Coverage for /wheeldirectory/casa-6.7.0-12-py3.10.el8/lib/py/lib/python3.10/site-packages/casatools/__casac__/imagepol.py: 51%

160 statements  

« prev     ^ index     » next       coverage.py v7.6.4, created at 2024-10-31 19:10 +0000

1# This file was automatically generated by SWIG (http://www.swig.org). 

2# Version 3.0.12 

3# 

4# Do not make changes to this file unless you know what you are doing--modify 

5# the SWIG interface file instead. 

6 

7from sys import version_info as _swig_python_version_info 

8if _swig_python_version_info >= (2, 7, 0): 

9 def swig_import_helper(): 

10 import importlib 

11 pkg = __name__.rpartition('.')[0] 

12 mname = '.'.join((pkg, '_imagepol')).lstrip('.') 

13 try: 

14 return importlib.import_module(mname) 

15 except ImportError: 

16 return importlib.import_module('_imagepol') 

17 _imagepol = swig_import_helper() 

18 del swig_import_helper 

19elif _swig_python_version_info >= (2, 6, 0): 

20 def swig_import_helper(): 

21 from os.path import dirname 

22 import imp 

23 fp = None 

24 try: 

25 fp, pathname, description = imp.find_module('_imagepol', [dirname(__file__)]) 

26 except ImportError: 

27 import _imagepol 

28 return _imagepol 

29 try: 

30 _mod = imp.load_module('_imagepol', fp, pathname, description) 

31 finally: 

32 if fp is not None: 

33 fp.close() 

34 return _mod 

35 _imagepol = swig_import_helper() 

36 del swig_import_helper 

37else: 

38 import _imagepol 

39del _swig_python_version_info 

40 

41try: 

42 _swig_property = property 

43except NameError: 

44 pass # Python < 2.2 doesn't have 'property'. 

45 

46try: 

47 import builtins as __builtin__ 

48except ImportError: 

49 import __builtin__ 

50 

51def _swig_setattr_nondynamic(self, class_type, name, value, static=1): 

52 if (name == "thisown"): 

53 return self.this.own(value) 

54 if (name == "this"): 

55 if type(value).__name__ == 'SwigPyObject': 

56 self.__dict__[name] = value 

57 return 

58 method = class_type.__swig_setmethods__.get(name, None) 

59 if method: 

60 return method(self, value) 

61 if (not static): 

62 if _newclass: 

63 object.__setattr__(self, name, value) 

64 else: 

65 self.__dict__[name] = value 

66 else: 

67 raise AttributeError("You cannot add attributes to %s" % self) 

68 

69 

70def _swig_setattr(self, class_type, name, value): 

71 return _swig_setattr_nondynamic(self, class_type, name, value, 0) 

72 

73 

74def _swig_getattr(self, class_type, name): 

75 if (name == "thisown"): 

76 return self.this.own() 

77 method = class_type.__swig_getmethods__.get(name, None) 

78 if method: 

79 return method(self) 

80 raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name)) 

81 

82 

83def _swig_repr(self): 

84 try: 

85 strthis = "proxy of " + self.this.__repr__() 

86 except __builtin__.Exception: 

87 strthis = "" 

88 return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) 

89 

90try: 

91 _object = object 

92 _newclass = 1 

93except __builtin__.Exception: 

94 class _object: 

95 pass 

96 _newclass = 0 

97 

98class imagepol(_object): 

99 """Proxy of C++ casac::imagepol class.""" 

100 

101 __swig_setmethods__ = {} 

102 __setattr__ = lambda self, name, value: _swig_setattr(self, imagepol, name, value) 

103 __swig_getmethods__ = {} 

104 __getattr__ = lambda self, name: _swig_getattr(self, imagepol, name) 

105 __repr__ = _swig_repr 

106 

107 def __init__(self): 

108 """__init__(self) -> imagepol""" 

109 this = _imagepol.new_imagepol() 

110 try: 

111 self.this.append(this) 

112 except __builtin__.Exception: 

113 self.this = this 

114 

115 def imagepoltestimage(self, *args, **kwargs): 

116 """ 

117 imagepoltestimage(self, _outfile, _rm, _pa0, _sigma, _nx, _ny, _nf, _f0, _bw) -> bool 

118 

119 

120 

121 Summary: 

122 Attach the Imagepol tool to a test image file 

123 

124 Description: 

125 

126 

127 

128 This function can be used to generate a test image and then 

129 attach the Imagepol tool to it. 

130 

131 The test image is 4-dimensional (RA, DEC, Stokes and Frequency). The 

132 Stokes axis holds I,Q,U and V. The source is just a constant I (if you 

133 don't add noise all spatial pixels will be identical) and V. Q and U 

134 vary with frequency according to the specified Rotation Measure 

135 components (no attempt to handle bandwidth smearing within channels is 

136 made). The actual values of I,Q,U, and V are chosen arbitrarily 

137 otherwise (could be added as arguments if desired). 

138 

139 You can use this image, in particular, to explore the Rotation Measure 

140 algorithms in functions rotationmeasure and 

141 fourierrotationmeasure. 

142 

143 If you don't specify the Rotation Measure, then it is chosen for you so 

144 that there is no position angle ambiguity between adjacent channels 

145 (the value will be sent to the Logger). 

146 

147 The noise added to the image is specified as a fraction of the total 

148 intensity (constant). Gaussian noise with a standard deviation of 

149 {stfaf sigma * $I_{max}$} is then added to the image. 

150 

151 Input Parameters: 

152 outfile Output image file name 

153 rm Rotation Measure (rad/m/m). Default is auto no-ambiguity determine. 

154 pa0 Position angle (degrees) at zero wavelength 

155 sigma Fractional noise level 

156 nx Shape of image in x direction 

157 ny Shape of image in y direction 

158 nf Shape of image in frequency direction 

159 f0 Reference frequency (Hz) 

160 bw Bandwidth (Hz) 

161 

162 Example: 

163 

164 

165 # 

166 print 't----t imagepoltestimage Ex 1 t----' 

167 po.imagepoltestimage(outfile='imagepoltestimage', rm=200) 

168 po.rotationmeasure(rm='rm.out',rmmax=250) 

169 ia.open('rm.out') 

170 ia.statistics() 

171 #viewer() 

172 # 

173 

174 

175 -------------------------------------------------------------------------------- 

176 

177 """ 

178 return _imagepol.imagepol_imagepoltestimage(self, *args, **kwargs) 

179 

180 

181 def complexlinpol(self, *args, **kwargs): 

182 """ 

183 complexlinpol(self, _outfile) -> bool 

184 

185 

186 

187 Summary: 

188 Complex linear polarization 

189 

190 Description: 

191 

192 

193 

194 This function produces 

195 the complex linear polarization; $Q+iU$ and writes 

196 it to a disk image file. 

