either supply it if you know it, or it will be worked out for you 

484 with outliers from the mean clipped at the specified level. 

485 """ 

486 return self._swigobj.sigmatotpolint(clip, sigma) 

487 

488 def stokes(self, which, outfile=''): 

489 """This function returns an on-the-fly image tool containing the 

490 specified Stokes only. This interface can be useful for scripts. 

491 """ 

492 return _wrap_image(swig_object=self._swigobj.stokes(which, outfile)) 

493 

494 def stokesi(self, outfile=''): 

495 """This function returns an on-the-fly image tool containing Stokes I only. 

496 """ 

497 return _wrap_image(swig_object=self._swigobj.stokesi(outfile)) 

498 

499 def stokesq(self, outfile=''): 

500 """This function returns an on-the-fly image tool containing Stokes Q only. 

501 """ 

502 return _wrap_image(swig_object=self._swigobj.stokesq(outfile)) 

503 

504 def stokesu(self, outfile=''): 

505 """This function returns an on-the-fly image tool containing Stokes U only. 

506 """ 

507 return _wrap_image(swig_object=self._swigobj.stokesu(outfile)) 

508 

509 def stokesv(self, outfile=''): 

510 """This function returns an on-the-fly image tool containing Stokes V only. 

511 """ 

512 return _wrap_image(swig_object=self._swigobj.stokesv(outfile)) 

513 

514 def summary(self): 

515 """This function just lists a summary of the Imagepol tool to the logger. 

516 Currently it just summarizes the image to which the tool is attached. 

517 """ 

518 return self._swigobj.summary() 

519 

520 def totpolint(self, debias=False, clip=float(10.0), sigma=float(-1), outfile='', region='', mask='', stretch=False): 

521 """This application returns the total polarized intensity; 

522  

523 $sqrt{( Q^2+ U^2+ V^2)}$. 

524  

525 If the image contains only Q and U, or only V, then just 

526 those components contribute to the total polarized intensity. 

527  

528 The polarized intensity may optionally be debiased (if debias=True). 

529 This requires an estimate of the thermal noise level (sigma). 

530 The resulting image will be computed using 

531  

532 $sqrt{(Q^2 + U^2 + V^2 - sigma^2)}$ 

533  

534 If the specified value of sigma is positive, that is the value that will 

535 be used for debiasing. If it is not, the value used for sigma is computed 

536 using the following algorithm: 

537  

538 1. First, a stokes plane(s) is chosen on which the sigma computation is performed. 

539 If the V plane exists, that is used to compute sigma. If not, then the value of 

540 sigma is computed to be the average of the sigma values of the Q and U planes. 

541  

542 2. For the relevant plane(s), the sigma value is computed for unmasked pixel values 

543 which lie within +/- (clip * stddev) values of the mean for that plane, where the mean 

544 and stddev (the standard deviation) are computed by using all unmasked pixel values 

545 in the relevant plane. In this way, outliers (eg pixels due to possible 

546 astronomical signals) are excluded in the computation of sigma. 

547  

548 In the output image, pixels for which the expression inside the square root is 

549 negative are masked, and their values are set to zero. 

550  

551 If a region and/or mask is specified, debias=True and sigma is not positive so 

552 that the value of sigma is determined using the algorithm above, the region and mask 

553 are applied first to the plane(s) from which the value of sigma is determined and 

554 then sigma is computed. 

555 """ 

556 return _wrap_image(swig_object=self._swigobj.totpolint(debias, clip, sigma, outfile, region, mask, stretch)) 

557