Coverage for /wheeldirectory/casa-6.7.0-12-py3.10.el8/lib/py/lib/python3.10/site-packages/casatools/__casac__/ms.py: 51%

246 statements  

« prev     ^ index     » next       coverage.py v7.6.4, created at 2024-10-31 18:48 +0000

1# This file was automatically generated by SWIG (http://www.swig.org). 

2# Version 3.0.12 

3# 

4# Do not make changes to this file unless you know what you are doing--modify 

5# the SWIG interface file instead. 

6 

7from sys import version_info as _swig_python_version_info 

8if _swig_python_version_info >= (2, 7, 0): 

9 def swig_import_helper(): 

10 import importlib 

11 pkg = __name__.rpartition('.')[0] 

12 mname = '.'.join((pkg, '_ms')).lstrip('.') 

13 try: 

14 return importlib.import_module(mname) 

15 except ImportError: 

16 return importlib.import_module('_ms') 

17 _ms = swig_import_helper() 

18 del swig_import_helper 

19elif _swig_python_version_info >= (2, 6, 0): 

20 def swig_import_helper(): 

21 from os.path import dirname 

22 import imp 

23 fp = None 

24 try: 

25 fp, pathname, description = imp.find_module('_ms', [dirname(__file__)]) 

26 except ImportError: 

27 import _ms 

28 return _ms 

29 try: 

30 _mod = imp.load_module('_ms', fp, pathname, description) 

31 finally: 

32 if fp is not None: 

33 fp.close() 

34 return _mod 

35 _ms = swig_import_helper() 

36 del swig_import_helper 

37else: 

38 import _ms 

39del _swig_python_version_info 

40 

41try: 

42 _swig_property = property 

43except NameError: 

44 pass # Python < 2.2 doesn't have 'property'. 

45 

46try: 

47 import builtins as __builtin__ 

48except ImportError: 

49 import __builtin__ 

50 

51def _swig_setattr_nondynamic(self, class_type, name, value, static=1): 

52 if (name == "thisown"): 

53 return self.this.own(value) 

54 if (name == "this"): 

55 if type(value).__name__ == 'SwigPyObject': 

56 self.__dict__[name] = value 

57 return 

58 method = class_type.__swig_setmethods__.get(name, None) 

59 if method: 

60 return method(self, value) 

61 if (not static): 

62 if _newclass: 

63 object.__setattr__(self, name, value) 

64 else: 

65 self.__dict__[name] = value 

66 else: 

67 raise AttributeError("You cannot add attributes to %s" % self) 

68 

69 

70def _swig_setattr(self, class_type, name, value): 

71 return _swig_setattr_nondynamic(self, class_type, name, value, 0) 

72 

73 

74def _swig_getattr(self, class_type, name): 

75 if (name == "thisown"): 

76 return self.this.own() 

77 method = class_type.__swig_getmethods__.get(name, None) 

78 if method: 

79 return method(self) 

80 raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name)) 

81 

82 

83def _swig_repr(self): 

84 try: 

85 strthis = "proxy of " + self.this.__repr__() 

86 except __builtin__.Exception: 

87 strthis = "" 

88 return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) 

89 

90try: 

91 _object = object 

92 _newclass = 1 

93except __builtin__.Exception: 

94 class _object: 

95 pass 

96 _newclass = 0 

97 

98class ms(_object): 

99 """Proxy of C++ casac::ms class.""" 

100 

101 __swig_setmethods__ = {} 

102 __setattr__ = lambda self, name, value: _swig_setattr(self, ms, name, value) 

103 __swig_getmethods__ = {} 

104 __getattr__ = lambda self, name: _swig_getattr(self, ms, name) 

105 __repr__ = _swig_repr 

106 

107 def __init__(self): 

108 """__init__(self) -> ms""" 

109 this = _ms.new_ms() 

110 try: 

111 self.this.append(this) 

112 except __builtin__.Exception: 

113 self.this = this 

114 

115 def open(self, *args, **kwargs): 

116 """ 

117 open(self, _thems, _nomodify, _lock, _check) -> bool 

118 

119 

120 

121 Summary: 

122 Attach the ms tool to a measurement set table 

123 

124 Description: 

125 

126 

127 Use this function when you have detached (using the close function) 

128 the ms tool from a measurement set table and wish to reattach to another 

129 measurement set table. 

130 

131 If check=true, additional referential integrity checks on the MS 

132 are run. If any of these fail, an exception is thrown and the MS 

133 is not open (since it is not a valid MS). 

134 

135 

136 Input Parameters: 

137 thems Name of the measurement set table to open. 

138 nomodify Prevent changes to the measurement set. 

139 lock Lock the table for exclusive use by this tool. 

140 check Run additional internal integrity checks on the MS. 

141 

142 Example: 

143 

144 ms.open('3C273XC1.MS') 

145 ms.close() 

146 ms.open('anotherms', nomodify=False, lock=False) 

147 

148 -------------------------------------------------------------------------------- 

149 

150 """ 

151 return _ms.ms_open(self, *args, **kwargs) 

152 

153 

154 def reset(self): 

155 """ 

156 reset(self) -> bool 

157 

158 

159 

160 Summary: 

161 Re-attach the tool to the original MS. 

162 

163 Description: 

164 

165 

166 This function re-attaches the ms tool to the original MS, 

167 effectively discarding any prior operations, in particular any 

168 data selection operations using msselect function. 

169 

170 

171 -------------------------------------------------------------------------------- 

172 

173 """ 

174 return _ms.ms_reset(self) 

175 

176 

177 def close(self): 

178 """ 

179 close(self) -> bool 

180 

181 

182 

183 Summary: 

184 Detach the ms tool from the measurement set table 

185 

186 Description: 

187 

188 

189 This function detaches the ms tool from the associated 

190 measurement set table after flushing all the cached changes. 

191 After calling this function the ms tool is not associated with 

192 any measurement set and using any function other than open or fromfits 

193 will result in an error message being sent to the logger. 

194 

195 This function can be useful to avoid synchronization problems 

196 which can occur when different processes have the same ms open. 

197 

198 

199 Example: 

200 

201 See the example for the open function. 

202 

203 -------------------------------------------------------------------------------- 

204 

205 """ 

206 return _ms.ms_close(self) 

207 

208 

209 def done(self): 

210 """ 

211 done(self) -> bool 

212 

213 

214 

215 Summary: 

216 Closes the ms tool 

217 

218 Description: 

219 

220 

221 You should call close() when you are finished using the ms tool 

222 to close the measurement set table and free any associated file 

223 locks. The measurement set is not deleted. 

224 

225 

226 

227 Example: 

228 

229 ms.open('3C273XC1.MS') 

230 ... 

231 ms.done() 

232 

233 -------------------------------------------------------------------------------- 

234 

235 """ 

236 return _ms.ms_done(self) 

237 

238 

239 def name(self): 

240 """ 

241 name(self) -> string 

242 

243 

244 

245 Summary: 

246 Name of the measurement set table the tool is attached to. 

247 

248 Description: 

249 

250 

251 This function returns the name of the measurement set table that 

252 is being manipulated. If the ms tool is not attached to any 

253 measurement set, this function will return the string ``none''. 

254 

255 

256 Example: 

257 

258 ms.open('3C273XC1.MS') 

259 print 'Processing file', ms.name() 

260 

261 -------------------------------------------------------------------------------- 

262 

263 """ 

264 return _ms.ms_name(self) 

265 

266 

267 def iswritable(self): 

268 """ 

269 iswritable(self) -> bool 

270 

271 

272 

273 Summary: 

274 Returns True if the underlying Table is writable 

275 

276 Description: 

277 

278 

279 This function returns True if the underlying MeasurementSet 

280 was opened for writing/update. 

281 

282 

283 Example: 

284 

285 ms.open('3C273XC1.MS',nomodify=False) 

286 if ms.iswritable(): 

287 print 'MeasurementSet is writable' 

288 else: 

289 print 'MeasurementSet is readonly' 

290 #MeasurementSet is writable 

291 

292 -------------------------------------------------------------------------------- 

293 

294 """ 

295 return _ms.ms_iswritable(self) 

296 

297 

298 def nrow(self, *args, **kwargs): 

299 """ 

300 nrow(self, _selected) -> long 

301 

302 

303 

304 Summary: 

305 Returns the number of rows in the measurement set.  

306 

307 Description: 

308 

309 

310 This function returns the number of rows in the measurement set. 

311 If the optional argument selected is set to True, it returns the 

312 number of currently selected rows, otherwise it returns the 

313 number of rows in the original measurement set. 

314 

315 

316 Input Parameters: 

317 selected Return number of selected rows. 

318 

319 Example: 

320 

321 ms.open('3C273XC1.MS') 

322 print 'Number of rows in ms =', ms.nrow() 

323 ms.msselect({'field':'3C273'}) 

324 print 'Number of rows in selected ms =', ms.nrow(True) 

325 

326 -------------------------------------------------------------------------------- 

327 

328 """ 

329 return _ms.ms_nrow(self, *args, **kwargs) 

330 

331 

332 def getdata(self, *args, **kwargs): 

333 """ 

334 getdata(self, _items, _ifraxis, _ifraxisgap, _increment, _average) -> record * 

335 

336 

337 

338 Summary: 

339 Read values from the measurement set.  

340 

341 Description: 

342 

343 

344 This function reads the specified items from the currently 

345 selected measurement set and returns them in fields of a record. 

346 The main difference between this and direct access of the table, 

347 using the table tool, is that this function reads data from the 

348 selected measurement set, provides access to derived 

349 quantities like amplitude and flag_sum, and can reorder the 

350 data. 

351 

352 As with the ms.range function, the items to read are specified 

353 using a vector of strings. Allowable items include: 'amplitude', 

354 'corrected_amplitude', 'model_amplitude', 'ratio_amplitude', 

355 'residual_amplitude', 'obs_residual_amplitude', 'antenna1', 

356 'antenna2', 'axis_info', 'data', 'corrected_data', 'float_data', 

357 'model_data', 'ratio_data', 'residual_data', 

358 'obs_residual_data', 'feed1', 'feed2', 'field_id', 'flag', 

359 'flag_row', 'flag_sum', 'ha' (added to 'axis_info'), 

360 'ifr_number', 'imaginary', 'corrected_imaginary', 

361 'model_imaginary', 'ratio_imaginary', 'residual_imaginary', 

362 'obs_residual_imaginary', 'last' (added to 'axis_info'), 

363 'phase', 'corrected_phase', 'model_phase', 'ratio_phase', 

364 'residual_phase', 'obs_residual_phase', 'real', 

365 'corrected_real', 'ratio_real', 'residual_real', 

366 'obs_residual_real', 'scan_number', 'sigma', 'data_desc_id', 

367 'time', 'ut' (added to 'axis_info'), 'uvw', 'u', 'v', 'w', 

368 'uvdist', and 'weight'. Unrecognized items will result in a 

369 warning being sent to the logger. Corrected, model, and float 

370 visibilities will result in a warning if these columns do not 

371 exist. Duplicate items are silently ignored. 

372 

373 Note that 'ha', 'last', and 'ut' must be requested along with 

374 'axis_info' and ifraxis=True. This data will be found in a 

375 subrecord of the returned record's 'axis_info' with the key in 

376 uppercase. For example, for 'ut', the data is found in: 

377 rec['axis_info']['time_axis']['UT']. See more information 

378 about 'axis_info' below. 

379 

380 The record that is returned contains fields that correspond to 

381 each of the specified items. Most fields will contain an array. 

382 The array may be one, two or three dimensional depending on 

383 whether the corresponding row in the measurement set is a 

384 scalar, one-, or two-dimensional. Unless the ifraxis argument 

385 is set to True, the length of the last axis on these arrays 

386 will correspond to the number of rows in the selected 

387 measurement set. 

388 

389 If the ifraxis argument is set to True, the row axis is split 

390 into an interferometer axis and a time axis. For example, a 

391 measurement set with 90 rows, in an array with 6 telescopes (so 

392 that there are 15 interferometers), may have a data array of 

393 shape [4,32,90] if ifraxis is False, or [4,32,15,6] if ifraxis 

394 is True (assuming there are 4 correlations and 32 channels). If 

395 there are missing rows, as will happen if not all 

396 interferometers were used for all time-slots, then a default 

397 value will be inserted. 

398 

399 This splitting of the row axis may not happen for items where 

400 there is only a single value per row. For some items the 

401 returned vector will contain only as many values as there are 

402 interferometers and it is implicit that the same value should 

403 be used for all time slots. The antenna1, antenna2, feed1, 

404 feed2 and ifr_number items fall in this category. For other 

405 items, the returned vector will have as many values as there 

406 are time slots and it is implicit that the same value should be 

407 used for all interferometers. The field_id, scan_number, 

408 data_desc_id, and time items fall into this category. 

409 

410 The 'axis_info' item provides data labelling information. It 

411 returns a record with the following fields: corr_axis, 

412 freq_axis, ifr_axis, and time_axis. The latter two fields are 

413 not present if ifraxis is set to False. 

414 

415 1. The corr_axis field contains a string vector with elements like 

416 'RR' or 'XY' that indicates which polarizations were correlated 

417 together to produce the data. The length of this vector will 

418 always be the same as the length of the first axis of the data 

419 array. 

420 

421 2. The freq_axis field contains a record with two fields, chan_freq 

422 and resolution. Each of these fields contains vectors which 

423 indicate the centre frequency and spectral resolution (FWHM) 

424 of each channel. The length of these vectors will be the same 

425 as the length of the second axis in the data. 

426 

427 3. The ifr_axis field contains fields: ifr_number, ifr_name, 

428 ifr_shortname and baseline. The ifr_number is the same as 

429 returned by the 'ifr_number' item, 1000*antenna1+antenna2. 

430 The ifr_name and ifr_shortname are string vectors containing 

431 descriptions of the interferometer; ifr_name contains the names 

432 of the antenna pair separated by a hyphen, and ifr_shortname 

433 contains the ids of the antenna pair separated by a hyphen. 

434 The baseline is the Euclidian distance in meters between the two 

435 antennas. All of these vectors have a length equal to the number 

436 of interferometers in the selected measurement set, i.e., to the 

437 length of the third axis in the data when ifraxis is True. 

438 

439 4. The time_axis field contains the MJD seconds field and 

440 optionally the HA, UT, and LAST fields. To include the optional 

441 fields, you need to add 'ha', 'last' or 'ut' strings to the list 

442 of requested items. All of the fields in the time_axis record 

443 contain vectors that indicate the time at the midpoint of the 

444 observation and are in seconds. The MJD seconds field is since 

445 0 hours on the day having a modified julian day number of zero 

446 and the rest are since midnight prior to the start of the 

447 observation. 

448 

449 An optional gap size can be specified to visually separate 

450 groups of interferometers with the same antenna1 index (handy 

451 for identifying antennas in an interferometer vs time display). 

452 The default is no gap. 

453 

454 An optional increment can be specified to return data from every 

455 row matching the increment only. 

456 

457 When the average flag is set, the data will be averaged over the 

458 time axis if the ifraxis is True or the row axis i.e., different 

459 interferometers and times may be averaged together. In the 

460 latter case, some of the coordinate information, like 

461 antenna_id, will no longer make sense. When all data to be 

462 averaged is unflagged, the result is the averaged value and the 

463 corresponding flag is False. When all data is flagged, the 

464 result is set to zero and the corresponding flag is True. When 

465 data to be averaged is mixed (unflagged and flagged), only the 

466 unflagged values are averaged and the flag is set to False. 

467 

468 You need to call selectinit before calling this function. 

469 If you haven't then selectinit will be called for you with 

470 default arguments. 

471 

472 Items prefixed with corrected, model, residual or obs_residual 

473 are not available unless your measurement set has been processed 

474 either with the imager or calibrator tools. 

475 

476 

477 Input Parameters: 

478 items Item names 

479 ifraxis Create interferometer axis if True. 

480 ifraxisgap Gap size on ifr axis when antenna1 changes. 

481 increment Row increment for data access. 

482 average Average the data in time or over rows. 

483 

484 Example: 

485 

486 ms.open('3C273XC1.MS') 

487 ms.selectinit(datadescid=0) 

488 # Get amplitude and MJDseconds 

489 d = ms.getdata(['amplitude','axis_info'], ifraxis=True) 

490 tstart = min(d['axis_info']['time_axis']['MJDseconds']) 

491 tstop = max(d['axis_info']['time_axis']['MJDseconds']) 

492 maxamp = max(max(d['amplitude'][:,0,0,0]), 

493 max(d['amplitude'][0,:,0,0]), 

494 max(d['amplitude'][0,0,:,0]), 

495 max(d['amplitude'][0,0,0,:])) 

496 print 'MJD start time (seconds) =', tstart 

497 # MJD start time (seconds) = 4121629400.0 

498 print 'MJD stop time (seconds) =', tstop 

499 # MJD stop time (seconds) = 4121642670.0 

500 # MJDseconds Correlation amplitude 

501 print 'Maximum correlation amplitude =', maxamp 

502 # Maximum correlation amplitude = 33.5794372559 

503 chan = 0 

504 corr = 0 

505 freqGHz = d['axis_info']['freq_axis']['chan_freq'][chan]/1.0E9 

506 baselineStr = d['axis_info']['ifr_axis']['ifr_name'][corr] 

507 corrStr = d['axis_info']['corr_axis'][corr] 

508 tcoord = d['axis_info']['time_axis']['MJDseconds'] 

509 acoord = d['amplitude'][0,0,0,:] 

510 print 'Frequency', freqGHz, 'GHz', 'Baseline', baselineStr, '(', corrStr, ')' 

511 print 'MJDseconds', 'Correlation amplitude' 

512 for i in range(len(tcoord)): 

513 print tcoord[i], acoord[i] 

514 # 

515 # Frequency [ 8.085] GHz Baseline 1-2 ( RR ) 

516 # MJDseconds Correlation amplitude 

517 # 4121629400.0 29.2170944214 

518 # 4121629410.0 29.1688995361 

519 # 4121629420.0 29.2497825623 

520 # 4121629430.0 29.2029647827 

521 # 4121629440.0 29.166015625 

522 # 4121629450.0 29.2417526245 

523 # 4121629460.0 29.2867794037 

524 # 4121638270.0 0.0 

525 # 4121638280.0 29.4539775848 

526 # 4121638290.0 29.472661972 

527 # 4121638300.0 29.4424362183 

528 # 4121638310.0 29.4234466553 

529 # 4121638320.0 29.4018745422 

530 # 4121638330.0 29.3326053619 

531 # 4121638340.0 29.3575496674 

532 # 4121642600.0 31.1411132812 

533 # 4121642610.0 31.0726108551 

534 # 4121642620.0 31.1242599487 

535 # 4121642630.0 31.0505466461 

536 # 4121642640.0 31.0448284149 

537 # 4121642650.0 30.9974422455 

538 # 4121642660.0 31.0648326874 

539 # 4121642670.0 31.0638961792 

540 

541 

542 This example selects all the data from the measurement set where 

543 the value in the DATA_DESC_ID column is zero. This corresponds 

544 to a particular spectral window and polarization setup. It then 

545 gets the correlated amplitude, and the axis information from 

546 this selected measurement set. This is returned in the casapy 

547 variable d. The remainder of the example prints a table of 

548 'hour angle' and corresponding 'correlated amplitude' for the 

549 first channel, correlation and baseline. 

550 

551 -------------------------------------------------------------------------------- 

552 

553 """ 

554 return _ms.ms_getdata(self, *args, **kwargs) 

555 

556 

557 def putdata(self, *args, **kwargs): 

558 """ 

559 putdata(self, _items) -> bool 

560 

561 

562 

563 Summary: 

564 Write new values into the measurement set.  

565 

566 Description: 

567 

568 

569 This function allows you to write values from casapy variables 

570 back into the measurement set table. The main difference between 

571 this and directly accessing the table using the table tool is 

572 that this function writes data to the selected measurement set. 

573 

574 Unlike the getdata function, you can only put items that 

575 correspond to actual table columns. You cannot change the data 

576 shape either so that the number of correlations, channels and 

577 rows (or interferometers/time slots) must match the values in 

578 the selected measurement set. If the values were obtained using 

579 the getdata function with ifraxis argument set to True, then 

580 any default values added to fill in missing 

581 interferometer/timeslots pairs will be ignored when writing 

582 the modified values back using this function. 

583 

584 Allowable items include: 'data', 'corrected_data', 

585 'model_data', 'flag', 'flag_row', 'sigma', and 'weight'. 

586 'float_data' is currently not implemented for putdata. 

587 

588 The measurement set has to be opened for read/write access 

589 (nomodify=False) to be able to use this function. 

590 

591 You need to call selectinit before calling this function. 

592 If you haven't then selectinit will be called for you with 

593 default arguments. 

594 

595 Items prefixed with corrected, model, residual or obs_residual 

596 are not available unless your measurement set has been processed 

597 either with the imager or calibrator tools. 

598 

599 

600 Input Parameters: 

601 items Record with items and their new values 

602 

603 Example: 

604 

605 ms.open('3C273XC1.MS', nomodify=False) 

606 ms.selectinit(datadescid=0) 

607 rec = ms.getdata(['weight','data']) 

608 rec['weight'][:,:] = 1 

609 import numpy as np 

610 meanrec = np.mean(rec['data'],axis=None) 

611 print 'Mean data value = ', meanrec 

612 rec['data'][:,:,:] -= meanrec 

613 ms.putdata(rec) 

614 

615 This example selects all the data from the measurement set where 

616 the value in the DATA_DESC_ID column is zero. This corresponds 

617 to a particular spectral window and polarization setup. Note 

618 that the measurement set was opened for writing as well as 

619 reading. The third line reads all the weights and the data into 

620 the casapy variable rec. The weights are set to one. The more 

621 obscure syntax is used as typing rec['weight'] = 1 will not 

622 preserve the shape of the weight array. The data then has its 

623 mean subtracted from it. The mean function is defined in the 

624 numpy module. Finally the data is written back into the 

625 measurement set table. (NOTE: Normally one should not modify 

626 the raw data column. Such adjustments are more appropriate for 

627 the corrected_data column, if it exists.) 

628 

629 -------------------------------------------------------------------------------- 

630 

631 """ 

632 return _ms.ms_putdata(self, *args, **kwargs) 

633 

634 

635 def fromfits(self, *args, **kwargs): 

636 """ 

637 fromfits(self, _msfile, _fitsfile, _nomodify, _lock, _obstype, _host, _forcenewserver, _antnamescheme) -> bool 

638 

639 

640 

641 Summary: 

642 Create a measurement set from a uvfits file 

643 

644 Description: 

645 

646 

647 This function will convert a uvfits file to a measurement set table 

648 and then open the measurement set table. The newly created 

649 measurement set table will continue to exist after the tool has 

650 been closed. 

651 

652 Setting the lock argument to True will permanently lock the table 

653 preventing other processes from writing to the measurement set. 

654 Unless you expect this to happen, and want to prevent it, you 

655 should leave the lock argument at the default value which implies 

656 auto-locking. 

657 

658 Note that the variety of fits files that fromfits is able to 

659 interpret correctly is limited mostly to files similar to those 

660 produced by classic AIPS. In particular, it understands only binary 

661 table extensions for the antenna (AN), frequency (FQ) and source 

662 (SU) information and ignores other extensions. 