197 

198 The Image tool cannot yet handle Complex 

199 images. You must therefore write the Complex image to disk. The 

200 Viewer can display Complex images. Also the 

201 Table tool can access Complex images. 

202 

203 Input Parameters: 

204 outfile Output image file name 

205 

206 Example: 

207 

208 

209 # 

210 print 't----t complexlinpol Ex 1 t----' 

211 po.open('stokes.image') 

212 po.complexlinpol('cplx') 

213 tb.open('cplx') 

214 #tb.browse() 

215 # 

216 

217 

218 -------------------------------------------------------------------------------- 

219 

220 """ 

221 return _imagepol.imagepol_complexlinpol(self, *args, **kwargs) 

222 

223 

224 def complexfraclinpol(self, *args, **kwargs): 

225 """ 

226 complexfraclinpol(self, _outfile) -> bool 

227 

228 

229 

230 Summary: 

231 Complex fractional linear polarization 

232 

233 Description: 

234 

235 

236 

237 This function produces 

238 the complex fractional linear polarization; $(Q+iU)/I$ and writes 

239 it to a disk image file. 

240 

241 The Image tool cannot yet handle Complex 

242 images. You must therefore write the Complex image to disk. The 

243 Viewer can display Complex images. Also the 

244 Table tool can access Complex images. 

245 

246 Input Parameters: 

247 outfile Output image file name 

248 

249 Example: 

250 

251 

252 # 

253 print 't----t complexfraclinpol Ex 1 t----' 

254 po.open('stokes.image') 

255 po.complexfraclinpol('cplx2') 

256 tb.open('cplx2') 

257 #tb.browse() 

258 # 

259 

260 

261 -------------------------------------------------------------------------------- 

262 

263 """ 

264 return _imagepol.imagepol_complexfraclinpol(self, *args, **kwargs) 

265 

266 

267 def depolratio(self, *args, **kwargs): 

268 """ 

269 depolratio(self, _infile, _debias, _clip, _sigma, _outfile) -> casac::image * 

270 

271 

272 

273 Summary: 

274 Linear depolarization ratio 

275 

276 Description: 

277 

278 

279 

280 This function returns the linear 

281 depolarization ratio computed from two frequencies; this is the ratio of 

282 the fractional linear polarization at the two frequencies. Generally 

283 this is done when you have generated two images, each at a different frequency 

284 (continuum work). Thus if the fractional linear polarization images are 

285 $m_{nu 1}$ and $m_{nu 2}$ then the depolarization ratio is 

286 $m_{nu 1}/ m_{nu 2}$. 

287 

288 This function operates with two images; the first (at frequency $nu 1$) 

289 is the one attached to your Imagepol tool. The second (at 

290 frequency $nu 2$) is supplied via the argument {stfaf infile}, which 

291 is a String holding the name of the 

292 imagefile. 

293 

294 In generating the depolarization ratio, you may optionally debias the 

295 linearly polarized intensity. This requires the standard deviation of 

296 the thermal noise. You can either supply it if you know it, or it will 

297 be worked out for you with outliers from the mean clipped at the 

298 specified level. 

299 

300 You can get the depolarization ratio error image with function 

301 sigmadepolratio. 

302 

303 Input Parameters: 

304 infile Other image 

305 debias Debias the linearly polarized intensity ? 

306 clip Clip level for auto-sigma determination 

307 sigma Standard deviation of thermal noise. Default is auto determined. 

308 outfile Output image file name. Default is unset. 

309 

310 Example: 

311 

312 

313 # 

314 #print 't----t depolratio Ex 1 t----' 

315 #po.open('stokes.4800') 

316 #dpr = po.depolratio(infile='stokes.8300') # m_4800 / m_8300 

317 #edpr = po.sigmadepolratio(infile='stokes.8300'); 

318 #dpr.done() 

319 #edpr.done() 

320 # 

321 

322 

323 -------------------------------------------------------------------------------- 

324 

325 """ 

326 return _imagepol.imagepol_depolratio(self, *args, **kwargs) 

327 

328 

329 def close(self): 

330 """ 

331 close(self) -> bool 

332 

333 

334 

335 Summary: 

336 Close the image tool 

337 

338 Description: 

339 

340 

341 

342 This function closes the imagepol tool. This means that it detaches 

343 the tool from its imagefile (flushing all the changes first). The 

344 imagepol tool is ``null'' after this change (it is not destroyed) and 

345 calling any toolfunction other than open will result in an 

346 error. 

347 

348 Example: 

349 

350 

351 # 

352 print 't----t close Ex 1 t----' 

353 # First create image and attach it to imagepol tool 

354 po.imagepoltestimage('myimagepol') 

355 po.close() # Detaches image from Imagepol tool 

356 print '!!!EXPECT ERROR HERE!!!' 

357 po.summary() # No image so this results in an error. 

358 po.open('myimagepol') # Image is reattached 

359 po.summary() # No error 

360 po.close() 

361 # 

362 

363 

364 -------------------------------------------------------------------------------- 

365 

366 """ 

367 return _imagepol.imagepol_close(self) 

368 

369 

370 def done(self): 

371 """ 

372 done(self) -> bool 

373 

374 

375 

376 Summary: 

377 Close this Imagepol tool 

378 

379 Description: 

380 

381 

382 

383 

384 

385 This function is the same as close(). 

386 

387 Example: 

388 

389 

390 # 

391 print 't----t done Ex 1 t----' 

392 po.open('myimagepol') 

393 po.done() # Detaches image from Imagepol tool 

394 print '!!!EXPECT ERROR HERE!!!' 

395 po.summary() # No image so this results in an error. 

396 po.open('myimagepol') # Image is reattached 

397 po.summary() # No error 

398 po.done() 

399 # 

400 

401 

402 -------------------------------------------------------------------------------- 

403 

404 """ 

405 return _imagepol.imagepol_done(self) 

406 

407 

408 def fourierrotationmeasure(self, *args, **kwargs): 

409 """ 

410 fourierrotationmeasure(self, _complex, _amp, _pa, _real, _imag, _zerolag0) -> bool 

411 

412 

413 

414 Summary: 

415 Find Rotation Measure (Fourier approach) 

416 

417 Description: 

418 

419 

420 

421 This function will only work if 

422 you attach the Imagepol tool (using open) to an image containing 

423 Stokes Q and U, and a regular frequency axis. It Fourier transforms 

424 the complex linear polarization (Q+iU) over the spectral axis to the 

425 rotation measure axis. Thus, if your input image contained 

426 RA/DEC/Stokes/Frequency, the output image would be 

427 RA/DEC/RotationMeasure. The Rotation Measure axis has as many pixels 

428 as the spectral axis. 

429 

430 This method enables you to see the polarization as a function of 

431 Rotation Meausure. Its main use is when searching for large RMs. See 

432 Killeen, Fluke, Zhao and Ekers (1999, preprint) for a description of 

433 this method (or http://www.atnf.csiro.au/verb+~+nkilleen/rm.ps) and its 

434 advantages over the traditional method 

435 (rotationmeasure) of 

436 extracting the Rotation Measure. 

437 

438 Although you can write out the complex polarization image with the 

439 argument {stfaf complex}, you can't do much with it because Image 

440 tools cannot handle complex images. Hence you can 

441 also write out the complex linear polarization image in any or all of 

442 the other forms. 

443 

444 The argument {stfaf zerolag0} allows you to force the zero lag (or 

445 central bin) of the Rotation Measure spectrum to zero (effectively by 

446 subtracting the mean of Q and U from the Q and U images). This may 

447 avoid Gibbs phenomena from any strong low Rotation Measure signal which 

448 would normally fall into the central bin. 

449 

450 Input Parameters: 

451 complex Output complex linear polarization image file name. Default is unset. 

