Coverage for /wheeldirectory/casa-6.7.0-12-py3.10.el8/lib/py/lib/python3.10/site-packages/casatasks/mstransform.py: 89%
27 statements
« prev ^ index » next coverage.py v7.6.4, created at 2024-10-31 17:39 +0000
« prev ^ index » next coverage.py v7.6.4, created at 2024-10-31 17:39 +0000
1##################### generated by xml-casa (v2) from mstransform.xml ###############
2##################### f896d6b577e92a6032433725e483855a ##############################
3from __future__ import absolute_import
4import numpy
5from casatools.typecheck import CasaValidator as _val_ctor
6_pc = _val_ctor( )
7from casatools.coercetype import coerce as _coerce
8from casatools.errors import create_error_string
9from .private.task_mstransform import mstransform as _mstransform_t
10from casatasks.private.task_logging import start_log as _start_log
11from casatasks.private.task_logging import end_log as _end_log
12from casatasks.private.task_logging import except_log as _except_log
14class _mstransform:
15 """
16 mstransform ---- Split the MS, combine/separate/regrid spws and do channel and time averaging
20 The task mstransform can do the same functionalities available
21 in cvel, partition, hanningsmooth and split without the need to read and write
22 the output to disk multiple times. The main features of this task
23 are:
25 * take an input MS or Multi-MS (MMS)
26 * ability to create an output MS or MMS
27 * spw combination and separation
28 * channel averaging taking flags and weights into account
29 * time averaging taking flags and weights into account
30 * reference frame transformation
31 * Hanning smoothing
33 All these transformations will be applied on the fly without any writing to
34 disk to optimize I/O. The user can ask to create a Multi-MS in parallel using CASA's
35 cluster infrastructure using the parameter createmms. See MPIInterface
36 for more information on the cluster infrastructure.
38 This task is implemented in a modular way to preserve the functionalities
39 available in the replaced tasks. One can choose which functionality to apply
40 or apply all of them by setting the corresponding parameters to True. Note
41 that there is an order in which the transformations are applied to the data that
42 makes logical sense on the point of view of the data analysis.
44 This task can create a multi-MS as the output. General selection
45 parameters are included, and one or all of the various data columns
46 (DATA, LAG_DATA and/or FLOAT_DATA, and possibly MODEL_DATA and/or
47 CORRECTED_DATA) can be selected. It can also be used to create a normal
48 MS, split-based on the given data selection parameters.
50 The mstransform task creates a Multi-MS in parallel, using the CASA MPI framework.
51 The user should start CASA as follows in order to run it in parallel.
53 1) Start CASA on a single node with 8 engines. The first engine will be used as the
54 MPIClient, where the user will see the CASA prompt. All other engines will be used
55 as MPIServers and will process the data in parallel.
56 mpicasa -n 8 casa --nogui --log2term
57 mstransform(.....)
59 2) Running on a group of nodes in a cluster.
60 mpicasa -hostfile user_hostfile casa ....
61 mstransform(.....)
63 where user_hostfile contains the names of the nodes and the number of engines to use
64 in each one of them. Example:
65 pc001234a, slots=5
66 pc001234b, slots=4
68 If CASA is started without mpicasa, it is still possible to create an MMS, but
69 the processing will be done in sequential.
71 The resulting WEIGHT_SPECTRUM produced by mstransform is in the statistical
72 sense correct for the simple cases of channel average and time average, but not for
73 the general re-gridding case, in which the error propagation formulas applicable for
74 WEIGHT_SPECTRUM are yet to be defined. Currently, as in cvel and in the imager,
75 WEIGHT_SPECTRUM is transformed in the same way as the other data columns.
76 Notice that this is not formally correct from the statistical point of view,
77 but is a good approximation at this stage.
79 NOTE: the input/output in mstransform have a one-to-one relation.
80 input MS -- output MS
81 input MMS -- output MMS
83 unless the user sets the parameter createmms to True to create the following:
84 input MS -- output MMS
86 --------- parameter descriptions ---------------------------------------------
88 vis Name of input Measurement set or Multi-MS.
89 outputvis Name of output Measurement Set or Multi-MS.
90 createmms Create a multi-MS output from an input MS.
91 separationaxis Axis to do parallelization across(scan,spw,auto,baseline).
92 numsubms The number of Sub-MSs to create (auto or any number)
93 tileshape List with 1 or 3 elements giving the tile shape of the disk data columns.
94 field Select field using ID(s) or name(s).
95 spw Select spectral window/channels.
96 scan Select data by scan numbers.
97 antenna Select data based on antenna/baseline.
98 correlation Correlation: '' ==> all, correlation="XX,YY".
99 timerange Select data by time range.
100 intent Select data by scan intent.