663 

664 This function returns True if it successfully attaches the ms tool 

665 to a newly created Measurement Set or False if something went 

666 wrong, like an error in a file name. 

667 

668 NOTE ON WEIGHTS 

669 

670 ms.fromfits() will generate a WEIGHT_SPECTRUM column in which it 

671 will fill the absolute value of the weight associated with each 

672 visibility in the uvfits file. Negative weights will have the 

673 associated FLAGs set to True. It will compute the associated WEIGHT 

674 value for that MS row to be the sum of the absolute values of the 

675 associated WEIGHT_SPECTRUM values. 

676 

677 

678 Input Parameters: 

679 msfile Filename for the newly created measurement set 

680 fitsfile uvfits file to read 

681 nomodify Open for read access only. 

682 lock Lock the table for exclusive use. 

683 obstype Specify the observation type: 0=standard, 1=fastmosaic, requiring small tiles in the measurement set. 

684 host Host to start ms tool on (IGNORED!!!) 

685 forcenewserver Start a new server tool (IGNORED!!!). 

686 antnamescheme For VLA only, antenna name scheme, old style is just antenna number, new style prepends VA or EV. 

687 

688 Example: 

689 

690 ms.fromfits('3C273XC1.MS', '3C273XC1.fits') 

691 

692 -------------------------------------------------------------------------------- 

693 

694 """ 

695 return _ms.ms_fromfits(self, *args, **kwargs) 

696 

697 

698 def fromfitsidi(self, *args, **kwargs): 

699 """ 

700 fromfitsidi(self, _msfile, _fitsfile, _nomodify, _lock, _obstype) -> bool 

701 

702 

703 

704 Summary: 

705 Create a measurement set from a fits-idi file 

706 

707 Description: 

708 

709 

710 This function will convert a uvfits file to a measurement set table 

711 and then open the measurement set table. The newly created 

712 measurement set table will continue to exist after the tool has 

713 been closed. 

714 

715 Setting the lock argument to True will permanently lock the table 

716 preventing other processes from writing to the measurement set. 

717 Unless you expect this to happen, and want to prevent it, you 

718 should leave the lock argument at the default value which implies 

719 auto-locking. 

720 

721 Note that the variety of fits files that fromfits is able to 

722 interpret correctly is limited mostly to files similar to those 

723 produced by classic AIPS. In particular, it understands only binary 

724 table extensions for the antenna (AN), frequency (FQ) and source 

725 (SU) information and ignores other extensions. 

726 

727 This function returns True if it successfully attachs the ms tool 

728 to a newly created Measurement Set or False if something went 

729 wrong, like an error in a file name. 

730 

731 

732 Input Parameters: 

733 msfile Filename for the newly created measurement set 

734 fitsfile fits-idi file to read 

735 nomodify Open for read access only. 

736 lock Lock the table for exclusive use. 

737 obstype Specify the observation type: 0=standard, 1=fastmosaic, requiring small tiles in the measurement set. 

738 

739 Example: 

740 

741 ms.fromfits('3C273XC1.MS', '3C273XC1.fits') 

742 

743 -------------------------------------------------------------------------------- 

744 

745 """ 

746 return _ms.ms_fromfitsidi(self, *args, **kwargs) 

747 

748 

749 def tofits(self, *args, **kwargs): 

750 """ 

751 tofits(self, _fitsfile, _column, _field, _spw, _baseline, _time, _scan, _uvrange, _taql, _writesyscal, _multisource, _combinespw, _writestation, _padwithflags, _overwrite) -> bool 

752 

753 

754 

755 Summary: 

756 Convert a measurement set to a uvfits file 

757 

758 Description: 

759 

760 

761 This function writes a uvfits file that contains the data in the 

762 measurement set associated with this tool. The fits file is always 

763 written in floating point format and the data are always stored in 

764 the primary array of the fits file. 

765 

766 IMPORTANT NOTE: In general, some of the data averaging features of 

767 this method have never worked properly. In general, users should 

768 run mstransform to select and average data prior to running 

769 tofits(). The associated input parameters are slowly being 

770 deprecated and removed. 

771 

772 If the measurement set has been imaged or calibrated in CASA, it 

773 may contain additional data columns. You need to select ONE of 

774 these columns to be written to the fits file. The possible 

775 options are: 

776 

777 1. observed This is the raw data as collected by the telescope. All 

778 interferometric measurement sets must contain this column. 

779 A synonym for 'observed' is 'data'. 

780 2. corrected This is the calibrated data. A synonym for 'corrected' is 

781 'corrected_data'. 

782 3. model This is the visibilites that would be measured using 

783 the current model of the sky. A synonym for 'model' is 

784 'model_data'. 

785 

786 The parsing of these strings is case insensitive. If any other 

787 option is specified then the observed data will be written. 

788 

789 By default a single-source uvfits file is written, but if the 

790 measurement set contains more than one field or if you set the 

791 multisource argument to True a multi-source uvfits file will be 

792 written. Because of limitations in the uvfits format you have to 

793 ensure that the data shape is fixed for all the data you intend to 

794 write to one fits file. See the general description of this tool 

795 for how you can select data to meet this condition. 

796 

797 The combinespw argument is used to control whether data from 

798 different spectral windows will be written as different entries in 

799 the fits FQ (frequency) table or combined as different IF's 

800 within one entry in the FQ table. You should normally only set 

801 this to True if you know that the data from different spectral 

802 windows were observed simultaneously, and the data in the 

803 measurement set can be equally divided between all the spectral 

804 windows (i.e. each window should have the same width). Use of 

805 this switch is recommended for data to be processed in classic 

806 AIPS and difmap (if possible, e.g., standard dual IF observations). 

807 

808 The padwithflags argument is only relevant if combinespw is True. 

809 If true, it will fill in data that is 'missing' with flags to fit 

810 the IF structure. This is appropriate if the MS had a few 

811 frequency-dependent flags applied, and was then time-averaged by 

812 split. If the spectral windows were observed at different times, 

813 padwithflags=True will add a large number of flags, making the 

814 output file significantly longer. It does not yet support spectral 

815 windows with different widths. 

816 

817 The fits GC (gain curve) and TY (system temperature) tables can 

818 be optionally written by setting the writesyscal argument to True. 

819 This is a rather WSRT-specific operation at the moment and may not 

820 work correctly for measurement sets from other telescopes. 

821 

822 One may overwrite the specified output file if it exists by 

823 specifying overwrite=True. 

824 

825 NOTE ON WEIGHTS 

826 

827 If the MS has no WEIGHT_SPECTRUM column, or if it does, but that 

828 column does not contain any data, ms.tofits() will compute the 

829 associated weight it writes to the uvfits file by taking the 

830 associated WEIGHT column value in the MS and dividing it by the 

831 number of channels associated with the spectral window of that 

832 visibility. 

833 

834 

835 Input Parameters: 

836 fitsfile Name of the new uvfits file. 

837 column Data column to write, see above for options. 

838 field Field ids (0-based) or fieldnames to split out. 

839 spw Spectral windows to split. 

840 baseline Antenna names or Antenna indices to select. 

841 time Limit data selected to be within a given time range. Syntax is the defined in the msselection link. 

842 scan Limit data selected on scan numbers. Syntax is the defined in the msselection link. 

843 uvrange Limit data selected on uv distance. Syntax is the defined in the msselection link. 

844 taql For the TAQL experts, flexible data selection using the TAQL syntax. 

845 writesyscal Write GC and TY tables. 

846 multisource Write in multisource format. 

847 combinespw Export spectral windows as IFs. 

848 writestation Write station name instead of antenna name. 

849 padwithflags If combinespw==True, pad data with flags to fit IFs. 

850 overwrite Overwrite output file if it exists? 

851 

852 Example: 

853 

854 ms.open('3C273XC1.MS') 

855 ms.tofits('3C273XC1.fits', column='DATA'); 

856 ms.done() 

857 

858 This example writes the observed data of a measurement set to a 

859 uvfits file. 

860 

861 

862 ms.open('big.ms') 

863 ms.tofits('part.fits', column='CORRECTED', field=[0,1], spw=[2]) 

864 ms.done() 

865 

866 This example writes part (the first two fields and the third spectral 

867 window) of the corrected data to the fits file. 

868 

869 -------------------------------------------------------------------------------- 

870 

871 """ 

872 return _ms.ms_tofits(self, *args, **kwargs) 

873 

874 

875 def listfits(self, *args, **kwargs): 

876 """ 

877 listfits(self, _fitsfile) -> bool 

878 

879 

880 

881 Summary: 

882 

883 

884 Description: 

885 

886 

887 List HDU and typical data rows in a uvfits file 

888 

889 

890 Input Parameters: 

891 fitsfile uvfits file to list. 

892 

893 Example: 

894 

895 ms.listfits('ngc5921.fits') 

896 

897 -------------------------------------------------------------------------------- 

898 

899 """ 

900 return _ms.ms_listfits(self, *args, **kwargs) 

901 

902 

903 def asdmref(self, *args, **kwargs): 

904 """ 

905 asdmref(self, _abspath) -> string 

906 

907 

908 

909 Summary: 

910 Test if the MS was imported with option lazy=True in importasdm and optionally change the ASDM reference.  

911 

912 Description: 

913 

914 

915 If the MS is imported from an ASDM with option lazy=True, the DATA 

916 or FLOAT_DATA column of the MS is virtual and directly reads the 

917 visibilities from the ASDM. A reference to the original ASDM is 

918 stored with the MS. If the ASDM needs to be moved to a different 

919 path, the reference to it in the MS needs to be updated. This can 

920 be achieved with ms.asdmref(). 

921 

922 When called with an empty string (default), the method just reports 

923 the currently set ASDM path. 

924 

925 Return value is a string containing the new path if the path was 

926 successfully set or (in the case abspath was empty) the MS indeed 

927 contains a ASDM reference, i.e. was lazily imported. 

928 

929 If the ASDM does not contain an ASDM reference, the method returns 

930 an empty string. If abspath is not empty and there was an error 

931 setting the new reference, the method throws an exception. 

932 

933 

934 Input Parameters: 

935 abspath New absolute path of the ASDM to be referenced (empty string = report current setting). 

936 

937 Example: 

938 

939 Set the path to the referenced ASDM to 

940 '/home/alma/myanalysis/uid___A12345_X678_X910': 

941 

942 ms.open('uid___A12345_X678_X910.ms',False) 

943 ms.asdmref('/home/alma/myanalysis/uid___A12345_X678_X910') 

944 ms.close() 

945 

946 Test if the MS was imported with lazy=True and therefore references an 

947 ASDM: 

948 

949 ms.open('uid___A12345_X678_X910.ms') 

950 myref = ms.asdmref() 

951 ms.close() 

952 if myref=='': 

953 print 'This MS does not reference an ASDM.' 

954 else: 

955 print 'This MS references the ASDM ', myref 

956 

957 -------------------------------------------------------------------------------- 

958 

959 """ 

960 return _ms.ms_asdmref(self, *args, **kwargs) 

961 

962 

963 def concatenate(self, *args, **kwargs): 

964 """ 

965 concatenate(self, _msfile, _freqtol, _dirtol, _weightscale, _handling, _destmsfile, _respectname) -> bool 

966 

967 

968 

969 Summary: 

970 Concatenate two measurement sets 

971 

972 Description: 

973 

974 

975 This function concatenates two measurement sets together. 

976 

977 The data is copied from the measurement set specified in the 

978 msfile arguement to the end of the measurement set attached to the 

979 ms tool. If a lot of data needs to be copied this function may 

980 take some time. You need to open the measurement set for writing 

981 in order to use this function. 

982 

983 

984 Input Parameters: 

985 msfile The name of the measurement set to append. 

986 freqtol Frequency difference within which 2 spectral windows are considered similar; e.g '10Hz'. 

987 dirtol Direction difference within which 2 fields are considered the same; e.g '1mas'. 

988 weightscale Scale the weights of the MS to be appended by this factor.  

989 handling Switch for the handling of the Main and Pointing tables: 0=standard, 1=no Main, 2=no Pointing, 3=no Main and Pointing, 4=virtual. 

990 destmsfile Optional support for virtual concat: empty table (no subtables) where to store the appended MS copy. 

991 respectname If true, fields with a different name are not merged even if their direction agrees. 

992 

993 Example: 

994 

995 ms.open('3C273XC1.MS', nomodify=False) 

996 ms.concatenate('BLLAC.ms', '1GHz', '1arcsec') 

997 ms.done() 

998 

999 This example appends the data from the BLLAC measurement set to 

1000 the end of the 3C273 measurement set. Its going to assume a 

1001 frequency tolerance of 1GHz and position tolerance of 1 arcsec in 

1002 deciding if the spw and field in the measurementsets are 

1003 similar or not. 

1004 

1005 -------------------------------------------------------------------------------- 

1006 

1007 """ 

1008 return _ms.ms_concatenate(self, *args, **kwargs) 

1009 

1010 

1011 def testconcatenate(self, *args, **kwargs): 

1012 """ 

1013 testconcatenate(self, _msfile, _freqtol, _dirtol, _respectname) -> bool 

1014 

1015 

1016 

1017 Summary: 

1018 Concatenate only the subtables of two measurement sets excluding the POINTING table (resulting MAIN and POINTING table not useful) 

1019 

1020 Description: 

1021 

1022 

1023 This function acts like ms.concatenate() with handling==3 (do not 

1024 concatenate the MAIN and POINTING tables). This is useful for 

1025 generating, e.g., SPECTRAL_WINDOW and FIELD tables which contain 

1026 all used SPW and FIELD ids for a set of MSs without having to 

1027 actually carry out a time-consuming concatenation on disk. The MAIN 

1028 table in the resulting output MS is that of the original MS, i.e. 

1029 it is not touched. 

1030 

1031 

1032 Input Parameters: 

1033 msfile The name of the measurement set from which the subtables should be appended. 

1034 freqtol Frequency difference within which 2 spectral windows are considered similar; e.g '10Hz'. 

1035 dirtol Direction difference within which 2 fields are considered the same; e.g '1mas'. 

1036 respectname If true, fields with a different name are not merged even if their direction agrees. 

1037 

1038 Example: 

1039 

1040 tb.open('3C273XC1.MS') 

1041 tb.copy('TEMP.MS', norows=True) 

1042 tb.close() 

1043 ms.open('TEMP.MS', nomodify=False) 

1044 ms.testconcatenate('3C273XC1.ms', '1GHz', '1arcsec') 

1045 ms.testconcatenate('BLLAC.ms', '1GHz', '1arcsec') 

1046 ms.done() 

1047 

1048 This example makes a copy of the structure of an MS and then 

1049 appends the subtables data from two measurement sets to the empty 

1050 structure. It will assume a frequency tolerance of 1GHz and 

1051 position tolerance of 1 arcsec in deciding if the spw and field in 

1052 the measurementsets are similar or not. 

1053 

1054 -------------------------------------------------------------------------------- 

1055 

1056 """ 

1057 return _ms.ms_testconcatenate(self, *args, **kwargs) 

1058 

1059 

1060 def virtconcatenate(self, *args, **kwargs): 

1061 """ 

1062 virtconcatenate(self, _msfile, _auxfilename, _freqtol, _dirtol, _weightscale, _respectname) -> bool 

1063 

1064 

1065 

1066 Summary: 

1067 Concatenate two measurement sets virtually 

1068 

1069 Description: 

1070 

1071 

1072 This function virtually concatenates two measurement sets together 

1073 such that they can later be turned into a multi-MS with 

1074 createmultims(). 

1075 

1076 You need to open the measurement set for writing in order to use 

1077 this function. 

1078 

1079 

1080 Input Parameters: 

1081 msfile The name of the measurement set to append 

1082 auxfilename The name of a auxiliary file which is needed when more than two MSs are to be concatenated. 

1083 freqtol Frequency difference within which 2 spectral windows are considered similar; e.g '10Hz'. 

1084 dirtol Direction difference within which 2 fields are considered the same; e.g '1mas'. 

1085 weightscale Scale the weights of the MS to be appended by this factor. 

1086 respectname If true, fields with a different name are not merged even if their direction agrees. 

1087 

1088 Example: 

1089 

1090 ms.open('3C273XC1.ms', nomodify=False) 

1091 ms.virtconcatenate('3C273XC1-2.ms', '3Caux.dat', '1GHz', '1arcsec') 

1092 ms.virtconcatenate('3C273XC1-3.ms', '3Caux.dat', '1GHz', '1arcsec') 

1093 ms.close() 

1094 os.remove('3Caux.dat') 

1095 ms.createmultims(concatvis, 

1096 ['3C273XC1.ms','3C273XC1-2.ms','3C273XC1-3.ms'], 

1097 [], 

1098 True, # nomodify 

1099 False,# lock 

1100 True) # copysubtables from first to all other members 

1101 ms.close() 

1102 

1103 This example virtually appends the data from the 3C273XC1-2 and 

1104 3C273XC1-3 to the end of the 3C273XC1 measurement set. Its going to 

1105 assume a frequency tolerance of 1GHz and position tolerance of 1 

1106 arcsec in deciding if the spw and field in the measurementsets are 

1107 similar or not. The file 3Caux.dat which is created in the process 

1108 is no longer needed after the last call to virtconcatenate() and 

1109 can be deleted. 

1110 

1111 -------------------------------------------------------------------------------- 

1112 

1113 """ 

1114 return _ms.ms_virtconcatenate(self, *args, **kwargs) 

1115 

1116 

1117 def createmultims(self, *args, **kwargs): 

1118 """ 

1119 createmultims(self, _outputTableName, _tables, _subtables, _nomodify, _lock, _copysubtables, _omitsubtables) -> bool 

1120 

1121 

1122 

1123 Summary: 

1124 

1125 

1126 Description: 

1127 

1128 

1129 

1130 

1131 Input Parameters: 

1132 outputTableName  

1133 tables  

1134 subtables  

1135 nomodify Prevent changes to the measurement set. 

1136 lock Lock the table for exclusive use by this tool. 

1137 copysubtables Copy the subtables from the first to all other member MSs. 

1138 omitsubtables Omit the subtables from this list when copying subtables. 

1139 

1140 -------------------------------------------------------------------------------- 

1141 

1142 """ 

1143 return _ms.ms_createmultims(self, *args, **kwargs) 

1144 

1145 

1146 def ismultims(self): 

1147 """ 

1148 ismultims(self) -> bool 

1149 

1150 

1151 

1152 Summary: 

1153 

1154 

1155 Description: 

1156 

1157 

1158 

1159 

1160 -------------------------------------------------------------------------------- 

1161 

1162 """ 

1163 return _ms.ms_ismultims(self) 

1164 

1165 

1166 def split(self, *args, **kwargs): 

1167 """ 

1168 split(self, _outputms, _field, _spw, _step, _baseline, _timebin, _time, _scan, _uvrange, _taql, _whichcol, _tileshape, _subarray, _combine, _correlation, _intent, _obs) -> bool 

1169 

1170 

1171 

1172 Summary: 

1173 make a new ms from a subset of an existing ms, adjusting subtables and indices 

1174 

1175 Description: 

1176 

1177 

1178 This function splits out part of the MS into a new MS. Time and 

1179 channel averaging can be performed in the process (but not in 

1180 the same call). 

1181 

1182 When splitting multiple spectral windows, the parameters nchan, 

1183 start, and step can be vectors, so that each spectral window has 

1184 its own selection on averaging and number of output channels. But 

1185 the option of using only one value for each of these parameters 

1186 means that it will be replicated for all the spectral windows 

1187 selected. 

1188 

1189 

1190 Input Parameters: 

1191 outputms The name of the resulting measurement set 

1192 field Fields to include, by names or 0-based ids. ('' => all). 

1193 spw Spectral windows (and :channels) to select. 

1194 step Number of input per output channels - Int vector of length 1 or same as spw. 

1195 baseline Antenna names or indices to select ('' => all). 

1196 timebin Duration for averaging. Defaults to no averaging. 

1197 time Only use data in the given time range, using the msselection syntax. 

1198 scan Only use the scan numbers requested using the msselection syntax. 

1199 uvrange Limit data by uv distance using the msselection syntax. 

1200 taql For the TAQL experts, flexible data selection using the TAQL syntax 

1201 whichcol 'DATA', 'MODEL_DATA', 'CORRECTED_DATA', 'FLOAT_DATA', 'LAG_DATA', and/or 'all'. 

1202 tileshape Tile shape of the disk data columns, most users should not need to touch this parameter. [0] => normal tiling, [1] => fast mosaic style tile, [4,15,351] => a tile shape of 4 pol 15 chan and 351 rows 

1203 subarray Limit data to specific (sub)array numbers. 

1204 combine Ignore changes in these columns (scan, and/or state) when time averaging. 

1205 correlation Limit data to specific correlations (LL, XX, LR, XY, etc.). 

1206 intent Only use the requested scan intents. 

1207 obs Only use the requested observation IDs. 

1208 

1209 Example: 

1210 

1211 ms.open('multiwin.ms') 

1212 ms.split('subms.ms', field=[0], spw=[0], nchan=[10], 

1213 start=[0], step=[5], whichcol='CORRECTED_DATA') 

1214 

1215 In this example we split out data from the first field and first 

1216 spectral window. The output data will have 10 channels which is 

1217 taken from 50 channels from the input data starting at channel 0 

1218 and averaging every 5. 

1219 

1220 ms.open('multiwin.ms') 

1221 ms.split('subms.ms', field=[0], spw=[0,1,2,3], nchan=[10], 

1222 start=[0], step=[5], whichcol='CORRECTED_DATA') 

1223 

1224 In this example we split out data from the 1st field and four 

1225 spectral windows. The output data will have 4 spectral windows each 

1226 of 10 channels which is taken from 50 channels from the input data 

1227 starting at channel 0 and averaging every 5. 

1228 

1229 ms.open('multiwin.ms') 

1230 ms.split('subms.ms', field=[0], spw=[0,1,2,3], 

1231 nchan=[10,10,30,40], start=[0,4,9,9], step=[1,10,5,2], 

1232 whichcol='CORRECTED_DATA') 

1233 

1234 In this example we split out data from the 1st field and four 

1235 spectral windows. There will be four spectral windows in the output 

1236 data, with 10, 10, 30 and 40 channels respectively. These are 

1237 averages of the input spectral windows. The first output spectral 

1238 window will be formed by picking 10 channels, starting at 0 with no 

1239 averaging, of the input spwid 0. The second output spectral window 

1240 will consists of 10 channels and is formed by picking 100 channels 

1241 from spwid 1 of the input data, starting at channel 4, and every 

1242 10 channels to make one output channel. 

1243 

1244 ms.open('WSRT.ms') 

1245 ms.split('subms.ms', timebin='20s', whichcol='all', 

1246 combine='scan') 

1247 ms.close() 

1248 

1249 This example averages a WSRT MS into 20s bins, selecting whichever 

1250 of DATA, MODEL_DATA, CORRECTED_DATA, or FLOAT_DATA, or LAG_DATA is 

1251 present. Normally the bins would not cross scans, but in this MS 

1252 the scan number goes up with each integration, making it redundant 

1253 enough with time that it would defeat any time averaging. 

1254 Therefore the combine parameter forces the SCAN column to be 

1255 ignored for setting the bins. 