452 amp Output linear polarization amplitude image file name Default is unset. 

453 pa Output linear polarization position angle (degrees) image file name Default is unset. 

454 real Output linear polarization real image file name Default is unset. 

455 imag Output linear polarization imaginary angle image file name Default is unset. 

456 zerolag0 Force zero lag to 0 ? 

457 

458 Example: 

459 

460 

461 # 

462 print 't----t fourierrotationmeasure Ex 1 t----' 

463 po.imagepoltestimage(outfile='iquv.im', rm=[5.0e5,1e6], nx=8, ny=8, nf=512, 

464 f0=1.4e9, bw=8e6) 

465 po.fourierrotationmeasure(amp='amp') 

466 ia.open('amp') 

467 ia.statistics() 

468 #viewer() # And reorder to put RM along X-axis 

469 # 

470 

471 

472 -------------------------------------------------------------------------------- 

473 

474 """ 

475 return _imagepol.imagepol_fourierrotationmeasure(self, *args, **kwargs) 

476 

477 

478 def fraclinpol(self, *args, **kwargs): 

479 """ 

480 fraclinpol(self, _debias, _clip, _sigma, _outfile) -> casac::image * 

481 

482 

483 

484 Summary: 

485 Fractional linear polarization 

486 

487 Description: 

488 

489 This function 

490 returns the fractional linear polarization; $sqrt{(Q^2+U^2)}/I$. 

491 

492 You may optionally debias the polarized intensity. This requires the 

493 standard deviation of the thermal noise. You can either supply it if 

494 you know it, or it will be worked out for you with outliers from the 

495 mean clipped at the specified level. 

496 

497 Input Parameters: 

498 debias Debias the linearly polarized intensity ? 

499 clip Clip level for auto-sigma determination 

500 sigma Standard deviation of thermal noise. Default is auto determined. 

501 outfile Output image file name Default is unset. 

502 

503 Example: 

504 

505 

506 # 

507 print 't----t fraclinpol Ex 1 t----' 

508 po.open('stokes.image') 

509 flp = po.fraclinpol() 

510 flp.summary() 

511 flp.done() 

512 # 

513 

514 

515 -------------------------------------------------------------------------------- 

516 

517 """ 

518 return _imagepol.imagepol_fraclinpol(self, *args, **kwargs) 

519 

520 

521 def fractotpol(self, *args, **kwargs): 

522 """ 

523 fractotpol(self, _debias, _clip, _sigma, _outfile) -> casac::image * 

524 

525 

526 

527 Summary: 

528 Fractional total polarization 

529 

530 Description: 

531 

532 This function 

533 returns the fractional linear polarization; $sqrt{(Q^2+U^2+V^2)}/I$. 

534 

535 You may optionally debias the polarized intensity. This requires the 

536 standard deviation of the thermal noise. You can either supply it if 

537 you know it, or it will be worked out for you with outliers from the 

538 mean clipped at the specified level. 

539 

540 If your image contains only Q and U, or only V, then just 

541 those components contribute to the total polarized intensity. 

542 

543 Input Parameters: 

544 debias Debias the total polarized intensity ? 

545 clip Clip level for auto-sigma determination 

546 sigma Standard deviation of thermal noise. Default is auto determined. 

547 outfile Output image file name. Default is unset. 

548 

549 Example: 

550 

551 

552 # 

553 print 't----t fractotpol Ex 1 t----' 

554 po.open('stokes.image') 

555 ftp = po.fractotpol() 

556 ftp.statistics() 

557 ftp.done() 

558 # 

559 

560 

561 -------------------------------------------------------------------------------- 

562 

563 """ 

564 return _imagepol.imagepol_fractotpol(self, *args, **kwargs) 

565 

566 

567 def linpolint(self, *args, **kwargs): 

568 """ 

569 linpolint(self, _debias, _clip, _sigma, _outfile, _region, _mask, _stretch) -> casac::image * 

570 

571 

572 

573 Summary: 

574 Linearly polarized intensity 

575 

576 Description: 

577 

578 

579 This application returns the linearly polarized intensity; $sqrt{(Q^2+U^2)}$. 

580 

581 The linearly polarized intensity may optionally be debiased (if debias=True). 

582 This requires an estimate of the thermal noise level (sigma). The resulting 

583 image will be computed using 

584 

585 $sqrt{(Q^2 + U^2 - sigma^2)}$ 

586 

587 If the specified value of sigma is positive, that is the value that will 

588 be used for debiasing. If it is not, the value used for sigma is computed 

589 using the following algorithm: 

590 

591 1. First, a stokes plane(s) is chosen on which the sigma computation is performed. 

592 If the V plane exists, that is used to compute sigma. If not, then the value of 

593 sigma is computed to be the average of the sigma values of the Q and U planes. 

594 

595 2. For the relevant plane(s), the sigma value is computed for unmasked pixel values 

596 which lie within +/- (clip * stddev) values of the mean for that plane, where the mean 

597 and stddev (the standard deviation) are computed by using all unmasked pixel values 

598 in the relevant plane. In this way, outliers (eg pixels due to possible 

599 astronomical signals) are excluded in the computation of sigma. 

600 

601 In the output image, pixels for which the expression inside the square root is 

602 negative are masked, and their values are set to zero. 

603 

604 If a region and/or mask is specified, debias=True and sigma is not positive so 

605 that the value of sigma is determined using the algorithm above, the region and mask 

606 are applied first to the plane(s) from which the value of sigma is determined and 

607 then sigma is computed. 

608 

609 Input Parameters: 

610 debias Debias the linearly polarized intensity ? 

611 clip Clip level for auto-sigma determination 

612 sigma Standard deviation of thermal noise. Default is auto determined. 

613 outfile Output image file name. Default is unset. 

614 region Region selection. Default is to use the full image. 

615 mask Mask to use. Default setting is none. 

616 stretch Stretch the mask if necessary and possible? Default value is false. 

617 

618 Example: 

619 

620 

621 # 

622 print 't----t linpolint Ex 1 t----' 

623 po.open('stokes.image') 

624 lpi = po.linpolint() 

625 lpi.statistics() 

626 lpi.done() 

627 # 

628 

629 

630 -------------------------------------------------------------------------------- 

631 

632 """ 

633 return _imagepol.imagepol_linpolint(self, *args, **kwargs) 

634 

635 

636 def linpolposang(self, *args, **kwargs): 

637 """ 

638 linpolposang(self, _outfile, _region, _mask, _stretch) -> casac::image * 

639 

640 

641 

642 Summary: 

643 Linearly polarized position angle 

644 

645 Description: 

646 

647 

648 

649 This function returns the linearly polarized position angle image 0.5*arctan(U/Q) in degrees. 

650 The output image will not have a restoring beam, even if the input image does. 

651 

652 Input Parameters: 

653 outfile Output image file name. Default is unset. 

654 region Region selection. Default is to use the full image. 

655 mask Mask to use. Default setting is none. 

656 stretch Stretch the mask if necessary and possible? Default value is false. 