101 array Select (sub)array(s) by array ID number.
102 uvrange Select data by baseline length.
103 observation Select by observation ID(s).
104 feed Multi-feed numbers: Not yet implemented.
105 datacolumn Which data column(s) to process.
106 realmodelcol Make real a virtual MODEL column.
107 keepflags Keep *completely flagged rows* or drop them from the output.
108 usewtspectrum Force creation of the columns WEIGHT_SPECTRUM and SIGMA_SPECTRUM in the output MS, even if not present in the input MS.
109 combinespws Combine the input spws into a new output spw. Only supported when the number of channels is the same for all the spws.
110 chanaverage Average data in channels.
111 chanbin Width (bin) of input channels to average to form an output channel.
112 hanning Hanning smooth data to remove Gibbs ringing.
113 regridms Transform channel labels and visibilities to a different spectral reference frame. Notice that u,v,w data is not transformed.
114 mode Regridding mode (channel/velocity/frequency/channel_b).
115 nchan Number of channels in the output spw (-1=all). Used for regridding, together with \'start\' and \'width\'.
116 start Start of the output visibilities. Used for regridding, together with \'width\' and \'nchan\'. It can be in different units, depending on the regridding mode: first input channel (mode=\'channel\'), first velocity (mode=\'velocity\'), or first frequency (mode=\'frequency\'). Example values: \'5\', \'0.0km/s\', \'1.4GHz\', for channel, velocity, and frequency modes, respectively.
117 width Channel width of the output visibilities. Used for regridding, together with \'start\', and \'nchan\'. It can be in different units, depending on the regridding mode: number of input channels (mode=\'channel\'), velocity (mode=\'velocity\'), or frequency (mode=\'frequency\'. Example values: \'2\', \'1.0km/s\', \'1.0kHz\', for channel, velocity, and frequency modes, respectively.
118 nspw Number of output spws to create in output MS.
119 interpolation Spectral interpolation method.
120 phasecenter Phase center direction to be used for the spectral coordinate transformation: direction measure or field index
121 restfreq Rest frequency to use for output.
122 outframe Output reference frame (''=keep input frame).
123 veltype Velocity definition.
124 preaverage Pre-average channels before regridding, when the ratio between the output and and input widths is greater than 2.
125 timeaverage Average data in time.
126 timebin Bin width for time averaging.
127 timespan Span the timebin across scan, state or both.
128 maxuvwdistance Maximum separation of start-to-end baselines that can be included in an average. (meters)
129 docallib Enable on-the-fly (OTF) calibration as in task applycal
130 callib Path to calibration library file
131 douvcontsub Enable continuum subtraction as in task uvcontsub. Note: this parameter is deprecated and will be removed in an upcoming release. The task uvcontsub can be used as an alternative.
132 fitspw Spectral window:channel selection for fitting the continuum
133 fitorder Polynomial order for the fits
134 want_cont Produce continuum estimate instead of continuum subtracted data
135 denoising_lib Use new denoising library (based on GSL) instead of casacore fitting routines
136 nthreads Number of OMP threads to use (currently maximum limited by number of polarizations)
137 niter Number of iterations for re-weighted linear fit
138 disableparallel Hidden parameter for internal use only. Do not change it!
139 ddistart Hidden parameter for internal use only. Do not change it!
140 taql Table query for nested selections
141 monolithic_processing Hidden parameter for internal use only. Do not change it!
142 reindex Hidden parameter for use in the pipeline context only
144 --------- examples -----------------------------------------------------------
148 Detailed description of keyword arguments:
150 --- Input/Output parameters ---
151 vis -- Name of input visibility file
152 default: ''; example: vis='ngc5921.ms'
154 outputvis -- Name of output visibility file or Multi-MS
155 default: ''; example: outputvis='ngc5921.mms'
157 createmms -- Create an output Multi-MS from an input MS.
158 default: False
160 This parameter only has effect if set to True, when it will try
161 to create an output Multi-MS from an input MS. The one-to-one
162 relation of input/output in mstransform is:
163 input MS -- output MS
164 input MMS -- output MMS
166 by setting createmms=True, the following is possible:
167 input MS -- output MMS
169 NOTE: See information on processing input Multi-MS at the end of this help section.
171 separationaxis -- Axis to do parallelization across.
172 default: 'auto'
173 options: 'scan', 'spw', 'auto', 'baseline'
175 * The 'auto' option will partition per scan/spw to obtain optimal load balancing with the
176 following criteria:
178 1 - Maximize the scan/spw/field distribution across sub-MSs
179 2 - Generate sub-MSs with similar size
181 * The 'scan' or 'spw' axes will partition the MS into scan or spw. The individual sub-MSs may
182 not be balanced with respect to the number of rows.