1256 

1257 -------------------------------------------------------------------------------- 

1258 

1259 """ 

1260 return _ms.ms_split(self, *args, **kwargs) 

1261 

1262 

1263 def partition(self, *args, **kwargs): 

1264 """ 

1265 partition(self, _outputms, _field, _spw, _baseline, _timebin, _time, _scan, _uvrange, _taql, _whichcol, _tileshape, _subarray, _combine, _intent, _obs) -> bool 

1266 

1267 

1268 

1269 Summary: 

1270 make a new ms from a subset of an existing ms, without changing any subtables 

1271 

1272 Description: 

1273 

1274 

1275 This function splits out part of the MS into a new MS. Time 

1276 averaging can be performed in the process. Unlike split, the 

1277 subtables and IDs (ANTENNA1, DATA_DESCRIPTION_ID, etc.) are never 

1278 changed to account for the selection. 

1279 

1280 As a side effect of that property, partition cannot select by 

1281 channel or correlation, or average channels. It CAN select by 

1282 spectral window(s). 

1283 

1284 

1285 Input Parameters: 

1286 outputms The name of the resulting measurement set. 

1287 field Fields to include, by names or 0-based ids. ('' => all). 

1288 spw Spectral windows (and :channels) to select. 

1289 baseline Antenna names or indices to select ('' => all). 

1290 timebin Duration for averaging. Defaults to no averaging. 

1291 time Only use data in the given time range, using the msselection syntax. 

1292 scan Only use the scan numbers requested using the msselection syntax. 

1293 uvrange Limit data by uv distance using the msselection syntax. 

1294 taql For the TAQL experts, flexible data selection using the TAQL syntax. 

1295 whichcol 'DATA', 'MODEL_DATA', 'CORRECTED_DATA', 'FLOAT_DATA', 'LAG_DATA', and/or 'all'. 

1296 tileshape Tile shape of the disk data columns, most users should not need to touch this parameter [0] => normal tiling, [1] => fast mosaic style tile, [4,15,351] => a tile shape of 4 pol 15 chan and 351 rows. 

1297 subarray Limit data to specific (sub)array numbers. 

1298 combine Ignore changes in these columns (scan, and/or state) when time averaging. 

1299 intent Only use the requested scan intents. 

1300 obs Only use the requested observation IDs. 

1301 

1302 Example: 

1303 

1304 ms.open('multiwin.ms') 

1305 ms.partition('partition.ms', field=[0], spw=[1], 

1306 whichcol='CORRECTED_DATA') 

1307 

1308 In this example we partition out data from the first field and 

1309 second spectral window. Only the CORRECTED_DATA data column will 

1310 be copied, and it will be written to the DATA column of 

1311 partition.ms. 

1312 

1313 ms.open('multiwin.ms') 

1314 ms.partition('partition.ms', field=[0], spw=[0,1,2,3], 

1315 whichcol='CORRECTED_DATA') 

1316 

1317 In this example we partition out calibrated data from the first field 

1318 and four spectral windows. 

1319 

1320 ms.open('WSRT.ms') 

1321 ms.partition('partition.ms', timebin='20s', whichcol='all', 

1322 combine='scan') 

1323 ms.close() 

1324 

1325 This example averages a WSRT MS into 20s bins, selecting whichever 

1326 of DATA, MODEL_DATA, CORRECTED_DATA, or FLOAT_DATA, or LAG_DATA is 

1327 present. Normally the bins would not cross scans, but in this MS 

1328 the scan number goes up with each integration, making it redundant 

1329 enough with time that it would defeat any time averaging. Therefore 

1330 combine parameter forces the SCAN column to be ignored for setting 

1331 the bins. 

1332 

1333 -------------------------------------------------------------------------------- 

1334 

1335 """ 

1336 return _ms.ms_partition(self, *args, **kwargs) 

1337 

1338 

1339 def summary(self, *args, **kwargs): 

1340 """ 

1341 summary(self, _verbose, _listfile, _listunfl, _cachesize, _overwrite, _wantreturn) -> record * 

1342 

1343 

1344 

1345 Summary: 

1346 (PARTIALLY IMPLEMENTED!!!) Summarize the measurement set 

1347 

1348 Description: 

1349 

1350 

1351 This method will print a summary of the measurement set to the 

1352 system logger. The verbose argument provides some control on how 

1353 much information is displayed. 

1354 

1355 For especially large datasets, the cachesize parameter can be 

1356 increased for possibly better performance. 

1357 

1358 This method can also return, in the header argument, a record 

1359 containing the following fields: 

1360 1. nrow Number of rows in the measurement set 

1361 2. name Name of the measurement set 

1362 

1363 DESCRIPTION OF ALGORITHM TO CALCULATE THE NUMBER OF UNFLAGGED ROWS 

1364 

1365 The number of unflagged rows will only be computed if listunflis 

1366 True. The number of unflagged rows (the nUnflRows columns in the 

1367 scans and fields portions of the listing) is calculated by summing 

1368 the fractional unflagged bandwidth for each row (and hence why the 

1369 number of unflagged rows, in general, is not an integer). Thus a 

1370 row which has half of its total bandwidth flagged contributes 0.5 

1371 rows to the unflagged row count. A row with 20 of 32 channels of 

1372 homogeneous width contributes 20/32 = 0.625 rows to the unflagged 

1373 row count. A row with a value of False in the FLAG_ROW column is 

1374 not counted in the number of unflagged rows. 

1375 

1376 

1377 Input Parameters: 

1378 verbose Produce verbose logging output. 

1379 listfile Output file. 

1380 listunfl List unflagged row counts? If true, it can have significant negative performance impact. 

1381 cachesize EXPERIMENTAL. Maximum size in megabytes of cache in which data structures can be held. 

1382 overwrite If True, tacitly overwrite listfile if it exists. 

1383 wantreturn If true, construct a record containing summary info and return it, else return nothing. If you don't need the record and just want the log output, setting this to False will provide a small performance increase. 

1384 

1385 Example: 

1386 

1387 ms.open('3C273XC1.MS') 

1388 outr=ms.summary(verbose=True) 

1389 ###print the begining of observation in this ms 

1390 print qa.time(qa.quantity(outr['header']['BeginTime'],'d'), 

1391 form='ymd') 

1392 ###print a dictionary of the info of scan 1 

1393 outr['header']['scan_1'] 

1394 

1395 This example will send a verbose summary of the measurement set to 

1396 the logger. 

1397 

1398 -------------------------------------------------------------------------------- 

1399 

1400 """ 

1401 return _ms.ms_summary(self, *args, **kwargs) 

1402 

1403 

1404 def getscansummary(self): 

1405 """ 

1406 getscansummary(self) -> record * 

1407 

1408 

1409 

1410 Summary: 

1411 Get the summary of the ms 

1412 

1413 Description: 

1414 

1415 

1416 This function will return a summary of the main table as a 

1417 structure 

1418 

1419 

1420 Example: 

1421 

1422 ms.open('3C273XC1.MS') 

1423 scanInfo = ms.getscansummary() 

1424 

1425 -------------------------------------------------------------------------------- 

1426 

1427 """ 

1428 return _ms.ms_getscansummary(self) 

1429 

1430 

1431 def getspectralwindowinfo(self): 

1432 """ 

1433 getspectralwindowinfo(self) -> record * 

1434 

1435 

1436 

1437 Summary: 

1438 Get a summary of the spectral windows 

1439 

1440 Description: 

1441 

1442 

1443 This method will get a summary of the spectral window actually 

1444 used in this ms. To be precise those reference by the data 

1445 description table. 

1446 

1447 

1448 Example: 

1449 

1450 ms.open('3C273XC1.MS') 

1451 spwInfo = ms.getspectralwindowinfo() 

1452 

1453 -------------------------------------------------------------------------------- 

1454 

1455 """ 

1456 return _ms.ms_getspectralwindowinfo(self) 

1457 

1458 

1459 def getreferencedtables(self): 

1460 """ 

1461 getreferencedtables(self) -> std::vector< std::string > 

1462 

1463 

1464 

1465 Summary: 

1466 

1467 

1468 Description: 

1469 

1470 

1471 

1472 

1473 -------------------------------------------------------------------------------- 

1474 

1475 """ 

1476 return _ms.ms_getreferencedtables(self) 

1477 

1478 

1479 def getfielddirmeas(self, *args, **kwargs): 

1480 """ 

1481 getfielddirmeas(self, _dircolname, _fieldid, _time, _format) -> variant * 

1482 

1483 

1484 

1485 Summary: 

1486 Returns the direction measure from the given FIELD table column and row 

1487 

1488 Description: 

1489 

1490 

1491 This function returns the direction measures from the given 

1492 direction column of the MS FIELD table as a either a measure 

1493 dictionary or sexigesimal string representation. 

1494 If there is an ephemeris attached, this will give you the time dependent 

1495 direction for the given direction column including the offset which each 

1496 field may have to the ephemeris it is referencing. You can use the value 

1497 'EPHEMERIS_DIR' for parameter 'dircolname' to access the unaltered ephemeris 

1498 direction without any potential mosaic offsets. 

1499 

1500 

1501 Input Parameters: 

1502 dircolname Name of the direction column in the FIELD table or 'EPHEMERIS_DIR'. 

1503 fieldid Field ID, starting at 0. 

1504 time (optional) Time for ephemeris access (in seconds, as in Main table TIME column). 

1505 format Output format. Either 'measure' (measure dictionary) or 'string' (sexigesimal representation). Minimum match supported. 

1506 

1507 Example: 

1508 

1509 ms.open('3C273XC1.MS') 

1510 print 'Delay direction from FIELD table row 3 =', ms.getfielddirmeas('DELAY_DIR', 3) 

1511 

1512 print 'Phase direction from ephemeris FIELD table row 4 for time = 5019988459.968 s', ms.getfielddirmeas('PHASE_DIR', 4, 5019988459.968) 

1513 

1514 -------------------------------------------------------------------------------- 

1515 

1516 """ 

1517 return _ms.ms_getfielddirmeas(self, *args, **kwargs) 

1518 

1519 

1520 def listhistory(self): 

1521 """ 

1522 listhistory(self) -> bool 

1523 

1524 

1525 

1526 Summary: 

1527 List history of the measurement set 

1528 

1529 Description: 

1530 

1531 

1532 This function lists the contents of the measurement set history 

1533 table. 

1534 

1535 

1536 Example: 

1537 

1538 ms.open('3C273XC1.MS') 

1539 ms.listhistory() 

1540 

1541 The history table contents are listed in the logger. 

1542 

1543 -------------------------------------------------------------------------------- 

1544 

1545 """ 

1546 return _ms.ms_listhistory(self) 

1547 

1548 

1549 def writehistory(self, *args, **kwargs): 

1550 """ 

1551 writehistory(self, _message, _parms, _origin, _msname, _app) -> bool 

1552 

1553 

1554 

1555 Summary: 

1556 Add a row of arbitrary information to the measurement set history table 

1557 

1558 Description: 

1559 

1560 

1561 This function adds a row to the history table of the specified 

1562 measurement set containing any message that the user wishes to 

1563 record. By default the history entry is written to the history 

1564 table of the measurement set that is currently open, the message 

1565 origin is recorded as 'MSHistoryHandler::addMessage()', the 

1566 originating application is 'ms' and the input parameters field is 

1567 empty. 

1568 

1569 

1570 Input Parameters: 

1571 message Message to be recorded in message field. 

1572 parms String to be written to input parameter field. 

1573 origin String to be written to origin field.  

1574 msname Name of selected measurement set. 

1575 app String to be written to application field. 

1576 

1577 Example: 

1578 

1579 ms.open('3C273XC1.MS') 

1580 ms.writehistory('an arbitrary history message') 

1581 ms.listhistory() 

1582 

1583 A row is appended to the measurement set history table. 

1584 

1585 -------------------------------------------------------------------------------- 

1586 

1587 """ 

1588 return _ms.ms_writehistory(self, *args, **kwargs) 

1589 

1590 

1591 def writehistory_batch(self, *args, **kwargs): 

1592 """ 

1593 writehistory_batch(self, _messages, _parms, _origin, _msname, _app) -> bool 

1594 

1595 

1596 

1597 Summary: 

1598 Add one or more rows of arbitrary information to the measurement set history table 

1599 

1600 Description: 

1601 

1602 

1603 This function works as writehistory but adds a list of messages to 

1604 the history table, instead of a single message. Each message is written 

1605 into in a new row. It is recommended for efficiency, as adding rows one 

1606 at a time can be rather slow, causing for example a delay of the order 

1607 of 10-30 seconds when writing the history at the end of a normal flagdata 

1608 command (with 70+ parameter rows). 

1609 

1610 

1611 Input Parameters: 

1612 messages Message to be recorded in message field. 

1613 parms String to be written to input parameter field. 

1614 origin String to be written to origin field.  

1615 msname Name of selected measurement set. 

1616 app String to be written to application field. 

1617 

1618 Example: 

1619 

1620 ms.open('3C273XC1.MS') 

1621 ms.writehistory_batch(['message 1', 'message 2', 'message 3']) 

1622 ms.listhistory() 

1623 

1624 One or more rows are appended to the measurement set history table. 

1625 

1626 -------------------------------------------------------------------------------- 

1627 

1628 """ 

1629 return _ms.ms_writehistory_batch(self, *args, **kwargs) 

1630 

1631 

1632 def statistics(self, *args, **kwargs): 

1633 """ 

1634 statistics(self, _column, _complex_value, _useflags, _useweights, _spw, _field, _baseline, _uvrange, _time, _correlation, _scan, _intent, _array, _obs, _reportingaxes, _timeaverage, _timebin, _timespan, _maxuvwdistance, _doquantiles) -> record * 

1635 

1636 

1637 

1638 Summary: 

1639 Get statistics on the selected measurement set  

1640 

1641 Description: 

1642 

1643 

1644 This function computes descriptive statistics on the measurement 

1645 set. It returns the statistical values as a python dictionary. The 

1646 given column name must be a numerical column. If it is a complex 

1647 valued column, the parameter complex_value defines which derived 

1648 real value is used for the statistics computation. 

1649 

1650 

1651 Input Parameters: 

1652 column Column name 

1653 complex_value Which derived value to use for complex columns (amp, amplitude, phase, imag, real, imaginary)  

1654 useflags Use the data flags. 

1655 useweights Use the data weights. 

1656 spw Spectral Window Indices or names. Example : '1,2'  

1657 field Field indices or source names. Example : '2,3C48'  

1658 baseline Baseline number(s). Example: '2&3;4&5'  

1659 uvrange UV-distance range, with a unit. Example : '2.0-3000.0 m'  

1660 time Time range, as MJDs or date strings. Example : 'xx.x.x.x.x~yy.y.y.y.y'  

1661 correlation Correlations/polarizations. Example : 'RR,LL,RL,LR,XX,YY,XY,YX'  

1662 scan Scan number. Example : '1,2,3'  

1663 intent Scan intents. Example : '*AMPL*,*PHASE*'  

1664 array Array Indices or names. Example : 'VLAA'  

1665 obs Observation ID(s). Examples : '' or '1~3'  

1666 reportingaxes Statistics reporting axes. Example: 'ddid,field'  

1667 timeaverage Average data in time. 

1668 timebin Time averaging interval. 

1669 timespan Boundaries to ignore in time averaging. Example: 'scan,state'  

1670 maxuvwdistance Maximum separation of start-to-end baselines that can be included in an average. (meters)  

1671 doquantiles If False, quantile-like statistics are not computed. These include the first and third quartiles, the median, and the median of the absolute deviation from the median.  

1672 

1673 Example: 

1674 

1675 ms.open('3C273XC1.MS') 

1676 ms.statistics(column='DATA', complex_value='amp', field='2') 

1677 

1678 -------------------------------------------------------------------------------- 

1679 

1680 """ 

1681 return _ms.ms_statistics(self, *args, **kwargs) 

1682 

1683 

1684 def statisticsold(self, *args, **kwargs): 

1685 """ 

1686 statisticsold(self, _column, _complex_value, _useflags, _spw, _field, _baseline, _uvrange, _time, _correlation, _scan, _array, _obs) -> record * 

1687 

1688 

1689 

1690 Summary: 

1691 Get statistics on the selected measurement set 

1692 

1693 Description: 

1694 

1695 

1696 DEPRECATED: Please use the ms::statistics() function in place of 

1697 ms::statisticsold(). 

1698 

1699 This function computes descriptive statistics on the measurement 

1700 set. It returns the statistical values as a python dictionary. The 

1701 given column name must be a numerical column. If it is a complex 

1702 valued column, the parameter complex_value defines which derived 

1703 real value is used for the statistics computation. 

1704 

1705 

1706 Input Parameters: 

1707 column Column name. 

1708 complex_value Which derived value to use for complex columns (amp, amplitude, phase, imag, real, imaginary). 

1709 useflags Use the data flags. 

1710 spw Spectral Window Indices or names. Example : '1,2' 

1711 field Field indices or source names. Example : '2,3C48' 

1712 baseline Baseline number(s). Example: '2&3;4&5' 

1713 uvrange UV-distance range, with a unit. Example : '2.0-3000.0 m'  

1714 time Time range, as MJDs or date strings. Example : 'xx.x.x.x.x~yy.y.y.y.y' 

1715 correlation Correlations/polarizations. Example : 'RR,LL,RL,LR,XX,YY,XY,YX' 

1716 scan Scan number. Example : '1,2,3' 

1717 array Array Indices or names. Example : 'VLAA' 

1718 obs Observation ID(s). Examples : '' or '1~3' 

1719 

1720 Example: 

1721 

1722 ms.open('3C273XC1.MS') 

1723 ms.statisticsold(column='DATA', complex_value='amp', field='2') 

1724 

1725 -------------------------------------------------------------------------------- 

1726 

1727 """ 

1728 return _ms.ms_statisticsold(self, *args, **kwargs) 

1729 

1730 

1731 def range(self, *args, **kwargs): 

1732 """ 

1733 range(self, _items, _useflags, _blocksize) -> record * 

1734 

1735 

1736 

1737 Summary: 

1738 Get the range of values in the measurement set.  

1739 

1740 Description: 

1741 

1742 

1743 This function returns the range of values in the currently 

1744 selected measurement set for the items specified. 

1745 

1746 Possible items include 'amplitude', 'corrected_amplitude', 

1747 'model_amplitude', 'antenna1', 'antenna2', 'antennas', 

1748 'array_id', 'chan_freq', 'corr_names', 'corr_types', 'feed1', 

1749 'feed2', 'field_id', 'fields', 'float_data', 'ifr_number' 

1750 (1000*antenna1 + antenna2), 'imaginary', 'corrected_imaginary', 

1751 'model_imaginary', 'num_corr', 'num_chan', 'phase', 

1752 'corrected_phase', 'model_phase', 'phase_dir', 'real', 

1753 'corrected_real', 'model_real', 'ref_frequency', 'rows', 

1754 'scan_number', 'sigma', 'data_desc_id', 'time', 'times', 'u', 

1755 'v', 'w', 'uvdist', and 'weight'. Note that corrected, model, 

1756 and float versions are available only if these columns are 

1757 present in the data. 

1758 

1759 You specify items in which you are interested using a string 

1760 vector where each element is a case insensitive item name. This 

1761 function will then return a record that has fields corresponding 

1762 to each of the specified items. Each field will contain the 

1763 range of the specified item. For many items the range will be 

1764 the minimum and maximum values but for some it will be a list of 

1765 unique values. Unrecognized items are ignored. 

1766 

1767 By default the FLAG column is used to exclude flagged data 

1768 before any ranges are determined, but you can set useflags=False 

1769 to include flagged data in the range. However, if you average 

1770 in frequency, flagging will still be applied. 

1771 

1772 You can influence the memory use and the reading speed using 

1773 the blocksize argument - it specifies how big a block of data 

1774 to read at once (in MB). For large datasets on machines with 

1775 lots of memory you may speed things up by setting this higher 

1776 than the default (10 MB). 

1777 

1778 For some items, you need to call selectinit to select a portion 

1779 of the data with a unique shape prior to calling this function. 

1780 

1781 Items prefixed with corrected, model, residual or obs_residual 

1782 are not available unless your measurement set has been processed 

1783 either with the imager or calibrator tools. 

1784 

1785 

1786 Input Parameters: 

1787 items Item names. 

1788 useflags Use the data flags. 

1789 blocksize Set the blocksize in MB. 

1790 

1791 Example: 

1792 

1793 ms.open('3C273XC1.MS') 

1794 ms.selectinit(datadescid=0) 

1795 ms.range(['time','uvdist','amplitude','antenna1']) 

1796 #{'amplitude': array([ 2.60339398e-02, 3.38518333e+01]), 

1797 # 'antenna1': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 

1798 # 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

1799 # 26]), 

1800 # 'time': array([ 4.12162940e+09, 4.12164267e+09]), 

1801 # 'uvdist': array([ 46.26912101, 3727.97385983])} 

1802 

1803 In this example the minimum and maximum observation times, 

1804 uvdistances, data amplitudes are returned as well as a list of 

1805 all the antennas in the antenna1 column. 

1806 

1807 For this dataset the selectinit function did not need to be 

1808 called as all the data is of one shape. 

1809 

1810 -------------------------------------------------------------------------------- 

1811 

1812 """ 

1813 return _ms.ms_range(self, *args, **kwargs) 

1814 

1815 

1816 def lister(self, *args, **kwargs): 

1817 """ 

1818 lister(self, _options, _datacolumn, _field, _spw, _antenna, _timerange, _correlation, _scan, _feed, _array, _observation, _uvrange, _average, _showflags, _msselect, _pagerows, _listfile) -> bool 

1819 

1820 

1821 

1822 Summary: 

1823 List measurement set visibilities 

1824 

1825 Description: 

1826 

1827 

1828 This tool lists measurement set visibility data under a number of 

1829 input selection conditions. The measurement set data columns that 

1830 can be listed are: the raw data, corrected data, model data, and 

1831 residual (corrected - model) data. 

1832 

1833 The output table format is dynamic. Field, Spectral Window, and 

1834 Channel columns are not displayed if the column contents are 

1835 uniform. For example, if ``spw = `1' '' is specified, the spw 

1836 column will not be displayed. When a column is not displayed, a 

1837 message is sent to the logger and terminal indicating that the 

1838 column values are uniform and listing the uniform value. 