657 

658 Example: 

659 

660 

661 # 

662 print 't----t linpolposang Ex 1 t----' 

663 po.open('stokes.image') 

664 lppa = po.linpolposang() 

665 lppa.statistics() 

666 lppa.done() 

667 # 

668 

669 

670 -------------------------------------------------------------------------------- 

671 

672 """ 

673 return _imagepol.imagepol_linpolposang(self, *args, **kwargs) 

674 

675 

676 def makecomplex(self, *args, **kwargs): 

677 """ 

678 makecomplex(self, _complex, _real, _imag, _amp, _phase) -> bool 

679 

680 

681 

682 Summary: 

683 Make a Complex image 

684 

685 Description: 

686 

687 

688 

689 This function generates a Complex imagefile from either 

690 a real and imaginary, or an amplitude and phase pair of images. 

691 If you give a linear position angle image for the phase, 

692 it will be multipled by two before the real and imaginary 

693 parts are formed. 

694 

695 Input Parameters: 

696 complex Output complex image file name. Must be specified. 

697 real Input real image file name. Default is unset. 

698 imag Input imaginary image file name. Default is unset. 

699 amp Input amplitude image file name. Default is unset. 

700 phase Input phase image file name. Default is unset. 

701 

702 Example: 

703 

704 

705 # 

706 print 't----t makecomplex Ex 1 t----' 

707 po.open('stokes.image') 

708 po.complexlinpol('qu.cplx1') 

709 q = po.stokesq() 

710 u = po.stokesu() 

711 q2 = q.subimage('q',overwrite=true) 

712 u2 = u.subimage('u',overwrite=true) 

713 po.makecomplex('qu.cplx2', real='q', imag='u') 

714 po.close() 

715 # 

716 

717 

718 In this example we make two complex linear polarization 

719 images which should be identical. 

720 

721 -------------------------------------------------------------------------------- 

722 

723 """ 

724 return _imagepol.imagepol_makecomplex(self, *args, **kwargs) 

725 

726 

727 def open(self, *args, **kwargs): 

728 """ 

729 open(self, _image) -> bool 

730 

731 

732 

733 Summary: 

734 Open a new image with this imagepol tool 

735 

736 Description: 

737 

738 

739 

740 Before polarimetric analysis can commence, an imagefile must be 

741 attached to the imagepol tool using the open function. Also, use this 

742 function when you are finished analyzing the current imagefile and 

743 want to attach to another one. This function detaches the imagetool 

744 from the current imagefile, if one exists, and reattaches it (opens) 

745 to the new imagefile. 

746 

747 The input image file may be in native casa, fits, or Miriad 

748 format. Look htmlref{here}{IMAGES:FOREIGNIMAGES} for more 

749 information on foreign images. 

750 

751 The input image must have a Stokes axis. The exact collection of 

752 Stokes that the image has, determines what the Imagepol tool can 

753 compute. Stokes I, Q, U, and V refer to total intensity, two 

754 components of linear polarization, and circular polatization, 

755 respectively. Therefore, if you ask for linear polarization and the 

756 image only has Stokes I and V, you will get an error. 

757 

758 The input image may contain data at many frequencies. For example, the 

759 image may be a 4D image with axes RA, DEC, Stokes and Frequency (order 

760 not important) where the Frequency axis is regularly sampled. However, 

761 the image may also contain many frequencies at irregular 

762 intervals. Such an image may be created with the Image tool function 

763 imageconcat. It enables you to concatenate images along an axis, and 

764 it allows irregular coordinate values along that axis. 

765 

766 Input Parameters: 

767 image image file name or image record (generated by ia.torecord())  

768 

769 Example: 

770 

771 

772 # 

773 print 't----t open Ex 1 t----' 

774 po.open('stokes.image') 

775 po.close() 

776 # 

777 

778 

779 The {stff open} function first closes the old imagefile if one exists. 

780 

781 -------------------------------------------------------------------------------- 

782 

783 """ 

784 return _imagepol.imagepol_open(self, *args, **kwargs) 

785 

786 

787 def pol(self, *args, **kwargs): 

788 """ 

789 pol(self, _which, _debias, _clip, _sigma, _outfile) -> casac::image * 

790 

791 

792 

793 Summary: 

794 Polarized quantities 

795 

796 Description: 

797 

798 

799 

800 This function just packages the other specific polarization 

801 functions into one where you specify an operation with the 

802 argument {stfaf which} (can be useful for scripts). 

803 This argument can take the values: 

804 

805 begin{itemize} 

806 item 'lpi' - linearly polarized intensity (function 

807 linpolint) 

808 

809 item 'tpi' - total polarized intensity (function 

810 totpolint) 

811 

812 item 'lppa' linearly polarized position angle (function 

813 linpolposang) 

814 

815 item 'flp' - fractional linear polarization (function 

816 fraclinpol) 

817 

818 item 'ftp' - fractional total polarized intensity (function 

819 fractotpol) 

820 

821 end{itemize} 

822 

823 Input Parameters: 

824 which Specify operation. One of 'lpi', 'tpi', 'lppa', 'flp', 'ftp' (case insensitive)  

825 debias Debias the polarized intensity ? 

826 clip Clip level for auto-sigma determination 

827 sigma Standard deviation of thermal noise. Default is auto determined. 

828 outfile Output image file name. Default is unset. 

829 

830 Example: 

831 

832 

833 # 

834 print 't----t pol Ex 1 t----' 

835 po.open('stokes.image') 

836 lpi = po.pol('lpi') 

837 lpi.statistics() 

838 lpi.done() 

839 # 

840 

841 

842 -------------------------------------------------------------------------------- 

843 

844 """ 

845 return _imagepol.imagepol_pol(self, *args, **kwargs) 

846 

847 

848 def rotationmeasure(self, *args, **kwargs): 

849 """ 

850 rotationmeasure(self, _rm, _rmerr, _pa0, _pa0err, _nturns, _chisq, _sigma, _rmfg, _rmmax, _maxpaerr, _plotter, _nx, _ny) -> bool 

851 

852 

853 

854 Summary: 

855 Find Rotation Measure (traditional approach) 

856 

857 Description: 

858 

859 

860 

861 This function generates the rotation 

862 measure image from a collection of different frequencies. It will only 

863 work if the Imagepol tool is attached to an image containing 

864 Stokes $Q$ and $U$, and a frequency axis (regular or irregular) with at 

865 least 2 pixels. It will work out the position angle images for you. 

866 

867 See also the fourierrotationmeasure 

868 function for a new Fourier-based approach. 

869 

870 Rotation Measure algorithms that work robustly are not common. The main 

871 problem is in trying to account for the $n- pi$ ambiguity (see Leahy et 

872 al, Astronomy & Astrophysics, 156, 234 or Killeen et al; 

873 http://www.atnf.csiro.au/verb+~+nkilleen/rm.ps). 

874 

875 The algorithm that this function uses is that of Leahy et al. (see Appendix A.1). But as in all 

876 these algorithms, the basic process is that for each spatial pixel, a 

877 vector of position angles (i.e. at the different frequencies) is fit to 

878 determine the rotation measure and the position angle at zero wavelength 

879 (and their errors). An image containing 

880 the number of $n- pi$ turns that were added to the data 

881 at each spatial pixel and for which the best fit was found can be written. 

882 The reduced chi-squared image for the fits can also be written. 

883 

884 Note that no assessment of curvature (i.e. deviation 

885 from the simple linear position angle - $lambda^2$ functional form) 

886 is made. 

887 

888 Any combination of output images can be written. 

889 

890 The argument {stfaf sigma} gives the thermal noise in Stokes Q and U. 

891 By default it is determined automatically using the image data. But if it proves 

892 to be inaccurate (maybe not many signal-free pixels), it may be specified. 

893 This is used for calculating the error in the 

894 position angles (propagation of Gaussian errors). 

895 

896 The argument {stfaf maxpaerr} specifies the maximum allowable error in 

897 the position angle that is acceptable. The default is an infinite 

898 value. From the standard propagation of errors, the error in the 

899 linearly polarized position angle is determined from the Stokes $Q$ and 

900 $U$ images (at each spatial pixel for each frequency). At each spatial 

901 pixel we do a fit to the position angle vector (i.e. at the different 

902 frequencies) to determine the rotation measure. If the position angle 

903 error for any pixel in the vector exceeds the specified value, it is 

904 dropped from the fit. The process generates an error for the 

905 fit and this is used to compute the errors in the output 

906 images. 

907 

908 Note that {stfaf maxpaerr} is {it not} used to specify that any pixel 

909 for which the output position angle error exceeds this value 

910 should be masked out. 

911 

912 The argument {stfaf rmfg} is used to specify a foreground RM value. For 

913 example, you may know the mean RM in some direction out of the Galaxy, 

914 then including this can aid the algorithm by reducing ambiguity. 

915 

916 The argument {stfaf rmmax} specifies the maximum absolute RM that 

917 should be solved for. This quite an important parameter. If you leave 

918 it at the default, zero, no ambiguity handling will be 

919 used. So some apriori information should be supplied; this 

920 is the basic problem with rotation measure algorithms. 

921 

922 Input Parameters: 

923 rm Output Rotation Measure image file name. Default is unset. 

924 rmerr Output Rotation Measure error image file name. Default is unset. 

925 pa0 Output position angle (degrees) at zero wavelength image file name. Default is unset. 

926 pa0err Output position angle (degrees) at zero wavelength error image file name. Default is unset. 

927 nturns Output number of turns image file name. Default is unset. 

928 chisq Output reduced chi squared image file name. Default is unset. 

929 sigma Estimate of the thermal noise. Default is auto estimate. 

930 rmfg Foreground Rotation Measure (rad/m/m) to subtract. 

931 rmmax Maximum rotation measure (rad/m/m) to solve for. IMPORTANT TO SPECIFY. 

932 maxpaerr Maximum input position angle error (degrees) to allow 

933 plotter Name of plotter. Default is none. 

934 nx Number of plots in x direction 

935 ny Number of plots in y direction 

936 

937 Example: 

938 

939 

940 # 

941 print 't----t rotationmeasure Ex 1 t----' 

942 #im = ia.imageconcat(outfile='stokes.image', 

943 # infiles='im.f1 im.f2 im.f3 im.f4 im.f5', axis=4) 

944 po.open('stokes.image') 

945 ok = po.rotationmeasure(rm='rm', rmerr='rmerr', rmmax=800, maxpaerr=10) 

946 # 

947 

948 

949 

950 Say we have 5 images, each with axes RA, DEC, Stokes, and Frequency in 

951 that order. We use the Image tool to concatenate these images 

952 along the frequency axis - you have ordered them in increasing or 

953 decreasing frequency order. We then compute the Rotation Measure 

954 and Rotation Measure error images with the traditional method and 

955 write them out to disk. 

956 

957 -------------------------------------------------------------------------------- 

958 

959 """ 

960 return _imagepol.imagepol_rotationmeasure(self, *args, **kwargs) 

961 

962 

963 def sigma(self, *args, **kwargs): 

964 """ 

965 sigma(self, _clip) -> double 

966 

967 

968 

969 Summary: 

970 Find best guess at thermal noise 

971 

972 Description: 

973 

974 

975 

976 This function returns the standard deviation from V, Q&U or I in that 

977 order of precedence. It is attempting to give you the best estimate of 

978 the thermal noise it can from the data. Outliers from the mean are 

979 clipped at the specified level. 

980 

981 Input Parameters: 

982 clip Clip level for auto-sigma determination 

983 

984 Example: 

985 

986 

987 # 

988 print 't----t sigma Ex 1 t----' 

989 po.open('stokes.image') 

990 sigma = po.sigma() 

991 print 'sigma=', sigma 

992 # 

993 

994 

995 -------------------------------------------------------------------------------- 

996 

997 """ 

998 return _imagepol.imagepol_sigma(self, *args, **kwargs) 

999 

1000 

1001 def sigmadepolratio(self, *args, **kwargs): 

1002 """ 

1003 sigmadepolratio(self, _infile, _debias, _clip, _sigma, _outfile) -> casac::image * 

1004 

1005 

1006 

1007 Summary: 

1008 Error in linear depolarization ratio 

1009 

1010 Description: 

1011 

1012 

1013 

1014 This function returns the error 

1015 in the linear depolarization ratio computed from two frequencies; this 

1016 is the ratio of the fractional linear polarization at the two 

1017 frequencies. Generally this is done when you have generated two 

1018 images, each at a different frequency (continuum work). Thus if the 

1019 fractional linear polarzation images are $m1$ and $m2$ then the 

1020 depolarization ratio is $m1/m2$. 

1021 

1022 This function operates with two images; the first is attached 

1023 to the Imagepol tool. The second is supplied via the 

1024 argument {stfaf infile}, which is a String 

1025 holding the name of the imagefile. 

1026 

1027 In generating the depolarization ratio, and hence its error, you may 

1028 optionally debias the linearly polarized intensity. This requires the 

1029 standard deviation of the thermal noise. You can either supply it if 

1030 you know it, or it will be worked out for you with outliers from the 

1031 mean clipped at the specified level. 

1032 

1033 You can get the depolarization ratio image with function 

1034 depolratio. 

1035 

1036 Input Parameters: 

1037 infile Other image. Required input. 

1038 debias Debias the linearly polarized intensity ? 

1039 clip Clip level for auto-sigma determination 

1040 sigma Standard deviation of thermal noise. Default is auto determined. 

1041 outfile Output image file name. Default is unset. 

1042 

1043 Example: 

1044 

1045 

1046 # 

1047 #print 't----t sigmadepolratio Ex 1 t----' 

1048 #po.open('stokes.4800') 

1049 #dpr = po.depolratio('stokes.8300') 

1050 #edpr = po.sigmadepolratio('stokes.8300'); 

1051 #dpr.done() 

1052 #edpr.done() 

1053 # 

1054 

1055 

1056 -------------------------------------------------------------------------------- 

1057 

1058 """ 

1059 return _imagepol.imagepol_sigmadepolratio(self, *args, **kwargs) 

1060 

1061 

1062 def sigmafraclinpol(self, *args, **kwargs): 

1063 """ 

1064 sigmafraclinpol(self, _clip, _sigma, _outfile) -> casac::image * 

1065 

1066 

1067 

1068 Summary: 

1069 Error in fractional linear polarization 

1070 

1071 Description: 

1072 

1073 

1074 

1075 This function returns the 

1076 error (standard deviation) of the fractional linear polarization. 

1077 This result comes from standard propagation of errors. The result is 

1078 an on-the-fly Image tool as the error is signal-to-noise ratio 

1079 dependent. 