1839 

1840 Table column descriptions: 

1841 

1842 Date/Time Average date and time of data sample interval 

1843 Intrf Interferometer baseline (antenna names) 

1844 UVDist uv-distance (units of wavelength) 

1845 Fld Field ID 

1846 SpW Spectral Window ID 

1847 Chn Channel number 

1848 Correlated polarization Correlated polarizations (eg: RR, LL, XY) 

1849 

1850 Sub-columns: 

1851 

1852 Amp Visibility amplitude 

1853 Phs Visibility phase 

1854 Wt Weight of visibility measurement 

1855 F Flag: `F' = flagged datum; ` ' = unflagged 

1856 

1857 

1858 Input Parameters: 

1859 options Output options (not yet implemented) 

1860 datacolumn Column to list: data, model, corrected, residual 

1861 field Fields 

1862 spw Spectral Windows 

1863 antenna Antenna/Baselines 

1864 timerange Time range 

1865 correlation Polarization correlations 

1866 scan Scan 

1867 feed Feed (not yet implemented) 

1868 array Array 

1869 observation Select by observation ID(s) 

1870 uvrange uv-distance (output units: wavelength) 

1871 average Average mode (not yet implemented) 

1872 showflags Showflags (not yet implemented) 

1873 msselect TaQL expression 

1874 pagerows Rows per page 

1875 listfile Output file 

1876 

1877 Example: 

1878 

1879 ms.open('AZ136.ms') 

1880 ms.lister() 

1881 

1882 These commands yield the following listing: 

1883 

1884 Date/Time: RR: RL: LR: LL: 

1885 2001/12/01/ Intrf UVDist Fld SpW Amp Phs Wt F Amp Phs Wt F Amp Phs Wt F Amp Phs Wt F 

1886 ------------|-----|------|---|---|-------------------------|------------------------|------------------------|------------------------ 

1887 19:30:05.0 0- 1 1400 0 0: 0.002-102.7 229035 F 0.003-178.3 239694 F 0.001 136.0 208264 F 0.001 -79.7 263599 F 

1888 19:30:05.0 0- 2 7203 0 0: 0.002 127.3 267464 F 0.001 165.0 305192 F 0.003-118.2 265174 F 0.002 16.3 307829 F 

1889 19:30:05.0 0- 3 9621 0 0: 0.002 -55.9 179652 F 0.002 -27.1 230130 F 0.001 -94.9 199954 F 0.003 -89.3 206764 F 

1890 19:30:05.0 0- 4 1656 0 0: 0.001 133.3 199677 F 0.002 80.6 258140 F 0.001 -35.1 224291 F 0.003 23.9 229812 F 

1891 19:30:05.0 0- 5 3084 0 0: 0.002 -18.4 197565 F 0.001 -83.1 228541 F 0.002 -85.1 198574 F 0.002 -28.5 227381 F 

1892 19:30:05.0 0- 6 5020 0 0: 0.001-173.2 236475 F 0.002-104.0 257575 F 0.000 0.0 223800 F 0.000-142.5 272162 F 

1893 19:30:05.0 0- 7 12266 0 0: 0.003 -34.6 264977 F 0.002 5.3 280113 F 0.001-152.7 243383 F 0.002 -78.8 304966 F 

1894 . 

1895 . 

1896 . 

1897 

1898 Notice that the channel column is not displayed. This measurement 

1899 set contains only one channel; since the channel column values are 

1900 uniform, the channel column is not displayed. Instead, message 

1901 'All selected data has CHANNEL = 0' is sent to the console. 

1902 

1903 -------------------------------------------------------------------------------- 

1904 

1905 """ 

1906 return _ms.ms_lister(self, *args, **kwargs) 

1907 

1908 

1909 def metadata(self, *args, **kwargs): 

1910 """ 

1911 metadata(self, _cachesize) -> casac::msmetadata * 

1912 

1913 

1914 

1915 Summary: 

1916 Get the MS metadata associated with this MS. 

1917 

1918 Description: 

1919 

1920 Get the MS metadata associated with this MS. 

1921 

1922 Input Parameters: 

1923 cachesize Maximum cache size, in megabytes, to use. 

1924 

1925 Example: 

1926 

1927 # get the number of spectral windows in the specified MS 

1928 ms.open'my.ms') 

1929 metadata = ms.metadata() 

1930 ms.done() 

1931 nspw = metadata.nspw() 

1932 metadata.done() 

1933 

1934 -------------------------------------------------------------------------------- 

1935 

1936 """ 

1937 return _ms.ms_metadata(self, *args, **kwargs) 

1938 

1939 

1940 def msselect(self, *args, **kwargs): 

1941 """ 

1942 msselect(self, _items, _onlyparse) -> bool 

1943 

1944 

1945 

1946 Summary: 

1947 Use the MSSelection module for data selection. 

1948 

1949 Description: 

1950 

1951 

1952 A return value of True implies that the combination of all 

1953 selection expressions resulted in a non-Null combined TaQL 

1954 expression. False implies that the combined TaQL could not be 

1955 formed (i.e. it is Null, and the 'selected MS' will be the same as 

1956 the input MS). 

1957 

1958 The details of selection expressions are desribed in the 

1959 MSSelection Memo. 

1960 

1961 Note that this function can be called multiple times but the 

1962 result is cumulative. Each selection will work on the data 

1963 already selected from all previous calls of this function. Use 

1964 the function reset() to reset all selections to NULL (original 

1965 dataset). 

1966 

1967 

1968 Input Parameters: 

1969 items Record with fields contain the selection expressions. Keys recognized in the record are: 'spw', 'time', 'field', 'baseline', 'scan', 'scanintent', 'polarization', 'observation', 'array', 'uvdist' and 'taql'.  

1970 onlyparse If set to True, expressions will only be parsed but not applied to the MS for selection. When set to False, a selected MS will also be generated internally. Default is False. When only parsing is requested, the selected-MS is the same as the original MS.  

1971 

1972 Example: 

1973 

1974 staql={'field':'3C286', 'spw':'0~7:10~55'}; 

1975 ms.open(MSNAME); 

1976 # For only getting the list of indices 

1977 # corresponding to the selection, onlyparse=True 

1978 ms.msselect(staql, onlyparse=True); 

1979 ndx=ms.msselectedindices(); 

1980 ndx['field'] 

1981 Out[5]: array([1], dtype=int32) 

1982 : 

1983 : 

1984 ms.msselect(staql); # To do the actual selection. 

1985 # From this point on, the ms-tool is attached to the selected MS. 

1986 

1987 -------------------------------------------------------------------------------- 

1988 

1989 """ 

1990 return _ms.ms_msselect(self, *args, **kwargs) 

1991 

1992 

1993 def msselectedindices(self): 

1994 """ 

1995 msselectedindices(self) -> record * 

1996 

1997 

1998 

1999 Summary: 

2000 Return the selected indices of the MS database. The keys in the record are the same as those used in msselect function (i.e. 'spw', 'time', 'field', 'baseline', 'scan', 'scanintent', 'polarization' and 'uvdist').  

2001 

2002 Description: 

2003 

2004 

2005 The return indices are the result of parsing the MSSelection 

2006 expressions provided in the msselect function. 

2007 

2008 

2009 -------------------------------------------------------------------------------- 

2010 

2011 """ 

2012 return _ms.ms_msselectedindices(self) 

2013 

2014 

2015 def msseltoindex(self, *args, **kwargs): 

2016 """ 

2017 msseltoindex(self, _vis, _spw, _field, _baseline, _time, _scan, _uvrange, _observation, _polarization, _taql) -> record * 

2018 

2019 

2020 

2021 Summary: 

2022 Returns ids of the selection used. 

2023 

2024 Description: 

2025 

2026 

2027 Utility function that will return the ids of the selection used. 

2028 

2029 

2030 Input Parameters: 

2031 vis Measurementset for which this selection applies. 

2032 spw Spectral Window Ids (0 relative) to select; -1 interpreted as all. 

2033 field Field Ids (0 relative) or Field names (msselection syntax and wilcards are used) to select. 

2034 baseline Antenna Ids (0 relative) or Antenna names (msselection syntax and wilcards are used) to select. 

2035 time Limit data selected to be within a given time range. Syntax is the defined in the msselection link. 

2036 scan Limit data selected on scan numbers. Syntax is the defined in the msselection link. 

2037 uvrange Limit data selected on uv distance. Syntax is the defined in the msselection link. 

2038 observation Select data by observation ID(s). The syntax is the same as for scan numbers. 

2039 polarization Select data by polarization(s). 

2040 taql For the TAQL experts, flexible data selection using the TAQL syntax. 

2041 

2042 Example: 

2043 

2044 a= ms.msseltoindex(vis='3C273XC1.MS', field='3C*') 

2045 print a['field'] 

2046 # [0] 

2047 print a 

2048 #{'antenna1': array([], dtype=int32), 

2049 # 'antenna2': array([], dtype=int32), 

2050 # 'channel': array([], shape=(0, 0), dtype=int32), 

2051 # 'field': array([0]), 

2052 # 'scan': array([], dtype=int32), 

2053 # 'spw': array([], dtype=int32), 

2054 # 'obsids': array([], dtype=int32)} 

2055 

2056 Field name '3C*', in this case 3C273, corresponds to field id 0. 

2057 

2058 N.B.: The return values of unspecified fields (like antenna* and 

2059 spw in the above example) will be left empty - this does not mean 

2060 that selection excludes all antennas! 

2061 

2062 Some fields (like 'field') are checked against the subtables of 

2063 vis, but others are not. For example, field='123~132' will 

2064 produce an error if vis does not have fields 123 to 132, but for 

2065 scan and obsids '123~132' would just return an array of integers 

2066 from 123 to 132 regardless of whether vis has those scan or 

2067 observation IDs. (The difference comes from it being quicker to 

2068 check a subtable than the main table.) 

2069 

2070 -------------------------------------------------------------------------------- 

2071 

2072 """ 

2073 return _ms.ms_msseltoindex(self, *args, **kwargs) 

2074 

2075 

2076 def selectinit(self, *args, **kwargs): 

2077 """ 

2078 selectinit(self, _datadescid, _reset) -> bool 

2079 

2080 

2081 

2082 Summary: 

2083 Initialize the selection of an ms  

2084 

2085 Description: 

2086 

2087 

2088 A measurement set can contain data with a variety of different 

2089 shapes (as described in the overall description to this tool). To 

2090 allow functions to return data in fixed shape arrays you need to 

2091 select, using this function, rows that contain the same data shape. 

2092 You do not need to use this function if all the data in your 

2093 measurement set has only one shape. 

2094 

2095 The DATA_DESC_ID column in the measurement set contains a value 

2096 that maps to a particular row in the POLARIZATION and 

2097 SPECTRAL_WINDOW subtables. Hence all rows with the same value in 

2098 the DATA_DESC_ID column must have the same data shape. To select 

2099 all the data where the DATA_DESC_ID value is N you call this 

2100 function with the datadescid argument set to N. 

2101 

2102 It is possible to have a measurement set with differing values in 

2103 the DATA_DESC_ID column but where all the data is a fixed shape. 

2104 For example this will occur if the reference frequency changes but 

2105 the number of spectral channels is fixed. In cases like this all 

2106 the data can be selected and this function does not need to be 

2107 used. 

2108 

2109 To return to the completely unselected measurement set, set the 

2110 reset argument to True. This will allow you to access the full 

2111 range of rows in the measurement set, rather than just the 

2112 selected measurement set. 

2113 

2114 The datadescid must always be a non-negative integer. 

2115 

2116 

2117 Input Parameters: 

2118 datadescid Data description id. 

2119 reset Reset to unselected state. 

2120 

2121 Example: 

2122 

2123 ms.open('3C273XC1.MS') 

2124 ms.selectinit(datadescid=0) 

2125 print ms.range(['uvdist']) 

2126 ms.selectinit(reset=True) 

2127 print ms.range('uvdist') 

2128 

2129 In this example we display the range of uv distances for the data 

2130 in the specified measurement set (the range 'items' argument is a 

2131 list of strings, even if only one item is requested). The first 

2132 print statement will only use data where the DATA_DESC_ID column is 

2133 0. This will correspond to a specific spectral window and 

2134 polarization setup. The second print statement will print the range 

2135 of uv distances for all the data in the measurement set (which is 

2136 the same in this case). 

2137 

2138 -------------------------------------------------------------------------------- 

2139 

2140 """ 

2141 return _ms.ms_selectinit(self, *args, **kwargs) 

2142 

2143 

2144 def select(self, *args, **kwargs): 

2145 """ 

2146 select(self, _items) -> bool 

2147 

2148 

2149 

2150 Summary: 

2151 Select a subset of the measurement set.  

2152 

2153 Description: 

2154 

2155 

2156 This function will select a subset of the current measurement set 

2157 based on the range of values for each field in the input record. 

2158 The range function will return a record that can be altered and 

2159 used as the argument for this function. A successful selection 

2160 returns True. Unrecognized fields are ignored. 

2161 

2162 Allowable items for select include: 'antenna1', 'antenna2', 

2163 'array_id', 'feed1', 'feed2', 'field_id', 'ifr_number', 'rows', 

2164 'scan_number', 'data_desc_id', 'time', 'times', 'u', 'v', 'w', 

2165 and 'uvdist'. 

2166 

2167 You need to call selectinit before 

2168 calling this function. If you haven't then selectinit will be 

2169 called for you with default arguments. 

2170 

2171 Repeated use of this function, with different arguments, will 

2172 further refine the selection, resulting in a successively smaller 

2173 selected measurement set. If the selected measurement set does not 

2174 contain any rows then this function will return False and send a 

2175 warning message in the logger. Otherwise this function will return 

2176 True. To undo all the selections you need to use the selectinit 

2177 function (with reset=True). 

2178 

2179 

2180 Input Parameters: 

2181 items Record with fields of ranges or enumerations 

2182 

2183 Example: 

2184 

2185 ms.open('3C273XC1.MS') 

2186 ms.selectinit(datadescid=0) 

2187 ms.select({'antenna1':[1,3,5],'uvdist':[1200.,1900.]}) 

2188 ms.select({'time':[4121629420.,4121638290.]}) 

2189 # Or, convert time strings to seconds: 

2190 start = qa.getvalue(qa.convert(qa.quantity('1989/06/27/01:03:40'), 

2191 's'))[0] 

2192 stop = qa.getvalue(qa.convert(qa.quantity('1989/06/27/03:31:30'), 

2193 's'))[0] 

2194 rec = {} 

2195 rec['time'] = [start, stop] 

2196 ms.select(items=rec) 

2197 

2198 This example selects all the data from the measurement set where 

2199 the value in the DATA_DESC_ID column is zero. This corresponds to a 

2200 particular spectral window and polarization setup. It then selects 

2201 all the data where the first antenna in the interferometer is 

2202 number one, three or five and where the uv distance is between 1200 

2203 and 1900 meters. Finally it selects all the data which was 

2204 observed between 4121629420 seconds and 4121638290 seconds (since 

2205 zero hours on the day where the modified Julian day is zero). Since 

2206 this time in seconds is quite obscure, use the quanta tool to 

2207 convert a date/time string into seconds which can then be used to 

2208 perform the same time selection. 

2209 

2210 The selections are cumulative so that at the end of this example 

2211 only data in the specified time range, with the specified, 

2212 interferometers, uv distances, spectral window and polarization 

2213 setup are selected. 

2214 

2215 -------------------------------------------------------------------------------- 

2216 

2217 """ 

2218 return _ms.ms_select(self, *args, **kwargs) 

2219 

2220 

2221 def selecttaql(self, *args, **kwargs): 

2222 """ 

2223 selecttaql(self, _msselect) -> bool 

2224 

2225 

2226 

2227 Summary: 

2228 Select a subset of the measurement set.  

2229 

2230 Description: 

2231 

2232 

2233 This function will select a subset of the current measurement set 

2234 based on the standard TaQL selection string given. 

2235 

2236 Repeated use of this function, with different arguments, will 

2237 further refine the selection, resulting in a successively smaller 

2238 selected measurement set. If the selected measurement set does not 

2239 contain any rows then this function will return False and send a 

2240 warning message in the logger. Otherwise this function will return 

2241 True. To undo all the selections you need to use the selectinit 

2242 function (with reset=True). Note that index values used in the 

2243 TaQL string are zero-based as are all tool indices. 

2244 

2245 

2246 Input Parameters: 

2247 msselect TaQL selection string 

2248 

2249 Example: 

2250 

2251 ms.open('3C273XC1.MS') 

2252 ms.selectinit(datadescid=0) 

2253 ms.select({'antenna1':[0,2,4],'uvdist':[1200.,1900.]}) 

2254 ms.selecttaql('ANTENNA1==2') 

2255 ms.range(['ANTENNA1','ANTENNA2']) 

2256 # {'antenna1': array([2]), 

2257 # 'antenna2': array([ 6, 9, 11, 18, 20, 21, 24])} 

2258 

2259 This example selects all the data from the measurement set where 

2260 the value in the DATA_DESC_ID column is zero. This corresponds to a 

2261 particular spectral window and polarization setup. It then selects 

2262 all the data where the first antenna in the interferometer is 

2263 number zero, two or four and where the uv distance is between 1200 

2264 and 1900 meters. Finally it uses a query to select all the data 

2265 for which the ANTENNA1 column is 2 (this selects the middle antenna 

2266 of the previous, zero-based, selection). The selections are 

2267 cumulative so that at the end of this example only data in the 

2268 specified time range, with the specified, interferometers, uv 

2269 distances, spectral window and polarization setup are selected. 

2270 

2271 -------------------------------------------------------------------------------- 

2272 

2273 """ 

2274 return _ms.ms_selecttaql(self, *args, **kwargs) 

2275 

2276 

2277 def selectchannel(self, *args, **kwargs): 

2278 """ 

2279 selectchannel(self, _nchan, _start, _width, _inc) -> bool 

2280 

2281 

2282 

2283 Summary: 

2284 Select and average frequency channels  

2285 

2286 Description: 

2287 

2288 

2289 This function allows you to select a subset of the frequency 

2290 channels in the current measurement set. This function can also 

2291 average, over frequency channels, prior to providing the values to 

2292 the user. 

2293 

2294 Selection on channels is not allowed using either the select or 

2295 command functions, as they can only select entire rows in a 

2296 measurement set. Channel selection involves accessing only some of 

2297 the values in a row. Like all the selection functions, this 

2298 function does not change the current measurement but updates the 

2299 measurement set selection parameters so that functions like 

2300 getdata will return the desired subset of the data. Repeated use 

2301 of this function will overwrite any previous channel selection. 

2302 

2303 There are four parameters, the number of output channels, the 

2304 first input channel to use, the number of input channels to 

2305 average into one output channel, and the increment in the input 

2306 spectrum for the next output channel. All four parameters need to 

2307 be specified. 

2308 

2309 When all data to be averaged is unflagged, the result is the 

2310 averaged value and the corresponding flag is False. When all data 

2311 is flagged, the result is set to zero and the corresponding flag is 

2312 True. When data to be averaged is mixed (unflagged and flagged), 

2313 only the unflagged values are averaged and the flag is set to 

2314 False. 

2315 

2316 This function return True if the selection was successful, and 

2317 False if not. In the latter case an error message will also be sent 

2318 to the logger. 

2319 

2320 You need to call selectinit before calling this function. 

2321 If you haven't then selectinit will be called for you with default 

2322 arguments. 

2323 

2324 

2325 Input Parameters: 

2326 nchan Number of output channels, positive integer. 

2327 start First input channel to use, positive integer. 

2328 width Number of input channels to average together, positive integer.  

2329 inc Increment to next (group of) input channel(s), positive integer.  

2330 

2331 Example: 

2332 

2333 ms.fromfits('NGC5921.MS', 

2334 '/usr/lib/casapy/data/demo/NGC5921.fits') 

2335 ms.selectinit(datadescid=0) 

2336 ms.selectchannel(3,2,5,3) 

2337 rec = ms.getdata(['data']) 

2338 

2339 This example selects all the data from the measurement set where 

2340 the value in the DATA_DESC_ID column is zero. This corresponds to a 

2341 particular spectral window and polarization setup. It then selects 

2342 on frequency channels to produce 3 output channels, the first 

2343 output channel is the average of channels 2,3,4,5,6 in the input, 

2344 the second output channel is the average of channel 5,6,7,8,9 and 

2345 the third is the average of channels 8,9,10,11,12. 

2346 

2347 -------------------------------------------------------------------------------- 

2348 

2349 """ 

2350 return _ms.ms_selectchannel(self, *args, **kwargs) 

2351 

2352 

2353 def selectpolarization(self, *args, **kwargs): 

2354 """ 

2355 selectpolarization(self, _wantedpol) -> bool 

2356 

2357 

2358 

2359 Summary: 

2360 Selection and conversion of polarizations.  

2361 

2362 Description: 

2363 

2364 

2365 This function allows you to select a subset of the polarizations 

2366 in the current measurement set. This function can also setup 

2367 conversion to different polarization representations. 

2368 

2369 You specify the polarizations using a string vector. Allowable 

2370 strings are include I, Q, U, V, RR, RL, LR, LL, XX, YY, XY, 

2371 YX. These string must be specified in upper case. If the 

2372 polarizations match those present in the measurement set they will 

2373 be selected directly, otherwise all polarizations are read and 

2374 then a conversion step is done. If the conversion cannot be done 

2375 then an error will be produced when you try to access the data. 

2376 

2377 This function return True if the selection was successful, and 

2378 False if not. 

2379 

2380 You need to call selectinit before calling this function. 

2381 If you haven't then selectinit will be called for you with default 

2382 arguments. 

2383 

2384 

2385 Input Parameters: 

2386 wantedpol The polarizations wanted. 

2387 

2388 Example: 

2389 

2390 ms.open('3C273XC1.MS') 

2391 ms.selectinit(datadescid=0) 

2392 ms.selectpolarization(['I','V']) 

2393 rec = ms.getdata(['data']) 

2394 

2395 This example selects all the data from the measurement set where 

2396 the value in the DATA_DESC_ID column is zero. This corresponds to a 

2397 particular spectral window and polarization setup. It then selects 

2398 the I and V polarizations and when the getdata function is called 

2399 the conversion from RR, LL, LR, RL polarizations to I and V occurs. 

2400 

2401 -------------------------------------------------------------------------------- 

2402 

2403 """ 

2404 return _ms.ms_selectpolarization(self, *args, **kwargs) 

2405 

2406 

2407 def statwt(self, *args, **kwargs): 

2408 """ 

2409 statwt(self, _combine, _timebin, _slidetimebin, _chanbin, _minsamp, _statalg, _fence, _center, _lside, _zscore, _maxiter, _fitspw, _excludechans, _wtrange, _preview, _datacolumn) -> record * 

2410 

2411 

2412 

2413 Summary: 

2414 Compute and set weights based on variance of data. 

2415 

2416 Description: 

2417 

2418 

2419 IF NOT RUN IN PREVIEW MODE, THIS APPLICATION WILL MODIFY THE 

2420 WEIGHT, WEIGHT SPECTRUM, FLAG, AND FLAG_ROW COLUMNS OF THE INPUT 

2421 MS. IF YOU WANT A PRISTINE COPY OF THE INPUT MS TO BE PRESERVED, 

2422 YOU SHOULD MAKE A COPY OF IT BEFORE RUNNING THIS APPLICATION. 

2423 

2424 This application computes weights for the WEIGHT and 

2425 WEIGHT_SPECTRUM (if present) columns based on the variance of 

2426 values in the CORRECTED_DATA or DATA column. If the MS does not 

2427 have the specified data column, the application will fail. The 

2428 following algorithm is used: 

2429 

2430 1. For unflagged data in each sample, create two sets of values, 

2431 one set is composed solely of the real part of the data values, 

2432 the other set is composed solely of the imaginary part of the 

2433 data values. 

2434 2. Compute the weighted (by exposure time) variance of each of 

2435 these sets, v_r and v_i. The weighted variance per unit 

2436 inverse eposure time, v, is computed using 

2437 

2438 v = sum(e_i * (V_i - <V>)^2)/N, 

2439 

2440 where e_i is the exposure time for real/imaginary part of 

2441 visibility V_i and 

2442 

2443 <V> = sum(e_i * V_i)/sum(e_i) 

2444 

2445 is the weighted mean of all the visibilities in the set, and N 

2446 is the number of (unflagged) visibilities. 