1080 

1081 This function requires the standard deviation of the thermal noise. You 

1082 can either supply it if you know it, or it will be worked out for you 

1083 with outliers from the mean clipped at the specified level. 

1084 

1085 Input Parameters: 

1086 clip Clip level for auto-sigma determination 

1087 sigma Standard deviation of thermal noise. Default is auto determined. 

1088 outfile Output image file name. Default is unset. 

1089 

1090 Example: 

1091 

1092 

1093 # 

1094 print 't----t sigmafraclinpol Ex 1 t----' 

1095 po.open('stokes.image') 

1096 sigflp = po.sigmafraclinpol() 

1097 sigflp.statistics() 

1098 sigflp.done() # free up resources 

1099 # 

1100 

1101 

1102 -------------------------------------------------------------------------------- 

1103 

1104 """ 

1105 return _imagepol.imagepol_sigmafraclinpol(self, *args, **kwargs) 

1106 

1107 

1108 def sigmafractotpol(self, *args, **kwargs): 

1109 """ 

1110 sigmafractotpol(self, _clip, _sigma, _outfile) -> casac::image * 

1111 

1112 

1113 

1114 Summary: 

1115 Error in fractional total polarization 

1116 

1117 Description: 

1118 

1119 

1120 

1121 This function returns the 

1122 error (standard deviation) of the fractional total polarization. This 

1123 result comes from standard propagation of errors. The result is an 

1124 on-the-fly Image tool as the error is signal-to-noise ratio dependent. 

1125 

1126 This function requires the standard deviation of the thermal noise. You 

1127 can either supply it if you know it, or it will be worked out for you 

1128 with outliers from the mean clipped at the specified level. 

1129 

1130 Input Parameters: 

1131 clip Clip level for auto-sigma determination 

1132 sigma Standard deviation of thermal noise. Default is auto determined. 

1133 outfile Output image file name. Default is unset. 

1134 

1135 Example: 

1136 

1137 

1138 # 

1139 print 't----t sigmafractotpol Ex 1 t----' 

1140 po.open('stokes.image') 

1141 sigftp = po.sigmafractotpol() 

1142 sigftp.statistics() 

1143 sigftp.done() 

1144 # 

1145 

1146 

1147 -------------------------------------------------------------------------------- 

1148 

1149 """ 

1150 return _imagepol.imagepol_sigmafractotpol(self, *args, **kwargs) 

1151 

1152 

1153 def sigmalinpolint(self, *args, **kwargs): 

1154 """ 

1155 sigmalinpolint(self, _clip, _sigma, _outfile) -> double 

1156 

1157 

1158 

1159 Summary: 

1160 Error in linearly polarized intensity 

1161 

1162 Description: 

1163 

1164 

1165 

1166 This function returns the error (standard 

1167 deviation) of the linearly polarized intensity; $sqrt{(Q^2+U^2)}$. 

1168 This result comes from standard propagation of statistical errors. 

1169 The result is a float as the error is not signal-to-noise 

1170 ratio dependent 

1171 

1172 This function requires the standard deviation of the thermal noise. You 

1173 can either supply it if you know it, or it will be worked out for you 

1174 with outliers from the mean clipped at the specified level. 

1175 

1176 Input Parameters: 

1177 clip Clip level for auto-sigma determination 

1178 sigma Standard deviation of thermal noise. Default is auto determined. 

1179 outfile Output image file name. Default is unset. 

1180 

1181 Example: 

1182 

1183 

1184 # 

1185 print 't----t sigmalinpolint Ex 1 t----' 

1186 po.open('stokes.image') 

1187 siglpi = po.sigmalinpolint() 

1188 print 'siglpi=', siglpi 

1189 # 

1190 

1191 

1192 -------------------------------------------------------------------------------- 

1193 

1194 """ 

1195 return _imagepol.imagepol_sigmalinpolint(self, *args, **kwargs) 

1196 

1197 

1198 def sigmalinpolposang(self, *args, **kwargs): 

1199 """ 

1200 sigmalinpolposang(self, _clip, _sigma, _outfile) -> casac::image * 

1201 

1202 

1203 

1204 Summary: 

1205 Error in linearly polarized position angle 

1206 

1207 Description: 

1208 

1209 

1210 

1211 This function returns the 

1212 error (standard deviation) of the linearly polarized position angle 

1213 ($0.5 tan^{-1}(U/Q)$$sqrt{(Q^2+U^2)}$) in degrees. This result 

1214 comes from standard propagation of errors. The result is an 

1215 on-the-fly Image tool as the error is signal-to-noise ratio dependent. 

1216 

1217 This function requires the standard deviation of the thermal noise. You 

1218 can either supply it if you know it, or it will be worked out for you 

1219 with outliers from the mean clipped at the specified level. 

1220 

1221 Input Parameters: 

1222 clip Clip level for auto-sigma determination 

1223 sigma Standard deviation of thermal noise. Default is auto determined. 

1224 outfile Output image file name. Default is unset. 

1225 

1226 Example: 

1227 

1228 

1229 # 

1230 print 't----t sigmalinpolposang Ex 1 t----' 

1231 po.open('stokes.image') 

1232 siglppa = po.sigmalinpolposang() 

1233 siglppa.statistics() 

1234 siglppa.done() 

1235 # 

1236 

1237 

1238 -------------------------------------------------------------------------------- 

1239 

1240 """ 

1241 return _imagepol.imagepol_sigmalinpolposang(self, *args, **kwargs) 

1242 

1243 

1244 def sigmastokes(self, *args, **kwargs): 

1245 """ 

1246 sigmastokes(self, _which, _clip) -> double 

1247 

1248 

1249 

1250 Summary: 

1251 Find standard deviation of specified Stokes data 

1252 

1253 Description: 

1254 

1255 

1256 

1257 This function returns the standard 

1258 deviation of the noise for the specified Stokes. Outliers from the mean 

1259 are clipped at the specified level. 

1260 

1261 Input Parameters: 

1262 which Must specify Stokes parameter. One of 'I', 'Q', 'U', 'V' (case insensitive)  

1263 clip Clip level for auto-sigma determination 

1264 

1265 Example: 

1266 

1267 

1268 # 

1269 print 't----t sigmastokes Ex 1 t----' 

1270 po.open('stokes.image') 

1271 sigq = po.sigmastokes('q', 10.0) 

1272 print 'sigq=', sigq 

1273 # 

1274 

1275 

1276 -------------------------------------------------------------------------------- 

1277 

1278 """ 

1279 return _imagepol.imagepol_sigmastokes(self, *args, **kwargs) 

1280 

1281 

1282 def sigmastokesi(self, *args, **kwargs): 

1283 """ 

1284 sigmastokesi(self, _clip) -> double 

1285 

1286 

1287 

1288 Summary: 

1289 Find standard deviation of Stokes I data 

1290 

1291 Description: 

1292 

1293 

1294 

1295 This function returns the standard deviation of the noise for the 

1296 Stokes I data. Outliers from the mean are clipped at the specified 

1297 level. 