2447 3. Compute v_eq = (v_r + v_i)/2. 

2448 4. Compute the normalized variance, v_norm = v_eq * <e>, where 

2449 

2450 <e> = sum(e_i)/N 

2451 

2452 is the mean of the exposure times. The associated weight of 

2453 visibility V_i is e_i/v_eq. The weight will have unit of (data 

2454 unit)^(-2), e.g., Jy^(-2). The visibility weights are what this 

2455 application computes and writes. 

2456 

2457 Data are aggregated on a per-baseline, per-data description ID 

2458 basis. Data are aggregated in bins determined by the specified 

2459 values of the timebin and chanbin parameters. By default, data for 

2460 separate correlations are aggregated separately. This behavior can 

2461 be overridden by specifying combine='corr' (see below). 

2462 

2463 RULES REGARDING CREATING/INITIALIZING WEIGHT_SPECTRUM COLUMN 

2464 

2465 1. If run in preview mode (preview=True), no data are modified and 

2466 no columns are added. 

2467 2. Else if datacolumn equals 'residual' or 'residual_data' and 

2468 a CORRECTED_DATA column exists, the WEIGHT and WEIGHT_SPECTRUM 

2469 columns are not modified. 

2470 3. Else if the MS already has a WEIGHT_SPECTRUM and this column has 

2471 been initialized (has values), it will be populated with 

2472 the new weights. The WEIGHT column will be populated with the 

2473 corresponding median values of the associated WEIGHT_SPECTRUM 

2474 array. 

2475 4. Else if the frequency range specified for the sample is not the 

2476 default ('spw'), the WEIGHT_SPECTRUM column will be created (if 

2477 it doesn't already exist) and the new weights will be written to 

2478 it. The WEIGHT column should be populated with the 

2479 corresponding median values of the WEIGHT_SPECTRUM array. 

2480 5. Otherwise the single value for each spectral window will be 

2481 written to the WEIGHT column; the WEIGHT_SPECTRUM column will 

2482 not be added if it doesn't already exist, and if it does, it 

2483 will remain uninitialized (no values will be written to it). 

2484 

2485 In cases where columns are added and initialized, the 

2486 WEIGHT_SPECTRUM values will be set equal to the corresponding 

2487 WEIGHT values, and the SIGMA_SPECTRUM values will be set to the 

2488 corresponding SIGMA values. 

2489 

2490 CAUTION: For some cases when only a subset of data is selected 

2491 and the WEIGHT_SPECTRUM and/or SIGMA_SPECTRUM columns are created, 

2492 there is a known code issue in which these columns are not properly 

2493 created and initialized for the specified subset of data, although 

2494 they are properly initialized for the entire dataset. In such cases, 

2495 an exception will be thrown. Because the columns are created for the 

2496 entire dataset, the user simply needs to rerun the statwt task using 

2497 the same parameters and the task should complete as expected. Should 

2498 this condition occur when the user is using the ms.statwt() tool 

2499 method, the user should close the ms tool, and then reopen it using 

2500 the same data set and configure the same selection, and rerun 

2501 ms.statwt(). The tool method should then complete as expected. 

2502 

2503 RULES FOR MODIFYING WEIGHT, WEIGHT_SPECTRUM, SIGMA, and SIGMA_SPECTRUM 

2504 

2505 1. If datacolum='corrected' or 'residual' then values are written 

2506 to the WEIGHT and WEIGHT_SPECTRUM (if applicable) columns only. 

2507 2. If datacolumn='data' or 'residual_data' and the 'CORRECTED_DATA' 

2508 column does not exist, then values are written to the WEIGHT and 

2509 WEIGHT_SPECTRUM (if applicable) columns and values in the SIGMA 

2510 and SIGMA_SPECTRUM are set to 1/sqrt(newly computed weight). If 

2511 a weight value is 0, the corresponding sigma value is -1. 

2512 3. If datacolumn='data' or 'residual_data' and the 'CORRECTED_DATA' 

2513 column does exist, then the WEIGHT and WEIGHT_SPECTRUM columns 

2514 are not updated and values in the SIGMA and 

2515 SIGMA_SPECTRUM are set to 1/sqrt(of the newly computed weight). 

2516 If a weight value is 0, the corresponding sigma value is -1. 

2517 In this case, you should either split out the DATA column and 

2518 run statwt, or run with datacolumn='corrected' or 'residual' 

2519 to update WEIGHT/WEIGHT_SPECTRUM. Otherwise the data are 

2520 internally not consistent. 

2521 

2522 TIME BINNING 

2523 

2524 One of two algorithms can be used for time binning. If 

2525 slidetimebin=True, then a sliding time bin of the specified width 

2526 is used. If slidetimebin=False, then block time processing is used. 

2527 The sliding time bin algorithm will generally be both more memory 

2528 intensive and take longer than the block processing algorithm. Each 

2529 algorithm is discussed in detail below. 

2530 

2531 If the value of timebin is an integer, this value represents the 

2532 number of contiguous, unique time stamps (from the MS TIME column) 

2533 that should be used for averaging. 

2534 

2535 Block Time Processing 

2536 

2537 The data are processed in contiguous time blocks in this case. This 

2538 means that all WEIGHT_SPECTRUM values will be set to the same value 

2539 for all data within the same time bin/channel bin/correlation bin 

2540 (see the section on channel binning and description of combine='corr' 

2541 for more details on channel binning and correlation binning). 

2542 

2543 If timebin is specified as a time quantity (eg, '110s'), then the 

2544 time bins are not necessarily contiguous and are not necessarily the 

2545 same width. The start of a bin is always coincident with a value 

2546 from the TIME column, So for example, if values from the TIME column 

2547 are [20s, 60s, 100s, 140s, 180s, 230s], and timebin = 110s, the 

2548 first bin would start at 20s and run to 130s, so that data from 

2549 timestamps 20s, 60s, and 100s will be included in the first bin. The 

2550 second bin would start at 140s, so that data for timestamps 140s, 

2551 180s, and 230s would be included in the second bin. 

2552 

2553 In the case where timebin is an integer, this denotes the number of 

2554 contigous timestamps that should be binned together. Note that, in 

2555 this case, for rows 'left over' in the upper edge of the bin, their 

2556 values are computed using timebin that would include rows with times 

2557 earlier than them. For example, in an MS with 8 rows in one block 

2558 to be processed and timebin=3, timestamps 1, 2, and 3 would be used 

2559 to compute the weights of the first three three rows, and rows 4, 5, 

2560 and 6 would be used to compute weights for the next three rows as 

2561 expected. Rows 7 and 8 are 'left over' rows, but three rows (as per 

2562 the integer timebin specification) are still used to compute them. 

2563 Row 7 and 8 weights are computed by combining data in rows 6, 7, and 8. 

2564 

2565 Sliding Time Window Processing 

2566 

2567 In the sliding time window case, in the case where timebin is a time 

2568 quantity, the time window is always centered on the timestamp of the 

2569 row in question and extends +/-timebin/2 around that timestamp, subject 

2570 the the time block boundaries. 

2571 

2572 In the case where timebin is an integer, there are two cases to 

2573 consider: 

2574 

2575 timebin is odd: In this case the target row's data and the data from 

2576 the +/-(n-1)/2 rows around the target row are also used. 

2577 

2578 timebin is even: In this case, the target row's data and the data from 

2579 the n/2 rows after the target row and the n/2 - 1 rows before the target 

2580 row are used. 

2581 

2582 When timebin is an int, for 'edge' rows, the timebin extends from the 

2583 edge of the block to the corresponding timebin value of rows away from 

2584 the edge, so that the timebin is not symmetrical around the target rows, 

2585 but includes the number of rows specified by the timebin value. 

2586 

2587 OVERRIDING DEFAULT BLOCK BOUNDARIES 

2588 

2589 Rows with the same baselines and data description IDs which are included 

2590 in that window are used for determining the weight of that row. The 

2591 boundaries of the time block to which the window is restricted are 

2592 determined by changes in FIELD_ID, ARRAY_ID, and SCAN_NUMBER. One can 

2593 override this behavior for FIELD_ID and/or SCAN_NUMBER by specifying the 

2594 combine parameter (see below). Unlike the time block processing algorithm, 

2595 this sliding time window algorithm requires that details of all rows for 

2596 the time window in question are kept in memory, and thus the sliding 

2597 window algorithm in general and the block processing row when timebin is 

2598 an int, requires more memory than the block processing method when 

2599 timebin is a quantity. Also, unlike the block processing method which 

2600 computes a single value for all weights within a single bin, the sliding 

2601 window method requires that each row (along with each channel and 

2602 correlation bin) be processed individually, so in general the sliding 

2603 window method will take longer than the block processing method. 

2604 

2605 CHANNEL BINNING 

2606 

2607 The width of channel bins is specified via the chanbin parameter. 

2608 Channel binning occurs within individual spectral windows; bins 

2609 never span multiple spectral windows. Each channel will be included 

2610 in exactly one bin. 

2611 

2612 The default value 'spw' indicates that all channels in each 

2613 spectral window are to be included in a single bin. 

2614 

2615 Any other string value is interpreted as a quantity, and so should 

2616 have frequency units, eg '1MHz'. In this case, the channel 

2617 frequencies from the CHAN_FREQ column of the SPECTRAL_WINDOW 

2618 subtable of the MS are used to determine the bins. The first bin 

2619 starts at the channel frequency of the 0th channel in the spectral 

2620 window. Channels with frequencies that differ by less than the 

2621 value specified by the chanbin parameter are included in this bin. 

2622 The next bin starts at the frequency of the first channel outside 

2623 the first bin, and the process is repeated until all channels have 

2624 been binned. 

2625 

2626 If specified as an integer, the value is interpreted as the number 

2627 of channels to include in each bin. The final bin in the spectral 

2628 window may not necessarily contain this number of channels. For 

2629 example, if a spectral window has 15 channels, and chanbin is 

2630 specified to be 6, then channels 0-5 will comprise the first bin, 

2631 channels 6-11 the second, and channels 12-14 the third, so that 

2632 only three channels will comprise the final bin. 

2633 

2634 MINIMUM REQUIRED NUMBER OF VISIBILITIES 

2635 

2636 The minsamp parameter allows the user to specify the minimum number 

2637 of unflagged visibilities that must be present in a sample for that 

2638 sample's weight to be computed. If a sample has less than this 

2639 number of unflagged points, the associated weights of all the 

2640 points in the sample are set to zero, and all the points in the 

2641 sample are flagged. 

2642 

2643 AGGREGATING DATA ACROSS BOUNDARIES 

2644 

2645 By default, data are not aggregated across changes in values in the 

2646 columns ARRAY_ID, SCAN_NUMBER, STATE_ID, FIELD_ID, and 

2647 DATA_DESC_ID. One can override this behavior for SCAN_NUMBER, 

2648 STATE_ID, and FIELD_ID by specifying the combine parameter. For 

2649 example, specifying combine='scan' will ignore scan boundaries when 

2650 aggregating data. Specifying combine='field, scan' will ignore both 

2651 scan and field boundaries when aggregating data. 

2652 

2653 Also by default, data for separate correlations are aggregated 

2654 separately. Data for all correlations within each spectral window 

2655 can be aggregated together by specifying 'corr' in the combine 

2656 parameter. 

2657 

2658 Any combination and permutation of 'scan', 'field', 'state', and 

2659 'corr' are supported by the combine parameter. Other values will be 

2660 silently ignored. 

2661 

2662 STATISTICS ALGORITHMS 

2663 

2664 The supported statistics algorithms are described in detail in the 

2665 imstat and ia.statistics() help. For the current application, these 

2666 algorithms are used to compute vr and vi (see above), such that the 

2667 set of the real parts of the visibilities and the set of the 

2668 imaginary parts of the visibilities are treated as independent data 

2669 sets. 

2670 

2671 RANGE OF ACCEPTABLE WEIGHTS 

2672 

2673 The wtrange parameter allows one to specify the acceptable range 

2674 (inclusive, except for zero) for weights. Data with weights 

2675 computed to be outside this range will be flagged. If not specified 

2676 (empty array), all weights are considered to be acceptable. If 

2677 specified, the array must contain exactly two nonnegative numeric 

2678 values. Note that data with weights of zero are always flagged. 

2679 

2680 INCLUDING CHANNELS 

2681 

2682 Channels can be included in the computation of the weights by 

2683 specifying the fitspw parameter. This parameter accepts a 

2684 valid MS channel selection string. Data associated with the 

2685 selected channels will be used in computing the weights; all other 

2686 channels will be excluded from the computation of weights. By 

2687 default (empty string), all channels are included. 

2688 

2689 PREVIEW MODE 

2690 

2691 By setting preview=True, the application is run in 'preview' mode. 

2692 In this mode, no data in the input MS are changed, although the 

2693 amount of data that the application would have flagged is reported. 

2694 

2695 DATA COLUMN 

2696 

2697 The datacolumn parameter can be specified to indicate which data 

2698 column should be used for computing the weights. The values 

2699 'corrected' for the CORRECTED_DATA column and 'data' for the DATA 

2700 column are supported (minimum match, case insensitive). One may 

2701 specify 'residual' in which case the values used are the result of 

2702 the CORRECTED_DATA column - model, or 'residual_data' in which 

2703 case the values used are the DATA column - model, where model 

2704 is the CORRECTED_DATA column if it exists, or if it doesn't, 

2705 the virtual source model if one exists, or if that doesn't, then 

2706 no model is used and the 'residual' and 'residual_data' cases 

2707 are equivalent to the 'corrected' and 'data' cases, respectively. 

2708 The last two options are to allow for operation on timescales or 

2709 frequency ranges which are larger than that over which the sky 

2710 signal is expected to be constant. This situation arises in eg, 

2711 OTF mapping, and also perhaps with sources with significant 

2712 spectral structure. In cases where a necessary column doesn't 

2713 exist, an exception will be thrown and no data will be changed. 

2714 NOTE: It is the user's responsibility to ensure that a model has 

2715 been set for all selected fields before using datacolumn='residual' 

2716 or 'residual_data'. 

2717 

2718 RETURN VALUE 

2719 

2720 In all cases, the mean and variance of the set of all weights computed 

2721 by the application is reported and returned in a dictionary with keys 

2722 'mean' and 'variance'. Weights for which there are corresponding flags 

2723 (=True) prior to running the application are excluded from the 

2724 computation of these statistics. If the WEIGHT_SPECTRUM values are 

2725 available, they are used to compute the statistics, otherwise, 

2726 the WEIGHT values are used. The returned statistics are always computed 

2727 using the classic algorithm; the value of statalg has no impact on how 

2728 they are computed. 

2729 

2730 OTHER CONSIDERATIONS 

2731 

2732 Flagged values are not used in computing the weights, although the 

2733 associated weights of these values are updated. 

2734 

2735 If the variance for a set of data is 0, all associated flags for 

2736 that data are set to True, and the corresponding weights are set to 

2737 0. 

2738 

2739 Because data are modified in the input MS, the nomodify parameter 

2740 must be set to False when opening the associated MS tool. 

2741 

2742 

2743 Input Parameters: 

2744 combine Ignore changes in these columns (scan, field, and/or state) when aggregating samples to compute weights. The value 'corr' is also supported to aggregate samples across correlations. 

2745 timebin Size of the time window that is used to determine the statistics of a weight. Can be an integer number of timestamps or a time interval in time units. 

2746 slidetimebin Use a sliding window for time binning, as opposed to time block processing? 

2747 chanbin Channel bin width for computing weights. Can either be integer, in which case it is interpreted as number of channels to include in each bin, or a string 'spw' or quantity with frequency units. 

2748 minsamp Minimum number of visibilities required for computing weights in a sample. Must be >= 2. 

2749 statalg Statistics algorithm to use for computing variances. Supported values are 'chauvenet', 'classic', 'fit-half', and 'hinges-fences'. Minimum match is supported. 

2750 fence Fence value for statalg='hinges-fences'. A negative value means use the entire data set (ie default to the 'classic' algorithm). Ignored if statalg is not 'hinges-fences'. 

2751 center Center to use for statalg='fit-half'. Valid choices are 'mean', 'median', and 'zero'. Ignored if statalg is not 'fit-half'. 

2752 lside For statalg='fit-half', real data are <=; center? If false, real data are >= center. Ignored if statalg is not 'fit-half'. 

2753 zscore For statalg='chauvenet', this is the target maximum number of standard deviations data may have to be included. If negative, use Chauvenet's criterion. Ignored if statalg is not 'chauvenet'. 

2754 maxiter For statalg='chauvenet', this is the maximum number of iterations to attempt. Iterating will stop when either this limit is reached, or the zscore criterion is met. If negative, iterate until the zscore criterion is met. Ignored if statalg is not 'chauvenet'. 

2755 fitspw Channels to include in the computation of weights. Specified as an MS select channel selection string. 

2756 excludechans If True: invert the channel selection in fitspw and exclude the fitspw selection from the computation of the weights. 

2757 wtrange Range of acceptable weights. Data with weights outside this range will be flagged. Empty array (default) means all weights are good. 

2758 preview Preview mode. If True, no data is changed, although the amount of data that would have been flagged is reported. 

2759 datacolumn Data column to use to compute weights. Supported values are 'data', 'corrected', 'residual, and 'residual_data' (case insensitive, minimum match supported). 

2760 

2761 Example: 

2762 

2763 # update the weights of an MS 

2764 ms.open('my.ms', nomodify=False) 

2765 # compute weights, using time bins of 300s 

2766 if ms.statwt(timebin=('300s')): 

2767 print 'Successfully updated weights' 

2768 else: 

2769 print 'Updating weights failed' 

2770 ms.done() 

2771 

2772 -------------------------------------------------------------------------------- 

2773 

2774 """ 

2775 return _ms.ms_statwt(self, *args, **kwargs) 

2776 

2777 

2778 def oldstatwt(self, *args, **kwargs): 

2779 """ 

2780 oldstatwt(self, _dorms, _byantenna, _sepacs, _fitspw, _fitcorr, _combine, _timebin, _minsamp, _field, _spw, _antenna, _timerange, _scan, _intent, _array, _correlation, _obs, _datacolumn) -> bool 

2781 

2782 

2783 

2784 Summary: 

2785 Set WEIGHT and SIGMA from the scatter of the visibilities 

2786 

2787 Description: 

2788 

2789 

2790 NOT IMPLEMENTED YET. 

2791 

2792 This function estimates the noise from the scatter of the 

2793 visibilities, sets SIGMA to it, and WEIGHT to SIGMA**-2. 

2794 

2795 Ideally the visibilities used to estimate the scatter, as selected 

2796 by fitspw and fitcorr, should be pure noise. If you know for 

2797 certain that they are, then setting dorms to True will give the 

2798 best result. Otherwise, use False (standard sample standard 

2799 deviation). More robust scatter estimates like the interquartile 

2800 range or median absolute deviation from the median are not offered 

2801 because they require sorting by value, which is not possible for 

2802 complex numbers. 

2803 

2804 To beat down the noise of the noise estimate, the sample size per 

2805 estimate can be made larger than a single spw and baseline. (Using 

2806 combine='spw' is to interpolate between spws with line-free 

2807 channels is recommended when an spw has no line-free channels.) 

2808 timebin smooths the noise estimate over time. windowtype sets the 

2809 type of time smoothing. 

2810 

2811 WEIGHT and SIGMA will not be changed for samples that have fewer 

2812 than minsamp visibilities. Selected visibilities for which no 

2813 noise estimate is made will be flagged. Note that minsamp is 

2814 effectively at least 2 if dorms is False, and 1 if it is True. 

2815 

2816 

2817 Input Parameters: 

2818 dorms How the scatter should be estimated (True -> rms, False -> stddev). 

2819 byantenna How the scatters are solved for (by antenna or by baseline). 

2820 sepacs If solving by antenna, treat autocorrs separately. 

2821 fitspw Line-free spectral windows (and :channels) to get the scatter from. ('' => all) 

2822 fitcorr Correlations (V, LL, XX, LR, XY, etc.) to get the scatter from. ('' => all) 

2823 combine Ignore changes in these columns (spw, scan, and/or state) when getting the scatter. 

2824 timebin Duration of the moving window over which to estimate the scatter. Defaults to 0s, with an effective minimum of 1 integration. 

2825 minsamp The minimum number of visibilities for a scatter estimate. 

2826 field Fields to reweight, by names or 0-based ids. ('' => all) 

2827 spw Spectral windows to reweight. ('' => all) 

2828 antenna Select data based on antenna/baseline. 

2829 timerange Select data by time range. 

2830 scan Scan numbers to reweight. ('' => all) 

2831 intent Scan intents to reweight. ('' => all) 

2832 array Select (sub)array(s) by array ID number. 

2833 correlation Correlations (LL, XX, LR, XY, etc.) to reweight. ('' => all) 

2834 obs Observation IDs to reweight. ('' => all) 

2835 datacolumn Which data column to calculate the scatter from. 

2836 

2837 Example: 

2838 

2839 ms.open('multiwin.ms', nomodify=False) 

2840 ms.oldstatwt(fitspw='0:0~123;145~211,2:124~255', field=[0], 

2841 spw='0,2') 

2842 

2843 In this example the noise estimates are separately made from and 

2844 applied to spws 0 and 2. 

2845 

2846 ms.oldstatwt(fitspw='0:0~123;145~211,2:124~255', fitorder=0, 

2847 field=[0], combine='spw') 

2848 ms.close() 

2849 

2850 This time the estimate for each baseline is made from the line-free 

2851 channels of spws 0 and 2, and applied to all the spws, including 1 

2852 (which could be a completely line-filled spw). 

2853 

2854 -------------------------------------------------------------------------------- 

2855 

2856 """ 

2857 return _ms.ms_oldstatwt(self, *args, **kwargs) 

2858 

2859 

2860 def regridspw(self, *args, **kwargs): 

2861 """ 

2862 regridspw(self, _outframe, _mode, _restfreq, _interpolation, _start, _center, _bandwidth, _chanwidth, _hanning) -> bool 

2863 

2864 

2865 

2866 Summary: 

2867 Transform spectral data to different reference frame and/or regrid the frequency channels  

2868 

2869 Description: 

2870 

2871 

2872 This function permits you to transform the spectral data of your 

2873 measurement set to a given reference frame. The present reference 

2874 frame information in the MS is examined and the transformation 

2875 performed accordingly. Since all such transformations are linear in 

2876 frequency, a pure change of reference frame only affects the 

2877 channel boundary definitions. 

2878 

2879 In addition, the function permits you to permanently regrid the 

2880 data, i.e. reduce the channel number and/or move the boundaries 

2881 using several interpolation methods (selected using parameter 

2882 'interpolation'). The new channels are equidistant in frequency (if 

2883 parameter 'mode' is chosen to be vrad or freq, or equidistant in 

2884 wavelength if parameter 'mode' is chosen to be vopt or wave). If 

2885 'mode' is chosen to be 'chan', the regridding is performed by 

2886 combining the existing channels, i.e. not moving but just 

2887 eliminating channel boundaries where necessary. 

2888 

2889 The regridding is applied to the channel definition and all data of 

2890 the MS, i.e. all columns which contain arrays whose dimensions 

2891 depend on the number of channels. The input parameters are verified 

2892 before any modification is made to the MS. 