1298 

1299 Input Parameters: 

1300 clip Clip level for auto-sigma determination 

1301 

1302 Example: 

1303 

1304 

1305 # 

1306 print 't----t sigmastokesi Ex 1 t----' 

1307 po.open('stokes.image') 

1308 sigi = po.sigmastokesi(10.0) 

1309 print 'sigi=', sigi 

1310 # 

1311 

1312 

1313 -------------------------------------------------------------------------------- 

1314 

1315 """ 

1316 return _imagepol.imagepol_sigmastokesi(self, *args, **kwargs) 

1317 

1318 

1319 def sigmastokesq(self, *args, **kwargs): 

1320 """ 

1321 sigmastokesq(self, _clip) -> double 

1322 

1323 

1324 

1325 Summary: 

1326 Find standard deviation of Stokes Q data 

1327 

1328 Description: 

1329 

1330 

1331 

1332 This function returns the standard deviation of the noise for the 

1333 Stokes Q data. Outliers from the mean are clipped at the specified 

1334 level. 

1335 

1336 Input Parameters: 

1337 clip Clip level for auto-sigma determination 

1338 

1339 Example: 

1340 

1341 

1342 # 

1343 print 't----t sigmastokesq Ex 1 t----' 

1344 po.open('stokes.image') 

1345 sigq = po.sigmastokesq(10.0) 

1346 print 'sigq=', sigq 

1347 # 

1348 

1349 

1350 -------------------------------------------------------------------------------- 

1351 

1352 """ 

1353 return _imagepol.imagepol_sigmastokesq(self, *args, **kwargs) 

1354 

1355 

1356 def sigmastokesu(self, *args, **kwargs): 

1357 """ 

1358 sigmastokesu(self, _clip) -> double 

1359 

1360 

1361 

1362 Summary: 

1363 Find standard deviation of Stokes U data 

1364 

1365 Description: 

1366 

1367 

1368 

1369 This function returns the standard 

1370 deviation of the noise for the Stokes U data. Outliers from the mean 

1371 are clipped at the specified level. 

1372 

1373 Input Parameters: 

1374 clip Clip level for auto-sigma determination 

1375 

1376 Example: 

1377 

1378 

1379 # 

1380 print 't----t sigmastokesu Ex 1 t----' 

1381 po.open('stokes.image') 

1382 sigu = po.sigmastokesu(10.0) 

1383 print 'sigu=', sigu 

1384 # 

1385 

1386 

1387 -------------------------------------------------------------------------------- 

1388 

1389 """ 

1390 return _imagepol.imagepol_sigmastokesu(self, *args, **kwargs) 

1391 

1392 

1393 def sigmastokesv(self, *args, **kwargs): 

1394 """ 

1395 sigmastokesv(self, _clip) -> double 

1396 

1397 

1398 

1399 Summary: 

1400 Find standard deviation of Stokes V data 

1401 

1402 Description: 

1403 

1404 

1405 

1406 This function returns the standard 

1407 deviation of the noise for the Stokes V data. Outliers from the mean 

1408 are clipped at the specified level. 

1409 

1410 Input Parameters: 

1411 clip Clip level for auto-sigma determination 

1412 

1413 Example: 

1414 

1415 

1416 # 

1417 print 't----t sigmastokesv Ex 1 t----' 

1418 po.open('stokes.image') 

1419 sigv = po.sigmastokesv(10.0) 

1420 print 'sigv=', sigv 

1421 # 

1422 

1423 

1424 -------------------------------------------------------------------------------- 

1425 

1426 """ 

1427 return _imagepol.imagepol_sigmastokesv(self, *args, **kwargs) 

1428 

1429 

1430 def sigmatotpolint(self, *args, **kwargs): 

1431 """ 

1432 sigmatotpolint(self, _clip, _sigma) -> double 

1433 

1434 

1435 

1436 Summary: 

1437 Error in total polarized intensity 

1438 

1439 Description: 

1440 

1441 

1442 

1443 This function returns the error (standard 

1444 deviation) of the total polarized intensity; $sqrt{(Q^2+U^2+V^2)}$. 

1445 This result comes from standard propagation of statistical errors. 

1446 The result is a float as the error is not signal-to-noise 

1447 ratio dependent 

1448 

1449 This function requires the standard deviation of the thermal noise. You 

1450 can either supply it if you know it, or it will be worked out for you 

1451 with outliers from the mean clipped at the specified level. 

1452 

1453 Input Parameters: 

1454 clip Clip level for auto-sigma determination 

1455 sigma Standard deviation of thermal noise. Default is auto determined. 

1456 

1457 Example: 

1458 

1459 

1460 # 

1461 print 't----t sigmastotpolint Ex 1 t----' 

1462 po.open('stokes.image') 

1463 sigtpi = po.sigmatotpolint() 

1464 print 'sigtpi=', sigtpi 

1465 # 

1466 

1467 

1468 -------------------------------------------------------------------------------- 

1469 

1470 """ 

1471 return _imagepol.imagepol_sigmatotpolint(self, *args, **kwargs) 

1472 

1473 

1474 def stokes(self, *args, **kwargs): 

1475 """ 

1476 stokes(self, _which, _outfile) -> casac::image * 

1477 

1478 

1479 

1480 Summary: 

1481 Stokes 

1482 

1483 Description: 

1484 

1485 

1486 

1487 This function returns an on-the-fly image tool containing the 

1488 specified Stokes only. This interface can be useful for scripts. 

1489 

1490 Input Parameters: 

1491 which Must specify Stokes. One of 'I', 'Q', 'U', 'V' (case insensitive)  

1492 outfile Output image file name. Default is unset. 

1493 

1494 Example: 

1495 

1496 

1497 # 

1498 print 't----t stokes Ex 1 t----' 

1499 po.open('stokes.image') 

1500 q = po.stokes('q') 

1501 q.statistics() 

1502 q.done() 

1503 # 

1504 

1505 

1506 -------------------------------------------------------------------------------- 

1507 

1508 """ 

1509 return _imagepol.imagepol_stokes(self, *args, **kwargs) 

1510 

1511 

1512 def stokesi(self, *args, **kwargs): 

1513 """ 

1514 stokesi(self, _outfile) -> casac::image * 

1515 

1516 

1517 

1518 Summary: 

1519 Stokes I 

1520 

1521 Description: 

1522 

1523 

1524 This function returns an on-the-fly image tool containing Stokes I only. 

1525 

1526 Input Parameters: 

1527 outfile Output image file name. Default is unset. 

1528 

1529 Example: 

1530 

1531 

1532 # 

1533 print 't----t stokesi Ex 1 t----' 

1534 po.open('stokes.image') 

1535 i = po.stokesi() 

1536 i.statistics() 

1537 i.done() 

1538 # 

1539 

1540 

1541 -------------------------------------------------------------------------------- 

1542 

1543 """ 

1544 return _imagepol.imagepol_stokesi(self, *args, **kwargs) 

1545 

1546 

1547 def stokesq(self, *args, **kwargs): 

1548 """ 

1549 stokesq(self, _outfile) -> casac::image * 

1550 

1551 

1552 

1553 Summary: 

1554 Stokes Q 

1555 

1556 Description: 

1557 

1558 

1559 This function returns an on-the-fly image tool containing Stokes Q only. 

1560 

1561 Input Parameters: 

1562 outfile Output image file name. Default is unset. 

1563 

1564 Example: 

1565 

1566 

1567 # 

1568 print 't----t stokesq Ex 1 t----' 

1569 po.open('stokes.image') 

1570 q = po.stokesq() 

1571 q.statistics() 

1572 q.done() 

1573 # 

1574 

1575 

1576 -------------------------------------------------------------------------------- 

1577 

1578 """ 

1579 return _imagepol.imagepol_stokesq(self, *args, **kwargs) 

1580 

1581 

1582 def stokesu(self, *args, **kwargs): 

1583 """ 

1584 stokesu(self, _outfile) -> casac::image * 

1585 

1586 

1587 

1588 Summary: 

1589 Stokes U 

1590 

1591 Description: 

1592 

1593 

1594 This function returns an on-the-fly image tool containing Stokes U only. 

1595 

1596 Input Parameters: 

1597 outfile Output image file name. Default is unset. 

1598 

1599 Example: 

1600 

1601 

1602 # 

1603 print 't----t stokesu Ex 1 t----' 

1604 po.open('stokes.image') 

1605 u = po.stokesu() 

1606 u.statistics() 

1607 u.done() 

1608 # 

1609 

1610 

1611 -------------------------------------------------------------------------------- 

1612 

1613 """ 

1614 return _imagepol.imagepol_stokesu(self, *args, **kwargs) 

1615 

1616 

1617 def stokesv(self, *args, **kwargs): 

1618 """ 

1619 stokesv(self, _outfile) -> casac::image * 

1620 

1621 

1622 

1623 Summary: 

1624 Stokes V 

1625 

1626 Description: 

1627 

1628 

1629 This function returns an on-the-fly image tool containing Stokes V only. 

1630 

1631 Input Parameters: 

1632 outfile Output image file name. Default is unset. 

1633 

1634 Example: 

1635 

1636 

1637 # 

1638 print 't----t stokesv Ex 1 t----' 

1639 po.open('stokes.image') 

1640 v = po.stokesv() 

1641 v.statistics() 

1642 v.done() 

1643 # 

1644 

1645 

1646 -------------------------------------------------------------------------------- 

1647 

1648 """ 

1649 return _imagepol.imagepol_stokesv(self, *args, **kwargs) 

1650 

1651 

1652 def summary(self): 

1653 """ 

1654 summary(self) -> bool 

1655 

1656 

1657 

1658 Summary: 

1659 Summarise Imagepol tool 

1660 

1661 Description: 

1662 

1663 

1664 

1665 This function just lists a summary of the Imagepol tool to the logger. 

1666 Currently it just summarizes the image to which the tool is attached. 

1667 

1668 Example: 

1669 

1670 

1671 # 

1672 print 't----t summary Ex 1 t----' 

1673 po.open('stokes.image') 

1674 po.summary() 

1675 # 

1676 #Image name : stokes.image 

1677 #Object name : 

1678 #Image type : PagedImage 

1679 #Image quantity : Intensity 

1680 #Pixel mask(s) : None 

1681 #Region(s) : None 

1682 # 

1683 #Direction reference : J2000 

1684 #Spectral reference : TOPO 

1685 #Velocity type : RADIO 

1686 #Rest frequency : 1.4e+09 Hz 

1687 #Telescope : UNKNOWN 

1688 #Observer : UNKNOWN 

1689 #Date observation : UNKNOWN 

1690 # 

1691 #Axis Coord Type Name Proj Shape Tile Coord value at pixel Coord incr Units 

1692 #------------------------------------------------------------------------------------------------ 

1693 #0 0 Direction Right Ascension SIN 32 32 00:00:00.000 16.00 -6.000000e+01 arcsec 

1694 #1 0 Direction Declination SIN 32 32 +00.00.00.000 16.00 6.000000e+01 arcsec 

1695 #2 1 Stokes Stokes 4 4 I Q U V 

1696 #3 2 Spectral Frequency 32 32 1.4e+09 16.00 4.000000e+06 Hz 

1697 # Velocity 0 16.00 -8.565499e+02 km/s 

1698 # 

1699 # 

1700 

1701 

1702 -------------------------------------------------------------------------------- 

1703 

1704 """ 

1705 return _imagepol.imagepol_summary(self) 

1706 

1707 

1708 def totpolint(self, *args, **kwargs): 

1709 """ 

1710 totpolint(self, _debias, _clip, _sigma, _outfile, _region, _mask, _stretch) -> casac::image * 

1711 

1712 

1713 

1714 Summary: 

1715 Total polarized intensity 

1716 

1717 Description: 

1718 

1719 

1720 This application returns the total polarized intensity; 

1721 

1722 $sqrt{( Q^2+ U^2+ V^2)}$. 

1723 

1724 If the image contains only Q and U, or only V, then just 

1725 those components contribute to the total polarized intensity. 

1726 

1727 The polarized intensity may optionally be debiased (if debias=True). 

1728 This requires an estimate of the thermal noise level (sigma). 

1729 The resulting image will be computed using 

1730 

1731 $sqrt{(Q^2 + U^2 + V^2 - sigma^2)}$ 

1732 

1733 If the specified value of sigma is positive, that is the value that will 

1734 be used for debiasing. If it is not, the value used for sigma is computed 

1735 using the following algorithm: 

1736 

1737 1. First, a stokes plane(s) is chosen on which the sigma computation is performed. 

1738 If the V plane exists, that is used to compute sigma. If not, then the value of 

1739 sigma is computed to be the average of the sigma values of the Q and U planes. 

1740 

1741 2. For the relevant plane(s), the sigma value is computed for unmasked pixel values 

1742 which lie within +/- (clip * stddev) values of the mean for that plane, where the mean 

1743 and stddev (the standard deviation) are computed by using all unmasked pixel values 

1744 in the relevant plane. In this way, outliers (eg pixels due to possible 

1745 astronomical signals) are excluded in the computation of sigma. 

1746 

1747 In the output image, pixels for which the expression inside the square root is 

1748 negative are masked, and their values are set to zero. 

1749 

1750 If a region and/or mask is specified, debias=True and sigma is not positive so 

1751 that the value of sigma is determined using the algorithm above, the region and mask 

1752 are applied first to the plane(s) from which the value of sigma is determined and 

1753 then sigma is computed. 

1754 

1755 Input Parameters: 

1756 debias Debias the total polarized intensity ? 

1757 clip Clip level for auto-sigma determination 

1758 sigma Standard deviation of thermal noised. Default is auto determined. 

1759 outfile Output image file name. Default is unset. 

1760 region Region selection. Default is to use the full image. 

1761 mask Mask to use. Default setting is none. 

1762 stretch Stretch the mask if necessary and possible? Default value is false. 

1763 

1764 Example: 

1765 

1766 

1767 # 

1768 print 't----t totpolint Ex 1 t----' 

1769 po.open('stokes.image') 

1770 tpi = po.totpolint() 

1771 tpi.statistics() 

1772 tpi.done() 

1773 # 

1774 

1775 

1776 -------------------------------------------------------------------------------- 

1777 

1778 """ 

1779 return _imagepol.imagepol_totpolint(self, *args, **kwargs) 

1780 

1781 __swig_destroy__ = _imagepol.delete_imagepol 

1782 __del__ = lambda self: None 

1783imagepol_swigregister = _imagepol.imagepol_swigregister 

1784imagepol_swigregister(imagepol) 

1785 

1786# This file is compatible with both classic and new-style classes. 

1787 

1788