2893 

2894 The target reference frame can be set by providing the name of a 

2895 standard reference frame (LSRK, LSRD, BARY, GALACTO, LGROUP, CMB, 

2896 TOPO, GEO, or SOURCE, default = no change of frame) in parameter 

2897 'outframe'. For each field in the MS, the channel frequencies are 

2898 transformed from their present reference frame to the one given by 

2899 parameter 'outframe'. 

2900 

2901 If the regridding parameters are set, they are interpreted in the 

2902 'outframe' reference frame. The regridding is applied to the data 

2903 after the reference frame transformation. 

2904 

2905 

2906 Input Parameters: 

2907 outframe Name of the reference frame to transform to (LSRK, LSRD, BARY, GALACTO, LGROUP, CMB, GEO, TOPO, or SOURCE). SOURCE is meant for solar system work and corresponds to GEO + a radial velocity correction (only available for ephemeris objects). If no reference frame is given, the present reference frame given by the data is used, i.e. the reference frame is not changed. The observatory position is taken as the average of all antenna positions.  

2908 mode The quantity (radio velocity (m/s), optical velocity (m/s), frequency (Hz), wavelength (m), or original channels) in which the user would like to give the regridding parameters below ('center', 'chanwidth', 'bandwidth'): vrad, vopt, freq, wave, or chan.  

2909 restfreq Required in case the value of mode is 'vrad' or 'vopt': Rest frequency (Hz) for the conversion of the regrid parameters 'center', 'chanwidth', and 'bandwidth' to frequencies.  

2910 interpolation Name of the interpolation method (NEAREST, LINEAR, SPLINE, CUBIC, FFTSHIFT) used in the regridding. Flagging information is combined using 'inclusive or'.  

2911 start Desired lower edge of the spectral window after regridding in the units given by 'mode' and in the reference frame given by 'outframe'. If no value is given, it is determined from 'center' and 'bandwidth'.  

2912 center (Alternative to setting the parameter 'start'.) Desired center of the spectral window after regridding in the units given by 'mode' and in the reference frame given by 'outframe'. If no value is given, the center is determined from 'start' and 'bandwidth' or, if 'start' is not given either, it is kept as it is.  

2913 bandwidth Desired width of the entire spectral window after regridding in the units given by 'mode' and in the reference frame given by 'outframe'. If no value is given or the given width is larger than the bandwidth of the data, the width will be truncated to the maximum width possible symmetrically around the value given by 'center'.  

2914 chanwidth Desired width of the channels in the units given by 'mode' and in the reference frame given by 'outframe'. This implies that channels will be equidistant in the unit given by 'mode'. If no value is given and 'mode' is vrad or freq, the function will keep the resolution as it is. If 'mode' is vopt or wave, the total number of channels will be kept as is.  

2915 hanning If true, perform hanning smoothing before regridding.  

2916 

2917 Example: 

2918 

2919 ms.fromfits('NGC5921.MS','/usr/lib/casapy/data/demo/NGC5921.fits') 

2920 ms.regridspw(outframe='LSRK') 

2921 

2922 This example reads a measurement set and transforms its spectral 

2923 axis to the LSRK reference frame. 

2924 

2925 ms.regridspw(outframe='BARY', mode='vrad', 

2926 center=73961800., chanwidth=50., bandwidth=1000., 

2927 restfreq=1420405750e6) 

2928 

2929 In this example, all spectral windows in the MS will be transformed 

2930 to the BARY reference frame and then be regridded such that the 

2931 center of the new spectral window is at radio velocity = 73961800. 

2932 m/s (BARY). If the bandwidth of the observation is large enough the 

2933 total width of the spectral window will be 1000 m/s, i.e. 20 

2934 channels of width 50 m/s, 10 on each side of the given center. 

2935 

2936 ms.regridspw(mode='vopt', restfreq=1420405750e6) 

2937 

2938 In this example the channels are regridded such that they are 

2939 equidistant in optical velocity. The reference frame and number of 

2940 channels is kept as is. 

2941 

2942 ms.regridspw(mode='chan', center=64, chanwidth=2, 

2943 bandwidth=102) 

2944 

2945 In this example, the channels are regridded such that the new 

2946 bandwidth is 102 of the original channels centered on the original 

2947 channel 64, and the new channels are twice as wide as the original 

2948 channels. 

2949 

2950 -------------------------------------------------------------------------------- 

2951 

2952 """ 

2953 return _ms.ms_regridspw(self, *args, **kwargs) 

2954 

2955 

2956 def cvel(self, *args, **kwargs): 

2957 """ 

2958 cvel(self, _mode, _nchan, _start, _width, _interp, _phasec, _restfreq, _outframe, _veltype, _hanning) -> bool 

2959 

2960 

2961 

2962 Summary: 

2963 Transform spectral data to different reference frame and/or regrid the frequency channels  

2964 

2965 Description: 

2966 

2967 

2968 This function permits you to transform the spectral data of your 

2969 measurement set to a given reference frame and/or regrid it. It 

2970 will combine all spectral windows of the MS into one. 

2971 

2972 

2973 Input Parameters: 

2974 mode 'channel', 'velocity', 'frequency', or 'channel_b', default = 'channel'. 

2975 nchan number of channels, default = -1 = all. 

2976 start start channel, default = 

2977 width new channel width, default = 

2978 interp interpolation method 'nearest', 'linear', 'spline', 'cubic', 'fftshift', default = 

2979 phasec phase center, default = first field 

2980 restfreq rest frequency, default = 

2981 outframe LSRK, LSRD, BARY, GALACTO, LGROUP, CMB, GEO, TOPO, or SOURCE default = '' = keep reference frame. 

2982 veltype radio or optical, default = 

2983 hanning If true, perform hanning smoothing before regridding.  

2984 

2985 -------------------------------------------------------------------------------- 

2986 

2987 """ 

2988 return _ms.ms_cvel(self, *args, **kwargs) 

2989 

2990 

2991 def hanningsmooth(self, *args, **kwargs): 

2992 """ 

2993 hanningsmooth(self, _datacolumn) -> bool 

2994 

2995 

2996 

2997 Summary: 

2998 Hanning smooth the frequency channels to remove Gibbs ringing. 

2999 

3000 Description: 

3001 

3002 

3003 This function Hanning smooths the frequency channels with a 

3004 weighted running average of: 

3005 smoothedData[i] = 0.25*correctedData[i-1] + 0.50*correctedData[i] 

3006 + 0.25*correctedData[i-1] 

3007 The first and last channels are flagged. Inclusion of a flagged 

3008 value in an average causes that averaged data value to be flagged. 

3009 

3010 

3011 Input Parameters: 

3012 datacolumn the name of the MS column into which to write the smoothed data 

3013 

3014 Example: 

3015 

3016 ms.open('ngc5921.ms',nomodify=False) 

3017 ms.hanningsmooth('data') 

3018 ms.close() 

3019 

3020 -------------------------------------------------------------------------------- 

3021 

3022 """ 

3023 return _ms.ms_hanningsmooth(self, *args, **kwargs) 

3024 

3025 

3026 def cvelfreqs(self, *args, **kwargs): 

3027 """ 

3028 cvelfreqs(self, _spwids, _fieldids, _obstime, _mode, _nchan, _start, _width, _phasec, _restfreq, _outframe, _veltype, _verbose) -> std::vector< double > 

3029 

3030 

3031 

3032 Summary: 

3033 Calculate the transformed grid of the SPW obtained by combining a given set of SPWs (MS is not modified)  

3034 

3035 Description: 

3036 

3037 

3038 Take the spectral grid of a given spectral window, tranform and 

3039 regrid it as prescribed by the given grid parameters (same as in 

3040 cvel and clean) and return the transformed values as a list. The MS 

3041 is not modified. Useful for tests of gridding parameters before 

3042 using them in cvel or clean. 

3043 

3044 

3045 Input Parameters: 

3046 spwids The list of ids of the spectral windows from which the input grid is to be taken. 

3047 fieldids The list of ids of the fields which are selected (for observation time determination), default: all 

3048 obstime The observation time to assume, default: time of the first row of the MS 

3049 mode 'channel', 'velocity', 'frequency', or 'channel_b'  

3050 nchan Number of channels, default = all 

3051 start Start channel. 

3052 width New channel width. 

3053 phasec Phase center, default=first field in selection.  

3054 restfreq Rest frequency. 

3055 outframe LSRK, LSRD, BARY, GALACTO, LGROUP, CMB, GEO, TOPO, or SOURCE default = keep reference frame. 

3056 veltype Radio or optical. 

3057 verbose If true, create log output. 

3058 

3059 Example: 

3060 

3061 ms.open('my.ms') 

3062 ms.cvelfreqs(spwids=[1], mode='channel', nchan=20, start=2, 

3063 width=3, outframe='LSRK') 

3064 

3065 This will take the grid of SPW 1 (i.e. the second in the SPW 

3066 table), regrid it as in cvel with the given grid parameters and 

3067 return the resulting channel centers as an array. The MS is not 

3068 modified. See help cvel for more details on the grid parameters. 

3069 

3070 -------------------------------------------------------------------------------- 

3071 

3072 """ 

3073 return _ms.ms_cvelfreqs(self, *args, **kwargs) 

3074 

3075 

3076 def contsub(self, *args, **kwargs): 

3077 """ 

3078 contsub(self, _outputms, _fitspw, _fitorder, _combine, _spw, _unionspw, _field, _scan, _intent, _correlation, _obs, _whichcol) -> bool 

3079 

3080 

3081 

3082 Summary: 

3083 Subtract the continuum from the visibilities 

3084 

3085 Description: 

3086 

3087 

3088 DEPRECATED: This function is deprecated and will be removed in an 

3089 upcoming release. 

3090 

3091 NOT FULLY IMPLEMENTED YET. uvcontsub uses the cb tool for now. 

3092 (The only reason to implement it in ms is to save time and disk 

3093 space.) 

3094 

3095 This function estimates the continuum emission of the MS and writes 

3096 a MS with that estimate subtracted, using the ms tool. The 

3097 estimate is made, separately for the real and imaginary parts of 

3098 each baseline, by fitting a low order polynomial to the unflagged 

3099 visibilities selected by fitspw (depending on combine). 

3100 

3101 

3102 Input Parameters: 

3103 outputms The name of the resulting measurement set.  

3104 fitspw Line-free spectral windows (and :channels) to fit to.  

3105 fitorder The order of the polynomial to use when fitting.  

3106 combine Ignore changes in these columns (spw, scan, and/or state) when fitting. 

3107 spw Spectral windows (and :channels) to select. 

3108 unionspw The union of fitspw and spw, i.e. how much needs to be read. '*' always works, but may be more than you need. 

3109 field Fields to include, by names or 0-based ids. ('' => all) 

3110 scan Only use the scan numbers requested using the msselection syntax. 

3111 intent Only use the requested scan intents. 

3112 correlation Limit data to specific correlations (LL, XX, LR, XY, etc.). 

3113 obs Only use the requested observation IDs. 

3114 whichcol 'DATA', 'MODEL_DATA', 'CORRECTED_DATA', and/or 'FLOAT_DATA' 

3115 

3116 Example: 

3117 

3118 ms.open('multiwin.ms') 

3119 ms.contsub('contsub.ms', fitspw='0:0~123;145~211,2:124~255', 

3120 fitorder=0, field=[0], spw='0,2') 

3121 

3122 In this example the continuum estimates are made by seperately 

3123 averaging channels 0:0~123;145~211 and 2:124~255, and the separate 

3124 estimates are subtracted from spws 0 and 2. The output only 

3125 includes field 0 and spws 0 and 2 (now called 1). 

3126 

3127 ms.contsub('contsub.ms', fitspw='0:0~123;145~211,2:124~255', 

3128 fitorder=0, field=[0], combine='spw') 

3129 ms.close() 

3130 

3131 This time the estimate was made by simultaneously averaging 

3132 channels 0:0~123;145~211 and 2:124~255, and the continuum is 

3133 subtracted from all the spws, including 1 (treated as a completely 

3134 line-filled spw). The output only includes field 0. 

3135 

3136 -------------------------------------------------------------------------------- 

3137 

3138 """ 

3139 return _ms.ms_contsub(self, *args, **kwargs) 

3140 

3141 

3142 def continuumsub(self, *args, **kwargs): 

3143 """ 

3144 continuumsub(self, _field, _fitspw, _spw, _solint, _fitorder, _mode) -> bool 

3145 

3146 

3147 

3148 Summary: 

3149 Continuum fitting and subtraction in uv plane.  

3150 

3151 Description: 

3152 

3153 

3154 DEPRECATED: This function is deprecated and will be removed in an 

3155 upcoming release. 

3156 

3157 This function provides a means of continuum determination and 

3158 subtraction by fitting a polynomial of desired order to a subset of 

3159 channels in each time-averaged uv spectrum. The fit is used to 

3160 model the continuum in all channels (not just those used in the 

3161 fit), for subtraction, if desired. 

3162 

3163 Use the fitspw parameter to limit the spectral windows processed and 

3164 the range of channels used to estimate the continuum in each (avoid 

3165 channels containing spectral lines). 

3166 

3167 The default solution interval 'int' will result in per-integration 

3168 continuum fits for each baseline. 

3169 

3170 The mode parameter indicates how the continuum model (the result of 

3171 the fit) should be used: 

3172 - 'subtract' will store the continuum model in the MODEL_DATA column 

3173 and subtract it from the CORRECTED_DATA column 

3174 - 'replace' will replace the CORRECTED_DATA column with the 

3175 continuum model (useful if you want to image the continuum model 

3176 result) 

3177 - 'model' will only store the continuum model in the MODEL_DATA 

3178 column (the CORRECTED_DATA is unaffected). 

3179 

3180 It is important to start the ms tool with nomodify=False so that 

3181 changes to the dataset will be allowed (see example below). For 

3182 now, the only way to recover the un-subtracted CORRECTED_DATA 

3183 column is to use calibrater.correct() again. 

3184 

3185 Note that the MODEL_DATA and CORRECTED_DATA columns must be present 

3186 for continuumsub to work correctly. The function will warn the 

3187 user if they are not present, and abort. To add these scratch 

3188 columns, close the ms tool, then start a calibrater or an imager 

3189 tool, which will add the scratch columns. Then restart the ms 

3190 tool, and try continuumsub again. 

3191 

3192 

3193 Input Parameters: 

3194 field Select fields to fit. 

3195 fitspw Spectral windows/channels to use for fitting the continuum; default all spectral windows in all channels. 

3196 spw Select spectral windows and channels from which to subtract a continuum estimate; default: all channels in all spectral windows for which the continuum was estimated 

3197 solint Continuum fit timescale (units optional).  

3198 fitorder Polynomial order for fit. 

3199 mode Desired use of fit model (see above). 

3200 

3201 Example: 

3202 

3203 ms.fromfits('ngc5921.ms','/aips++/data/demo/NGC5921.fits') 

3204 ms.close() 

3205 cb.open('ngc5921.ms') # add MODEL_DATA, CORRECTED_DATA columns 

3206 cb.close() 

3207 ms.open('ngc5921.ms', nomodify=False); # writable! 

3208 ms.continuumsub(field=2, fitspw='0:5~9;50~59', 

3209 solint=0.0, fitorder=1, mode='subtract') 

3210 ms.done() 

3211 

3212 This example will fit a linear continuum to channels 5-9 and 50-59 

3213 in spectral window 0 in each scan-averaged spectrum for field 2, 

3214 store the result in the MODEL_DATA column, and subtract it from the 

3215 CORRECTED_DATA column. 

3216 

3217 -------------------------------------------------------------------------------- 

3218 

3219 """ 

3220 return _ms.ms_continuumsub(self, *args, **kwargs) 

3221 

3222 

3223 def uvsub(self, *args, **kwargs): 

3224 """ 

3225 uvsub(self, _reverse) -> bool 

3226 

3227 

3228 

3229 Summary: 

3230 Subtract model from the corrected visibility data. 

3231 

3232 Description: 

3233 

3234 

3235 This function subtracts model visibility data from corrected 

3236 visibility data leaving the residuals in the corrected data column. 

3237 If the parameter reverse is set True, this process is reversed. 

3238 

3239 

3240 Input Parameters: 

3241 reverse When False, subtracts model from visibility data; when True, adds model to visibility data. 

3242 

3243 Example: 

3244 

3245 The following example subtracts a model from the visibility data 

3246 leaving the residuals in the corrected data column. 

3247 

3248 ms.open('ngc5921.ms',nomodify=False) 

3249 ms.uvsub() 

3250 ms.close() 

3251 

3252 The following example adds the model back into the residuals. 

3253 

3254 ms.open('ngc5921.ms',nomodify=False) 

3255 ms.uvsub(reverse=True) 

3256 ms.close() 

3257 

3258 -------------------------------------------------------------------------------- 

3259 

3260 """ 

3261 return _ms.ms_uvsub(self, *args, **kwargs) 

3262 

3263 

3264 def addephemeris(self, *args, **kwargs): 

3265 """ 

3266 addephemeris(self, _id, _ephemerisname, _comment, _field) -> bool 

3267 

3268 

3269 

3270 Summary: 

3271 Connect an ephemeris table with the MS FIELD table 

3272 

3273 Description: 

3274 

3275 

3276 

3277 

3278 Input Parameters: 

3279 id The unique id number to give to this ephemeris (will overwrite pre-existing ephemeris of same id, -1 will use next unused id). 

3280 ephemerisname The name of the ephemeris table which is to be copied into the MS. 

3281 comment Comment string (no spaces, will be part of a file name).  

3282 field Field id(s) (0-based) or fieldname(s) to connect this ephemeris to.  

3283 

3284 Example: 

3285 

3286 ms.addephemeris(id=0, ephemerisname='Titan_55002-55003dUTC.tab', 

3287 comment='JPLTitan', field='Titan') 

3288 

3289 -------------------------------------------------------------------------------- 

3290 

3291 """ 

3292 return _ms.ms_addephemeris(self, *args, **kwargs) 

3293 

3294 

3295 def timesort(self, *args, **kwargs): 

3296 """ 

3297 timesort(self, _newmsname) -> bool 

3298 

3299 

3300 

3301 Summary: 

3302 Sort the main table of an MS by time 

3303 

3304 Description: 

3305 

3306 

3307 This function sorts the main table of the measurement set by the 

3308 contents of the column TIME in ascending order and writes a copy of 

3309 the MS with the sorted main table into newmsfile. 

3310 

3311 If no newmsname is given, a sorted copy of the MS is written into a 

3312 new MS under the name x.sorted (where x is the name of the original 

3313 MS). The original MS is then closed and deleted. The new MS is 

3314 renamed to the name of the original MS and then reopened. 

3315 

3316 

3317 Input Parameters: 

3318 newmsname Name of the output measurement set (default: overwrite original) 

3319 

3320 Example: 

3321 

3322 ms.open('3C273XC1.MS', nomodify=False) 

3323 ms.timesort() 

3324 ms.done() 

3325 

3326 This example sorts the main table of 3C273XC1.MS by time. The 

3327 original MS is overwritten by the sorted one. 

3328 

3329 -------------------------------------------------------------------------------- 

3330 

3331 """ 

3332 return _ms.ms_timesort(self, *args, **kwargs) 

3333 

3334 

3335 def sort(self, *args, **kwargs): 

3336 """ 

3337 sort(self, _newmsname, _columns) -> bool 

3338 

3339 

3340 

3341 Summary: 

3342 Sort the main table of an MS using a custom set of columns 

3343 

3344 Description: 

3345 

3346 

3347 This function sorts the main table of the measurement set by the 

3348 contents of the input set of columns in ascending order and writes 

3349 a copy of the MS with the sorted main table into newmsfile. 

3350 

3351 If no newmsname is given, a sorted copy of the MS is written into a 

3352 new MS under the name x.sorted (where x is the name of the original 

3353 MS). The original MS is then closed and deleted. The new MS is 

3354 renamed to the name of the original MS and then reopened. 

3355 

3356 

3357 Input Parameters: 

3358 newmsname Name of the output measurement set (default: overwrite original). 

3359 columns Vector of column names (case sensitive). 

3360 

3361 Example: 

3362 

3363 ms.open('3C273XC1.MS', nomodify=False) 

3364 ms.sort(['ANTENNA1','ANTENNA2']) 

3365 ms.done() 

3366 

3367 This example sorts the main table of 3C273XC1.MS by ANTENNA1 and 

3368 then ANTENNA2. The original MS is overwritten by the sorted one. 

3369 

3370 -------------------------------------------------------------------------------- 

3371 

3372 """ 

3373 return _ms.ms_sort(self, *args, **kwargs) 

3374 

3375 

3376 def iterinit(self, *args, **kwargs): 

3377 """ 

3378 iterinit(self, _columns, _interval, _maxrows, _adddefaultsortcolumns) -> bool 

3379 

3380 

3381 

3382 Summary: 

3383 Initialize for iteration over an ms.  

3384 

3385 Description: 

3386 

3387 

3388 Specify the columns to iterate over and the time interval to use 

3389 for the TIME column iteration. The columns are specified by their 

3390 MS column name and must contain scalar values. 

3391 

3392 Note that the following default sort columns are always added to 

3393 the specified columns: array_id, field_id, data_desc_id and time. 

3394 This is so that the iterator can keep track of the coordinates 

3395 associated with the data (field direction, frequency, etc.). If you 

3396 want to sort on these columns last instead of first, you need to 

3397 include them in the columns specified. If you don't want to sort on 

3398 these columns at all, you can set adddefaultsortcolumns to False. 

3399 

3400 You may want to use iteration for a large dataset. After calling 

3401 iterinit, you must call iterorigin before attempting to retrieve 

3402 data with getdata. 

3403 

3404 You need to call selectinit before calling this. 

3405 

3406 

3407 Input Parameters: 

3408 columns Vector of column names (case sensitive). 

3409 interval Time interval in seconds (greater than 0), to group together in iteration. 

3410 maxrows Max number of rows (greater than 0) to return in iteration. 

3411 adddefaultsortcolumns Add the default sort columns. 

3412 

3413 Example: 

3414 

3415 See the example for the iterend function. 

3416 

3417 -------------------------------------------------------------------------------- 

3418 

3419 """ 

3420 return _ms.ms_iterinit(self, *args, **kwargs) 

3421 

3422 

3423 def iterorigin(self): 

3424 """ 

3425 iterorigin(self) -> bool 

3426 

3427 

3428 

3429 Summary: 

3430 Set the iterator to the start of the data.  

3431 

3432 Description: 

3433 

3434 

3435 Set or reset the iterator to the start of the currently specified 

3436 iteration. You need to call this after iterinit, before attempting 

3437 to retrieve data with getdata. You may also use iterorigin to set 

3438 the iterator back to the start before you reach the end of the 

3439 data. 

3440 

3441 

3442 Example: 

3443 

3444 See the example for the iterend function. 

3445 

3446 -------------------------------------------------------------------------------- 

3447 

3448 """ 

3449 return _ms.ms_iterorigin(self) 

3450 

3451 

3452 def iternext(self): 

3453 """ 

3454 iternext(self) -> bool 

3455 

3456 

3457 

3458 Summary: 

3459 Advance the iterator to the next lot of data.  

3460 

3461 Description: 

3462 

3463 

3464 This sets the currently selected table (as accessed with getdata) 

3465 to the next iteration. If there is no more data, the function 

3466 returns False and the selection is reset to that before the 

3467 iteration started. You need to call iterinit and iterorigin 

3468 before calling this. 

3469 

3470 

3471 Example: 

3472 

3473 See the example for the iterend function. 

3474 

3475 -------------------------------------------------------------------------------- 

3476 

3477 """ 

3478 return _ms.ms_iternext(self) 

3479 

3480 

3481 def iterend(self): 

3482 """ 

3483 iterend(self) -> bool 

3484 

3485 

3486 

3487 Summary: 

3488 End the iteration and reset the selected table.  

3489 

3490 Description: 

3491 

3492 

3493 This sets the currently selected table (as accessed with 

3494 getdata) to the table that was selected before iteration 

3495 started. Use this to end the iteration prematurely. There is no 

3496 need to call this if you continue iterating until iternext 

3497 returns False. 

3498 

3499 See the example below. 

3500 

3501 

3502 Example: 

3503 

3504 ms.open('3C273XC1.MS') 

3505 ms.selectinit(datadescid=0) 

3506 ms.iterinit(['ANTENNA1','ANTENNA2','TIME'],60.0) 

3507 ms.iterorigin() 

3508 rec=ms.getdata(['u','v','data']) 

3509 ms.iternext() 

3510 rec=ms.getdata(['u','v','data']) 

3511 ms.iterend() 

3512 

3513 We open the MS, select an array and spectral window and then 

3514 specify an iteration over interferometer and time, with a 60s time 

3515 interval. We then set the iterator to the start of the data and 

3516 get out some data. Then we advance the iterator to the next lot 

3517 of data, and finally end the iteration. 

3518 

3519 -------------------------------------------------------------------------------- 

3520 

3521 """ 

3522 return _ms.ms_iterend(self) 

3523 

3524 

3525 def ngetdata(self, *args, **kwargs): 

3526 """ 

3527 ngetdata(self, _items, _ifraxis, _ifraxisgap, _increment, _average) -> record * 

3528 

3529 

3530 

3531 Summary: 

3532 Read values from the measurement set.  

3533 

3534 Description: 

3535 

3536 

3537 DEPRECATED: Please use the ms::getdata() function in place 

3538 of ms::ngetdata(). 

3539 

3540 This method extracts the data as specified in the items 

3541 parameter. The data is returned as a record with each item 

3542 as a separate key in the record (all in lower case). 

3543 

3544 Unless the iterator was initialized with a niterinit(), this 

3545 method initializes the iterator as niterinit(['..'],0.0,0,False). 

3546 

3547 

3548 Input Parameters: 

3549 items Item names (NOT USED) 

3550 ifraxis Create interferometer axis if True (NOT USED)  

3551 ifraxisgap Gap size on ifr axis when antenna1 changes (NOT USED)  

3552 increment Row increment for data access (NOT USED)  

3553 average Average the data in time or over rows (NOT USED)  

3554 

3555 -------------------------------------------------------------------------------- 

3556 

3557 """ 

3558 return _ms.ms_ngetdata(self, *args, **kwargs) 

3559 

3560 

3561 def niterinit(self, *args, **kwargs): 

3562 """ 

3563 niterinit(self, _columns, _interval, _maxrows, _adddefaultsortcolumns) -> bool 

3564 

3565 

3566 

3567 Summary: 

3568 Initialize for iteration over an ms.  

3569 

3570 Description: 

3571 

3572 

3573 DEPRECATED: Please use the ms::iterinit() function in place 

3574 of ms::niterinit(). 

3575 

3576 

3577 Input Parameters: 

3578 columns Vector of column names (case sensitive). This parameter is not used and is here only for backwards compatibility with the iterinit() method.  

3579 interval Time interval in seconds (greater than 0), to group together in iteration  

3580 maxrows Max number of rows (greater than 0) to return in iteration.  

3581 adddefaultsortcolumns Add the default sort columns  

3582 

3583 -------------------------------------------------------------------------------- 

3584 

3585 """ 

3586 return _ms.ms_niterinit(self, *args, **kwargs) 

3587 

3588 

3589 def niterorigin(self): 

3590 """ 

3591 niterorigin(self) -> bool 

3592 

3593 

3594 

3595 Summary: 

3596 Set the iterator to the start of the data.  

3597 

3598 Description: 

3599 

3600 

3601 DEPRECATED: Please use the ms::iterorigin() function in place 

3602 of ms::niterorigin(). 

3603 

3604 Set or reset the iterator to the start of the currently 

3605 specified iteration. You need to call this before attempting to 

3606 iteratively retrieve data with ngetdata. You can set the 

3607 iteration back to the start before you reach the end of the 

3608 data. You need to call iterinit before calling this. See the 

3609 example below. 

3610 

3611 

3612 Example: 

3613 

3614 See the example for the niterend function. 

3615 

3616 -------------------------------------------------------------------------------- 

3617 

3618 """ 

3619 return _ms.ms_niterorigin(self) 

3620 

3621 

3622 def niternext(self): 

3623 """ 

3624 niternext(self) -> bool 

3625 

3626 

3627 

3628 Summary: 

3629 Advance the iterator to the next lot of data.  

3630 

3631 Description: 

3632 

3633 

3634 DEPRECATED: Please use the ms::iternext() function in place 

3635 of ms::niternext(). 

3636 

3637 This sets the currently selected table (as accessed with 

3638 ngetdata) to the next iteration. If there is no more data, the 

3639 function returns False. You need to call iterinit and 

3640 iterorigin before calling this. See the example below. 

3641 

3642 

3643 Example: 

3644 

3645 See the example for the niterend function. 

3646 

3647 -------------------------------------------------------------------------------- 

3648 

3649 """ 

3650 return _ms.ms_niternext(self) 

3651 

3652 

3653 def niterend(self): 

3654 """ 

3655 niterend(self) -> bool 

3656 

3657 

3658 

3659 Summary: 

3660 Query if there are more iterations left in the iterator.  

3661 

3662 Description: 

3663 

3664 

3665 DEPRECATED: Please use the ms::iterend() function in place 

3666 of ms::niterend(). 

3667 

3668 The serves redundant purpose and is here only for backward 

3669 compatibility. 

3670 

3671 This method returns True if there are no more iterations left. 

3672 I.e., the iterations have ended. This same information is also 

3673 returned by niternext(). 

3674 

3675 With the use of the VisibilityIterator in the niterinit(), 

3676 niterorigin(), niternext() methods, the iterator is set to the 

3677 original state by calling niterinit() at any time. 

3678 

3679 See the example below. 

3680 

3681 

3682 Example: 

3683 

3684 ms.open('3C273XC1.MS') 

3685 staql={'baseline':'1 & 2'}; 

3686 ms.msselect(staql); 

3687 ms.niterinit([' '],60.0) 

3688 ms.niterorigin() 

3689 while (!ms.niterend()): 

3690 rec=ms.ngetdata(['u','v','data']) 

3691 ms.niternext() 

3692 ms.close() 

3693 

3694 We open the MS, select a baseline and then specify an iteration 

3695 over time, with a 60s time interval. We then set the iterator 

3696 to the start of the data and get out some data. We advance the 

3697 iterator to the next lot of data and continue till the end of 

3698 iterations is indicated. Finally, we close the ms tool which 

3699 restores the tool to its original state. 

3700 

3701 -------------------------------------------------------------------------------- 

3702 

3703 """ 

3704 return _ms.ms_niterend(self) 

3705 

3706 

3707 def nrowold(self, *args, **kwargs): 

3708 """ 

3709 nrowold(self, _selected) -> long 

3710 

3711 

3712 

3713 Summary: 

3714 Returns the number of rows in the measurement set 

3715 

3716 Description: 

3717 

3718 

3719 DEPRECATED: Please use the ms::nrow() function in place of 

3720 ms::nrowold(). 

3721 

3722 This function returns the number of rows in the measurement 

3723 set. If the optional argument selected is set to True, it returns 

3724 the number of currently selected rows, otherwise it returns the 

3725 the number of rows in the original measurement. 

3726 

3727 

3728 Input Parameters: 

3729 selected return number of selected rows 

3730 

3731 Example: 

3732 

3733 ms.open('3C273XC1.MS') 

3734 print 'Number of rows in ms =', ms.nrowold() 

3735 #Number of rows in ms = 7669 

3736 

3737 -------------------------------------------------------------------------------- 

3738 

3739 """ 

3740 return _ms.ms_nrowold(self, *args, **kwargs) 

3741 

3742 

3743 def rangeold(self, *args, **kwargs): 

3744 """ 

3745 rangeold(self, _items, _useflags, _blocksize) -> record * 

3746 

3747 

3748 

3749 Summary: 

3750 Get the range of values in the measurement set 

3751 

3752 Description: 

3753 

3754 

3755 DEPRECATED: Please use the ms::range() function in place of 

3756 ms::rangeold(). 

3757 

3758 This function will return the range of values in the currently 

3759 selected measurement set for the items specified. Possible items 

3760 include most scalar columns, interferometer number 

3761 (1000*antenna1+antenna2), uvdist(ance), u, v, w, amplitude, phase, 

3762 real and imaginary components of the data (and corrected and model 

3763 versions of these - if these columns are present). See the table 

3764 at the top of the document to find the exact list. 

3765 

3766 You specify items in which you are interested using a string 

3767 vector where each element is a case insensitive item name. This 

3768 function will then return a record that has fields corresponding 

3769 to each of the specified items. Each field will contain the range 

3770 of the specified item. For many items the range will be the 

3771 minimum and maximum values but for some it will be a list of 

3772 unique values. Unrecognized items are ignored. 

3773 

3774 By default the FLAG column is used to exclude flagged data before 

3775 any ranges are determined, but you can set useflags=False to 

3776 include flagged data in the range. However, if you average in 

3777 frequency, flagging will still be applied. 

3778 

3779 You can influence the memory use and the reading speed using 

3780 the blocksize argument - it specifies how big a block of data 

3781 to read at once (in MB). For large datasets on machines with lots 

3782 of memory you may speed things up by setting this higher than the 

3783 default (10 MB). 

3784 

3785 For some items, you need to call selectinitold to select a portion 

3786 of the data with a unique shape prior to calling this function. 

3787 

3788 Items prefixed with corrected, model, residual or obs_residual 

3789 are not available unless your measurement set has been processed 

3790 either with the imager or calibrator tools. 

3791 

3792 

3793 Input Parameters: 

3794 items Item names 

3795 useflags Use the data flags 

3796 blocksize Set the blocksize in MB 

3797 

3798 Example: 

3799 

3800 ms.open('3C273XC1.MS') 

3801 ms.selectinitold(datadescid=0) 

3802 ms.rangeold(['time','uvdist','amplitude','antenna1']) 

3803 #{'amplitude': array([ 2.60339398e-02, 3.38518333e+01]), 

3804 # 'antenna1': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 

3805 # 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]), 

3806 # 'time': array([ 4.12162940e+09, 4.12164267e+09]), 

3807 # 'uvdist': array([ 46.26912101, 3727.97385983])} 

3808 

3809 In this example the minimum and maximum observation times, 

3810 uvdistances, data amplitudes are returned as well as a list of all 

3811 the antennas in the antenna1 column. 

3812 

3813 For this dataset the selectinitold function did not need to be 

3814 called as all the data is of one shape. 

3815 

3816 -------------------------------------------------------------------------------- 

3817 

3818 """ 

3819 return _ms.ms_rangeold(self, *args, **kwargs) 

3820 

3821 

3822 def selectinitold(self, *args, **kwargs): 

3823 """ 

3824 selectinitold(self, _datadescid, _reset) -> bool 

3825 

3826 

3827 

3828 Summary: 

3829 Initialize the selection of an ms 

3830 

3831 Description: 

3832 

3833 

3834 DEPRECATED: Please use the ms::selectinit() function in place of 

3835 ms::selectinitold(). 

3836 

3837 A measurement set can contain data with a variety of different 

3838 shapes (as described in the overall description to this tool). To 

3839 allow functions to return data in fixed shape arrays you need to 

3840 select, using this function, rows that contain the same data 

3841 shape. You do not need to use this function if all the data in 

3842 your measurement set has only one shape. 

3843 

3844 The DATA_DESC_ID column in the measurement set contains a 

3845 value that maps to a particular row in the POLARIZATION and 

3846 SPECTRAL_WINDOW subtables. Hence all rows with the same 

3847 value in the DATA_DESC_ID column must have the same data 

3848 shape. To select all the data where the DATA_DESC_ID value 

3849 is $N$ you call this function with the datadescid argument set to 

3850 $N$. 

3851 

3852 It is possible to have a measurement set with differing values in 

3853 the DATA_DESC_ID column but where all the data is a fixed 

3854 shape. For example this will occur if the reference frequency 

3855 changes but the number of spectral channels is fixed. In cases 

3856 like this all the data can be selected, using this function with 

3857 an argument of zero. If the data shape does change and you call 

3858 this function with an datadescid set to zero the return value will be False. In all other cases it 

3859 will be True. 

3860 

3861 To return to the completely unselected measurement set, set the 

3862 reset argument to True. This will allow you to access the full 

3863 range of rows in the measurement set, rather than just the 

3864 selected measurement set. 

3865 

3866 The datadescid must always be a non-negative integer. 

3867 

3868 

3869 Input Parameters: 

3870 datadescid Data description id 

3871 reset Reset to unselected state 

3872 

3873 Example: 

3874 

3875 ms.open('3C273XC1.MS') 

3876 ms.selectinitold(datadescid=0) 

3877 print ms.rangeold(['uvdist']) 

3878 ms.selectinitold(reset=True) 

3879 print ms.rangeold('uvdist') 

3880 

3881 In this example we display the range of uv distances for the data 

3882 in the specified measurement set (the range 'items' argument is a 

3883 list of strings, even if only one item is requested). The first 

3884 print statement will only use data where the DATA_DESC_ID column is 

3885 0. This will correspond to a specific spectral window and 

3886 polarization setup. The second print statement will print the range 

3887 of uv distances for all the data in the measurement set (which is 

3888 the same in this case). 

3889 

3890 -------------------------------------------------------------------------------- 

3891 

3892 """ 

3893 return _ms.ms_selectinitold(self, *args, **kwargs) 

3894 

3895 

3896 def selectold(self, *args, **kwargs): 

3897 """ 

3898 selectold(self, _items) -> bool 

3899 

3900 

3901 

3902 Summary: 

3903 Select a subset of the measurement set. 

3904 

3905 Description: 

3906 

3907 

3908 DEPRECATED: Please use the ms::select() function in place of 

3909 ms::selectold(). 

3910 

3911 This function will select a subset of the current measurement set 

3912 based on the range of values for each field in the input record. 

3913 The rangeold function will return a record that can be altered and 

3914 used as the argument for this function. A successful selection 

3915 returns True. Unrecognized fields are ignored. 

3916 

3917 Allowable items for selectold include: antenna1, antenna2, 

3918 array_id, feed1, feed2, field_id, ifr_number, rows, scan_number, 

3919 data_desc_id, time, times, u, v, w, and uvdist. 

3920 

3921 You need to call selectinitold before 

3922 calling this function. If you haven't then selectinitold will be 

3923 called for you with default arguments. 

3924 

3925 Repeated use of this function, with different arguments, will 

3926 further refine the selection, resulting in a successively smaller 

3927 selected measurement set. If the selected measurement set does not 

3928 contain any rows then this function will return False and send a 

3929 warning message in the logger. Otherwise this function will return 

3930 True. To undo all the selections you need to use the selectinitold 

3931 function (with reset=True). 

3932 

3933 

3934 Input Parameters: 

3935 items record with fields contain ranges and enumerations 

3936 

3937 Example: 

3938 

3939 ms.open('3C273XC1.MS') 

3940 ms.selectinitold(datadescid=0) 

3941 ms.selectold({'antenna1':[1,3,5],'uvdist':[1200.,1900.]}) 

3942 ms.selectold({'time':[4121629420.,4121638290.]}) 

3943 # Or, convert time strings to seconds: 

3944 start = qa.getvalue(qa.convert( 

3945 qa.quantity('1989/06/27/01:03:40'),'s'))[0] 

3946 stop = qa.getvalue(qa.convert( 

3947 qa.quantity('1989/06/27/03:31:30'),'s'))[0] 

3948 rec = {} 

3949 rec['time'] = [start, stop] 

3950 ms.selectold(items=rec) 

3951 

3952 This example selects all the data from the measurement set where 

3953 the value in the DATA_DESC_ID column is zero. This corresponds to a 

3954 particular spectral window and polarization setup. It then selects 

3955 all the data where the first antenna in the interferometer is 

3956 number one, three or five and where the uv distance is between 1200 

3957 and 1900 meters. Finally it selects all the data which was 

3958 observed between 4121629420 seconds and 4121638290 seconds (since 

3959 zero hours on the day where the modified Julian day is zero). Since 

3960 this time in seconds is quite obscure I have also illustrated how 

3961 to use the quanta tool to convert a date/time string into seconds 

3962 which can then be used to perform the same time selection. 

3963 

3964 The selections are cumulative so that at the end of this example 

3965 only data in the specified time range, with the specified, 

3966 interferometers, uv distances, spectral window and polarization 

3967 setup are selected. 

3968 

3969 -------------------------------------------------------------------------------- 

3970 

3971 """ 

3972 return _ms.ms_selectold(self, *args, **kwargs) 

3973 

3974 

3975 def selecttaqlold(self, *args, **kwargs): 

3976 """ 

3977 selecttaqlold(self, _msselect) -> bool 

3978 

3979 

3980 

3981 Summary: 

3982 Select a subset of the measurement set. 

3983 

3984 Description: 

3985 

3986 

3987 DEPRECATED: Please use the ms::selecttaql() function in place of 

3988 ms::selecttaqlold(). 

3989 

3990 This function will select a subset of the current measurement set 

3991 based on the standard TaQL selection string given. 

3992 

3993 Repeated use of this function, with different arguments, will 

3994 further refine the selection, resulting in a successively smaller 

3995 selected measurement set. If the selected measurement set does not 

3996 contain any rows then this function will return False and send a 

3997 warning message in the logger. Otherwise this function will return 

3998 True. To undo all the selections you need to use the selectinitold 

3999 function (with reset=True). Note that index values used in the TaQL 

4000 string are zero-based as are all tool indices. 

4001 

4002 

4003 

4004 Input Parameters: 

4005 msselect TaQL selection string 

4006 

4007 Example: 

4008 

4009 ms.open('3C273XC1.MS') 

4010 ms.selectinitold(datadescid=0) 

4011 ms.selectold({'antenna1':[0,2,4],'uvdist':[1200.,1900.]}) 

4012 ms.selecttaqlold('ANTENNA1==2') 

4013 ms.rangeold(['ANTENNA1','ANTENNA2']) 

4014 # {'antenna1': array([2]), 

4015 # 'antenna2': array([ 6, 9, 11, 18, 20, 21, 24])} 

4016 

4017 This example selects all the data from the measurement set where 

4018 the value in the DATA_DESC_ID column is zero. This corresponds to a 

4019 particular spectral window and polarization setup. It then selects 

4020 all the data where the first antenna in the interferometer is 

4021 number zero, two or four and where the uv distance is between 1200 

4022 and 1900 meters. Finally it uses a query to select all the data 

4023 for which the ANTENNA1 column is 2 (this selects the middle antenna 

4024 of the previous, zero-based, selection). The selections are 

4025 cumulative so that at the end of this example only data in the 

4026 specified time range, with the specified interferometers, uv 

4027 distances, spectral window and polarization setup are selected. 

4028 

4029 -------------------------------------------------------------------------------- 

4030 

4031 """ 

4032 return _ms.ms_selecttaqlold(self, *args, **kwargs) 

4033 

4034 

4035 def selectchannelold(self, *args, **kwargs): 

4036 """ 

4037 selectchannelold(self, _nchan, _start, _width, _inc) -> bool 

4038 

4039 

4040 

4041 Summary: 

4042 Select and average frequency channels 

4043 

4044 Description: 

4045 

4046 

4047 DEPRECATED: Please use the ms::selectchannel() function in place of 

4048 ms::selectchannelold(). 

4049 

4050 This function allows you to select a subset of the frequency 

4051 channels in the current measurement set. This function can also 

4052 average, over frequency channels, prior to providing the values to 

4053 the user. 

4054 

4055 Selection on channels is not allowed using either the select or 

4056 command functions as they can only select entire rows in a 

4057 measurement set. Channel selection involves accessing only some of 

4058 the values in a row. Like all the selection functions this 

4059 function does not change the current measurement but updates the 

4060 measurement set selection parameters so that functions like 

4061 getdataold will return the desired subset of the data. Repeated 

4062 use of this function will overwrite any previous channel selection. 

4063 

4064 There are four parameters, the number of output channels, the 

4065 first input channel to use, the number of input channels to 

4066 average into one output channel, and the increment in the input 

4067 spectrum for the next output channel. All four parameters need to 

4068 be specified. 

4069 

4070 When all data to be averaged is unflagged, the result is the 

4071 averaged value and the corresponding flag is False. When all data 

4072 is flagged, the result is set to zero and the corresponding flag is 

4073 True. When data to be averaged is mixed (unflagged and flagged), 

4074 only the unflagged values are averaged and the flag is set to 

4075 False. 

4076 

4077 This function return True if the selection was successful, and 

4078 False if not. In the latter case an error message will also be sent 

4079 to the logger. 

4080 

4081 You need to call selectinitold before 

4082 calling this function. If you haven't then selectinitold will be 

4083 called for you with default arguments. 

4084 

4085 

4086 Input Parameters: 

4087 nchan Number of output channels, positive integer 

4088 start First input channel to use, positive integer 

4089 width Number of input channels to average together, positive integer  

4090 inc Increment to next (group of) input channel(s), positive integer  

4091 

4092 Example: 

4093 

4094 ms.fromfits('NGC5921.MS', 

4095 '/usr/lib/casapy/data/demo/NGC5921.fits') 

4096 ms.selectinitold(datadescid=0) 

4097 ms.selectchannelold(3,2,5,3) 

4098 

4099 This example selects all the data from the measurement set where 

4100 the value in the DATA_DESC_ID column is zero. This corresponds to a 

4101 particular spectral window and polarization setup. It then selects 

4102 on frequency channels to produce 3 output channels, the first 

4103 output channel is the average of channels 2,3,4,5,6 in the input, 

4104 the second output channel is the average of channel 5,6,7,8,9 and 

4105 the third is the average of channels 8,9,10,11,12. 

4106 

4107 -------------------------------------------------------------------------------- 

4108 

4109 """ 

4110 return _ms.ms_selectchannelold(self, *args, **kwargs) 

4111 

4112 

4113 def selectpolarizationold(self, *args, **kwargs): 

4114 """ 

4115 selectpolarizationold(self, _wantedpol) -> bool 

4116 

4117 

4118 

4119 Summary: 

4120 Selection and convertion of polarizations 

4121 

4122 Description: 

4123 

4124 

4125 DEPRECATED: Please use the ms::selectpolarization() function in 

4126 place of ms::selectpolarizationold(). 

4127 

4128 This function allows you to select a subset of the polarizations 

4129 in the current measurement set. This function can also setup 

4130 conversion to different polarization representations. 

4131 

4132 You specify the polarizations using a string vector. Allowable 

4133 strings are include I, Q, U, V, RR, RL, LR, LL, XX, YY, XY, 

4134 YX. These string must be specified in upper case. If the 

4135 polarizations match those present in the measurement set they will 

4136 be selected directly, otherwise all polarizations are read and 

4137 then a conversion step is done. If the conversion cannot be done 

4138 then an error will be produced when you try to access the data. 

4139 

4140 This function return True if the selection was successful, and 

4141 False if not. 

4142 

4143 You need to call selectinitold before 

4144 calling this function. If you haven't then selectinitold will be 

4145 called for you with default arguments. 

4146 

4147 

4148 Input Parameters: 

4149 wantedpol The polarizations wanted 

4150 

4151 Example: 

4152 

4153 ms.open('3C273XC1.MS') 

4154 ms.selectinitold(datadescid=0) 

4155 ms.selectpolarizationold(['I','V']) 

4156 rec = ms.getdataold('data') 

4157 

4158 This example selects all the data from the measurement set where 

4159 the value in the DATA_DESC_ID column is zero. This corresponds to a 

4160 particular spectral window and polarization setup. It then selects 

4161 the I and V polarizations and when the getdataold function is 

4162 called the conversion from RR, LL, LR, RL polarizations to I and V 

4163 occurs. 

4164 

4165 -------------------------------------------------------------------------------- 

4166 

4167 """ 

4168 return _ms.ms_selectpolarizationold(self, *args, **kwargs) 

4169 

4170 

4171 def getdataold(self, *args, **kwargs): 

4172 """ 

4173 getdataold(self, _items, _ifraxis, _ifraxisgap, _increment, _average) -> record * 

4174 

4175 

4176 

4177 Summary: 

4178 Read values from the measurement set. 

4179 

4180 Description: 

4181 

4182 

4183 DEPRECATED: Please use the ms::getdata() function in place 

4184 of ms::getdataold(). 

4185 

4186 This function will read the specified items from the currently 

4187 selected measurement set and returns them in fields of a record. 

4188 The main difference between this and direct access of the table, 

4189 using the table tool, is that this function reads data from the 

4190 selected measurement set, it provides access to derived 

4191 quantities like amplitude and flag_sum and it can reorder the 

4192 data. 

4193 

4194 The items to read are specified, as with the rangeold function, 

4195 using a vector of strings. Allowable items include: amplitude, 

4196 corrected_amplitude, model_amplitude, ratio_amplitude, 

4197 residual_amplitude, obs_residual_amplitude, antenna1, antenna2, 

4198 axis_info, data, corrected_data, model_data, ratio_data, 

4199 residual_data, obs_residual_data, feed1, feed2, field_id, flag, 

4200 flag_row, flag_sum, ha (added to axis_info), ifr_number, imaginary, 

4201 corrected_imaginary, model_imaginary, ratio_imaginary, 

4202 residual_imaginary, obs_residual_imaginary, last (added to 

4203 axis_info), phase, corrected_phase, model_phase, ratio_phase, 

4204 residual_phase, obs_residual_phase, real, corrected_real, 

4205 ratio_real, residual_real, obs_residual_real, scan_number, sigma, 

4206 data_desc_id, time, ut (added to axis_info), uvw, u, v, w, uvdist, 

4207 and weight. Unrecognized items will result in a warning being sent 

4208 to the logger. Duplicate items are silently ignored. 

4209 

4210 The record that is returned contains fields that correspond to 

4211 each of the specified items. Most fields will contain an array. The 

4212 array may be one, two or three dimensional depending on whether the 

4213 corresponding row in the measurement set is a scalar, one or two 

4214 dimensional. Unless the ifraxis argument is set to True the length 

4215 of the last axis on these arrays will correspond to the number of 

4216 rows in the selected measurement set. 

4217 

4218 If the ifraxis argument is set to True, the row axis is split into 

4219 an interferometer axis and a time axis. For example a measurement 

4220 set with 90 rows, in an array with 6 telescopes (so that there are 

4221 15 interferometers), may have a data array of shape [4,32,90] 

4222 if ifraxis is False or [4,32,15,6], if ifraxis is True (assuming 

4223 there are 4 correlations and 32 channels). If there are missing 

4224 rows as will happen if not all interferometers where used for all 

4225 time-slots then a default value will be inserted. 

4226 

4227 This splitting of the row axis may not happen for items where 

4228 there is only a single value per row. For some items the returned 

4229 vector will contain only as many values as there are 

4230 interferometers and it is implicit that the same value should be 

4231 used for all time slots. The antenna1, antenna2, feed1, feed2, and 

4232 ifr_number items fall in this category. For other items the 

4233 returned vector will have as many values as there are time slots 

4234 and it is implicit that the same value should be used for all 

4235 interefometers. The field_id, scan_number, data_desc_id, and 

4236 time items fall into this category. 

4237 

4238 The axis_info item provides data labelling information. It 

4239 returns a record with the following fields: corr_axis, freq_axis, 

4240 ifr_axis and time_axis. The latter two fields are not present if 

4241 ifr_axis is set to False. The corr_axis field contains a string 

4242 vector with elements like 'RR' or 'XY' that indicates which 

4243 polarizations where correlated together to produce the data. The 

4244 length of this vector will always be the same as the length of the 

4245 first axis of the data array. The freq_axis field contains a record 

4246 with two fields, chan_freq and resolution. Each of these fields 

4247 contains vectors which indicate the centre frequency and spectral 

4248 resolution (FWHM) of each channel. The length of these vectors will 

4249 be the same as the length of the second axis in the data. The 

4250 ifr_axis field contains fields: ifr_number, ifr_name, 

4251 ifr_shortname, and baseline. The ifr_number is the same as returned 

4252 by the ifr_item, the ifr_name and ifr_shortname are string vecors 

4253 containing descriptions of the interferometer and the baseline is 

4254 the Euclidian distance, in meters between the two antennas. All of 

4255 these vectors have a length equal to the number of interferometers 

4256 in the selected measurement set ie., to the length of the third 

4257 axis in the data when ifraxis is True. The time_axis field contains 

4258 the MJD seconds field and optionally the HA, UT, and LAST fields. 

4259 To include the optional fields you need to add the ha, last or ut 

4260 strings to the list of requested items. All the fields in the 

4261 time_axis record contain vectors that indicate the time at the 

4262 midpoint of the observation and are in seconds. The MJD seconds 

4263 field is since 0 hours on the day having a modified julian day 

4264 number of zero and the rest are since midnight prior to the start 

4265 of the observation. 

4266 

4267 An optional gap size can be specified to visually separate groups 

4268 of interferometers with the same antenna1 index (handy for 

4269 identifying antennas in an interferometer vs time display). The 

4270 default is no gap. 

4271 

4272 An optional increment can be specified to return data from every 

4273 row matching the increment only. 

4274 

4275 When the average flag is set, the data will be averaged over the 

4276 time axis if the ifraxis is True or the row axis i.e., different 

4277 interferometers and times may be averaged together. In the latter 

4278 case, some of the coordinate information, like antenna_id, will 

4279 no longer make sense. When all data to be averaged is unflagged, 

4280 the result is the averaged value and the corresponding flag is 

4281 False. When all data is flagged, the result is set to zero and the 

4282 corresponding flag is True. When data to be averaged is mixed 

4283 (unflagged and flagged), only the unflagged values are averaged and 

4284 the flag is set to False. 

4285 

4286 You need to call selectinitold before 

4287 calling this function. If you haven't then selectinitold will be 

4288 called for you with default arguments. 

4289 

4290 Items prefixed with corrected, model, residual or obs_residual are 

4291 not available unless your measurement set has been processed either 

4292 with the imager or calibrator tools. 

4293 

4294 

4295 Input Parameters: 

4296 items Item names 

4297 ifraxis Create interferometer axis if True 

4298 ifraxisgap Gap size on ifr axis when antenna1 changes 

4299 increment Row increment for data access 

4300 average Average the data in time or over rows 

4301 

4302 Example: 

4303 

4304 ms.open('3C273XC1.MS') 

4305 ms.selectinitold(datadescid=0) 

4306 # Get amplitude and MJDseconds 

4307 d = ms.getdataold(['amplitude','axis_info'],ifraxis=True) 

4308 tstart = min(d['axis_info']['time_axis']['MJDseconds']) 

4309 tstop = max(d['axis_info']['time_axis']['MJDseconds']) 

4310 maxamp = max(max(d['amplitude'][:,0,0,0]),max(d['amplitude'][0,:,0,0]), 

4311 max(d['amplitude'][0,0,:,0]),max(d['amplitude'][0,0,0,:])) 

4312 print 'MJD start time (seconds) =', tstart 

4313 # MJD start time (seconds) = 4121629400.0 

4314 print 'MJD stop time (seconds) =', tstop 

4315 # MJD stop time (seconds) = 4121642670.0 

4316 # MJDseconds Correlation amplitude 

4317 print 'Maximum correlation amplitude =', maxamp 

4318 # Maximum correlation amplitude = 33.5794372559 

4319 chan = 0 

4320 corr = 0 

4321 freqGHz = d['axis_info']['freq_axis']['chan_freq'][chan]/1.0E9 

4322 baselineStr = d['axis_info']['ifr_axis']['ifr_name'][corr] 

4323 corrStr = d['axis_info']['corr_axis'][corr] 

4324 tcoord = d['axis_info']['time_axis']['MJDseconds'] 

4325 acoord = d['amplitude'][0,0,0,:] 

4326 print 'Frequency', freqGHz, 'GHz', 'Baseline', baselineStr, '(', corrStr, ')' 

4327 print 'MJDseconds', 'Correlation amplitude' 

4328 for i in range(len(tcoord)): 

4329 print tcoord[i], acoord[i] 

4330 # 

4331 # Frequency [ 8.085] GHz Baseline 1-2 ( RR ) 

4332 # MJDseconds Correlation amplitude 

4333 # 4121629400.0 29.2170944214 

4334 # 4121629410.0 29.1688995361 

4335 # 4121629420.0 29.2497825623 

4336 # 4121629430.0 29.2029647827 

4337 # 4121629440.0 29.166015625 

4338 # 4121629450.0 29.2417526245 

4339 # 4121629460.0 29.2867794037 

4340 # 4121638270.0 0.0 

4341 # 4121638280.0 29.4539775848 

4342 # 4121638290.0 29.472661972 

4343 # 4121638300.0 29.4424362183 

4344 # 4121638310.0 29.4234466553 

4345 # 4121638320.0 29.4018745422 

4346 # 4121638330.0 29.3326053619 

4347 # 4121638340.0 29.3575496674 

4348 # 4121642600.0 31.1411132812 

4349 # 4121642610.0 31.0726108551 

4350 # 4121642620.0 31.1242599487 

4351 # 4121642630.0 31.0505466461 

4352 # 4121642640.0 31.0448284149 

4353 # 4121642650.0 30.9974422455 

4354 # 4121642660.0 31.0648326874 

4355 # 4121642670.0 31.0638961792 

4356 

4357 

4358 This example selects all the data from the measurement set where 

4359 the value in the DATA_DESC_ID column is zero. This corresponds to a 

4360 particular spectral window and polarization setup. It then gets the 

4361 correlated amplitude, and the axis information from this selected 

4362 measurement set. This is returned in the casapy variable d. The 

4363 remainder of the example prints a table of 'hour angle' and 

4364 corresponding 'correlated amplitude' for the first channel, 

4365 correlation and baseline. 

4366 

4367 -------------------------------------------------------------------------------- 

4368 

4369 """ 

4370 return _ms.ms_getdataold(self, *args, **kwargs) 

4371 

4372 

4373 def putdataold(self, *args, **kwargs): 

4374 """ 

4375 putdataold(self, _items) -> bool 

4376 

4377 

4378 

4379 Summary: 

4380 Write new values into the measurement set 

4381 

4382 Description: 

4383 

4384 

4385 DEPRECATED: Please use the ms::putdata() function in place 

4386 of ms::putdataold(). 

4387 

4388 This function allows you to write values from casapy variables back 

4389 into the measurement set table. The main difference between this 

4390 and directly accessing the table using the table tool is that this 

4391 function writes data to the selected measurement set. 

4392 

4393 Unlike the getdataold function you can only put items that 

4394 correspond to actual table columns. You cannot change the data 

4395 shape either so that the number of correlations, channels and rows 

4396 (or intereferometers/time slots) must match the values in the 

4397 selected measurement set. If the values were obtained using the 

4398 getdataold function with ifraxis argument set to True, then any 

4399 default values added to fill in missing intereferometer/timeslots 

4400 pairs will be ignored when writing the modified values back using 

4401 this function. 

4402 

4403 Allowable items include: data, corrected_data, model_data, flag, 

4404 flag_row, sigma, and weight. 

4405 

4406 The measurement set has to be opened for read/write access to be 

4407 able to use this function. 

4408 

4409 You need to call selectinitold before 

4410 calling this function. If you haven't then selectinitold will be 

4411 called for you with default arguments. 

4412 

4413 Items prefixed with corrected, model, residual or obs_residual are 

4414 not available unless your measurement set has been processed either 

4415 with the imager or calibrator tools. 

4416 

4417 

4418 Input Parameters: 

4419 items Record with items and their new values 

4420 

4421 Example: 

4422 

4423 ms.open('3C273XC1.MS', nomodify=False) 

4424 ms.selectinitold(datadescid=0) 

4425 rec = ms.getdataold(['weight','data']) 

4426 rec['weight'][:,:] = 1 

4427 import Numeric 

4428 meanrec = Numeric.average(rec['data'],axis=None) 

4429 print 'Mean data value = ', meanrec 

4430 rec['data'][:,:,:] -= meanrec 

4431 ms.putdataold(rec) 

4432 

4433 This example selects all the data from the measurement set where 

4434 the value in the DATA_DESC_ID column is zero. This corresponds to a 

4435 particular spectral window and polarization setup. Note that the 

4436 measurement set was opened for writing as well as reading. The 

4437 third line reads all the weights and the data into the variable 

4438 rec. The weights are set to one. The more obscure syntax is used as 

4439 typing rec['weight'] = 1 will not preserve the shape of the weight 

4440 array. The data then has its mean subtracted from it. The average 

4441 function is defined in Numeric module. Finally the data is written 

4442 back into the measurement set table. (NOTE: normally one should not 

4443 modify the raw data column. Such adjustments are more appropriate 

4444 for the corrected_data column, if it exists.) 

4445 

4446 -------------------------------------------------------------------------------- 

4447 

4448 """ 

4449 return _ms.ms_putdataold(self, *args, **kwargs) 

4450 

4451 

4452 def iterinitold(self, *args, **kwargs): 

4453 """ 

4454 iterinitold(self, _columns, _interval, _maxrows, _adddefaultsortcolumns) -> bool 

4455 

4456 

4457 

4458 Summary: 

4459 Initialize for iteration over an ms 

4460 

4461 Description: 

4462 

4463 

4464 DEPRECATED: Please use the ms::iterinit() function in place 

4465 of ms::iterinitold(). 

4466 

4467 Specify the columns to iterate over and the time interval to use 

4468 for the TIME column iteration. The columns are specified by their 

4469 MS column name and must contain scalar values. 

4470 

4471 Note that the following columns are always added to the specified 

4472 columns: array_id, field_id, data_desc_id and time. This is so that 

4473 the iterator can keep track of the coordinates associated with the 

4474 data (field direction, frequency, etc.). If you want to sort on 

4475 these columns last instead of first, you need to include them in 

4476 the columns specified. If you don't want to sort on these columns 

4477 at all, you can set adddefaultsortcolumns to False. 

4478 

4479 You may want to use iteration for a large dataset. After calling 

4480 iterinitold, you must call iteroriginold before attempting to 

4481 retrieve data with getdataold. 

4482 

4483 You need to call selectinitold before calling this. 

4484 

4485 

4486 Input Parameters: 

4487 columns Vector of column names (case sensitive). 

4488 interval Time interval in seconds (greater than 0), to group together in iteration 

4489 maxrows Max number of rows (greater than 0) to return in iteration 

4490 adddefaultsortcolumns Add the default sort columns 

4491 

4492 Example: 

4493 

4494 See the example for the iterendold function. 

4495 

4496 -------------------------------------------------------------------------------- 

4497 

4498 """ 

4499 return _ms.ms_iterinitold(self, *args, **kwargs) 

4500 

4501 

4502 def iteroriginold(self): 

4503 """ 

4504 iteroriginold(self) -> bool 

4505 

4506 

4507 

4508 Summary: 

4509 Set the iterator to the start of the data. 

4510 

4511 Description: 

4512 

4513 

4514 DEPRECATED: Please use the ms::iterorigin() function in place 

4515 of ms::iteroriginold(). 

4516 

4517 Set or reset the iterator to the start of the currently specified 

4518 iteration. You need to call this after iterinitold, before 

4519 attempting to retrieve data with getdataold. You may also use 

4520 iteroriginold to set the iteration back to the start before you 

4521 reach the end of the data. 

4522 

4523 

4524 Example: 

4525 

4526 See the example for the iterendold function. 

4527 

4528 -------------------------------------------------------------------------------- 

4529 

4530 """ 

4531 return _ms.ms_iteroriginold(self) 

4532 

4533 

4534 def iternextold(self): 

4535 """ 

4536 iternextold(self) -> bool 

4537 

4538 

4539 

4540 Summary: 

4541 Advance the iterator to the next lot of data 

4542 

4543 Description: 

4544 

4545 

4546 DEPRECATED: Please use the ms::iternext() function in place 

4547 of ms::iternextold(). 

4548 

4549 This sets the currently selected table (as accessed with 

4550 getdataold) to the next iteration. If there is no more data, the 

4551 function returns False and the selection is reset to that before 

4552 the iteration started. You need to call iterinitold and 

4553 iteroriginold before calling this. 

4554 

4555 

4556 Example: 

4557 

4558 See the example for the iterendold function. 

4559 

4560 -------------------------------------------------------------------------------- 

4561 

4562 """ 

4563 return _ms.ms_iternextold(self) 

4564 

4565 

4566 def iterendold(self): 

4567 """ 

4568 iterendold(self) -> bool 

4569 

4570 

4571 

4572 Summary: 

4573 End the iteration and reset the selected table 

4574 

4575 Description: 

4576 

4577 

4578 DEPRECATED: Please use the ms::iterend() function in place 

4579 of ms::iterendold(). 

4580 

4581 This sets the currently selected table (as accessed with 

4582 getdataold) to the table that was selected 

4583 before iteration started. Use this to end the iteration 

4584 prematurely. There is no need to call this if you continue 

4585 iterating until iternextold returns False. 

4586 

4587 See the example below. 

4588 

4589 

4590 Example: 

4591 

4592 ms.open('3C273XC1.MS') 

4593 ms.selectinitold(datadescid=0) 

4594 ms.iterinitold(['ANTENNA1','ANTENNA2','TIME'],60.0) 

4595 ms.iteroriginold() 

4596 rec=ms.getdataold(['u','v','data']) 

4597 ms.iternextold() 

4598 ms.iterendold() 

4599 

4600 We open the MS, select an array and spectral window and then 

4601 specify an iteration over interferometer and time, with a 60s time 

4602 interval. We then set the iterator to the start of the data and 

4603 get out some data. Finally we advance the iterator to the next lot 

4604 of data and then end the iteration. 

4605 

4606 -------------------------------------------------------------------------------- 

4607 

4608 """ 

4609 return _ms.ms_iterendold(self) 

4610 

4611 

4612 def continuumsubold(self, *args, **kwargs): 

4613 """ 

4614 continuumsubold(self, _field, _fitspw, _spw, _solint, _fitorder, _mode) -> bool 

4615 

4616 

4617 

4618 Summary: 

4619 Continuum fitting and subtraction in uv plane 

4620 

4621 Description: 

4622 

4623 

4624 DEPRECATED: This function is deprecated and will be removed in an 

4625 upcoming release. 

4626 

4627 This function provides a means of continuum determination and 

4628 subtraction by fitting a polynomial of desired order to a subset 

4629 of channels in each time-averaged uv spectrum. The fit is used 

4630 to model the continuum in all channels (not just those used in 

4631 the fit), for subtraction, if desired. Use the fitspw parameter 

4632 to limit the spectral windows processed and the range of channels 

4633 used to estimate the continuum in each (avoid channels 

4634 containing spectral lines). The default solution interval 'int' 

4635 will result in per-integration continuum fits for each baseline. 

4636 The mode parameter indicates how the continuum model (the result 

4637 of the fit) should be used: 'subtract' will store the continuum 

4638 model in the MODEL_DATA column and subtract it from the 

4639 CORRECTED_DATA column; 'replace' will replace the CORRECTED_DATA 

4640 column with the continuum model (useful if you want to image the 

4641 continuum model result); and 'model' will only store the 

4642 continuum model in the MODEL_DATA column (the CORRECTED_DATA is 

4643 unaffected). 

4644 

4645 It is important to open the dataset with nomodify=False so that 

4646 changes will be allowed (see example below). 

4647 

4648 For now, the only way to recover the un-subtracted CORRECTED_DATA 

4649 column is to use calibrater.correct() again. 

4650 

4651 Note that the MODEL_DATA and CORRECTED_DATA columns must be 

4652 present for continuumsubold to work correctly. The function will 

4653 warn the user if they are not present, and abort. To add these 

4654 scratch columns, close the ms tool, then start a calibrater or an 

4655 imager tool, which will add the scratch columns. Then restart 

4656 the ms tool, and try continuumsubold again. 

4657 

4658 

4659 Input Parameters: 

4660 field Select fields to fit 

4661 fitspw Spectral windows/channels to use for fitting the continuum; default all spectral windows in all channels 

4662 spw Select spectral windows and channels from which to subtract a continuum estimate; default: all channels in all spectral windows for which the continuum was estimated 

4663 solint Continuum fit timescale (units optional) 

4664 fitorder Polynomial order for fit 

4665 mode Desired use of fit model (see below) 

4666 

4667 Example: 

4668 

4669 ms.fromfits('ngc5921.ms','/aips++/data/demo/NGC5921.fits') 

4670 ms.close() 

4671 cb.open('ngc5921.ms') # add MODEL_DATA, CORRECTED_DATA columns 

4672 cb.close() 

4673 ms.open('ngc5921.ms',nomodify=False); # writable! 

4674 ms.continuumsubold(field=2,fitspw='0:5~9;50~59',solint=0.0, 

4675 fitorder=1,mode='subtract') 

4676 ms.done() 

4677 

4678 This example will fit a linear continuum to channels 5-9 and 50-59 

4679 in spectral window 0 in each scan-averaged spectrum for field 2, 

4680 and store the result in the MODEL_DATA column and subtract it from 

4681 the CORRECTED_DATA column. 

4682 

4683 -------------------------------------------------------------------------------- 

4684 

4685 """ 

4686 return _ms.ms_continuumsubold(self, *args, **kwargs) 

4687 

4688 __swig_destroy__ = _ms.delete_ms 

4689 __del__ = lambda self: None 

4690ms_swigregister = _ms.ms_swigregister 

4691ms_swigregister(ms) 

4692 

4693# This file is compatible with both classic and new-style classes. 

4694 

4695