184 * The 'baseline' axis is mostly useful for Single-Dish data. This axis will partition the MS
185 based on the available baselines. If the user wants only auto-correlations, use the
186 antenna selection such as antenna='*&&&' together with this separation axis. Note that in
187 if numsubms='auto', partition will try to create as many subMSs as the number of available
188 servers in the cluster. If the user wants to have one subMS for each baseline, set the numsubms
189 parameter to a number higher than the number of baselines to achieve this.
191 numsubms -- The number of sub-MSs to create.
192 default: 'auto'
193 Options: any integer number (example: numsubms=4)
195 The default 'auto' is to partition using the number of available servers in the cluster.
196 If the task is unable to determine the number of running servers, or the user did not start CASA
197 using mpicasa, numsubms will use 8 as the default.
199 tileshape -- List with 1 or 3 elements describing the tile shape that will be used
200 to save the columns to disk. (list)
201 default: [0]
202 options: [0] or [1] or [int,int,int]. When list has only one element, it should
203 be either 0 or 1. When the list has three elements, they should be the
204 number of correlations, channels, rows.
207 --- Data selection parameters ---
208 field -- Select field using field id(s) or field name(s).
209 [run listobs to obtain the list iof d's or names]
210 default: ''=all fields If field string is a non-negative
211 integer, it is assumed to be a field index
212 otherwise, it is assumed to be a field name
213 field='0~2'; field ids 0,1,2
214 field='0,4,5~7'; field ids 0,4,5,6,7
215 field='3C286,3C295'; fields named 3C286 and 3C295
216 field = '3,4C*'; field id 3, all names starting with 4C
218 spw -- Select spectral window/channels
219 default: ''=all spectral windows and channels
220 spw='0~2,4'; spectral windows 0,1,2,4 (all channels)
221 spw='<2'; spectral windows less than 2 (i.e. 0,1)
222 spw='0:5~61'; spw 0, channels 5 to 61
223 spw='0,10,3:3~45'; spw 0,10 all channels, spw 3 - chans 3 to 45.
224 spw='0~2:2~6'; spw 0,1,2 with channels 2 through 6 in each.
225 spw = '*:3~64' channels 3 through 64 for all sp id's
226 spw = ' :3~64' will NOT work.
228 NOTE: mstransform does not support multiple channel ranges per
229 spectral window (';').
231 scan -- Scan number range
232 default: ''=all
234 antenna -- Select data based on antenna/baseline
235 default: '' (all)
236 Non-negative integers are assumed to be antenna indices, and
237 anything else is taken as an antenna name.
239 examples:
240 antenna='5&6': baseline between antenna index 5 and index 6.
241 antenna='VA05&VA06': baseline between VLA antenna 5 and 6.
242 antenna='5&6;7&8': baselines 5-6 and 7-8
243 antenna='5': all baselines with antenna 5
244 antenna='5,6,10': all baselines including antennas 5, 6, or 10
245 antenna='5,6,10&': all baselines with *only* antennas 5, 6, or
246 10. (cross-correlations only. Use &&
247 to include autocorrelations, and &&&
248 to get only autocorrelations.)
249 antenna='!ea03,ea12,ea17': all baselines except those that
250 include EVLA antennas ea03, ea12, or
251 ea17.
253 correlation -- Correlation types or expression.
254 default: '' (all correlations)
255 example: correlation='XX,YY'
257 timerange -- Select data based on time range:
258 default: '' (all); examples,
259 timerange = 'YYYY/MM/DD/hh:mm:ss~YYYY/MM/DD/hh:mm:ss'
260 Note: if YYYY/MM/DD is missing date, timerange defaults to the
261 first day in the dataset
262 timerange='09:14:0~09:54:0' picks 40 min on first day
263 timerange='25:00:00~27:30:00' picks 1 hr to 3 hr 30min
264 on next day
265 timerange='09:44:00' data within one integration of time
266 timerange='>10:24:00' data after this time
268 array -- (Sub)array number range
269 default: ''=all
271 uvrange -- Select data within uvrange (default units meters)
272 default: ''=all; example:
273 uvrange='0~1000klambda'; uvrange from 0-1000 kilo-lambda
274 uvrange='>4klambda';uvranges greater than 4 kilo-lambda
275 uvrange='0~1000km'; uvrange in kilometers
277 observation -- Select by observation ID(s)
278 default: ''=all
280 feed -- Selection based on the feed - NOT IMPLEMENTED YET
281 default: ''=all
284 datacolumn -- Which data column to use for processing (case-insensitive).
285 default: 'corrected'; example: datacolumn='data'
286 options: 'data', 'model', 'corrected', 'all','float_data', 'lag_data',
287 'float_data,data', 'lag_data,data'.
289 NOTE: 'all' = whichever of the above that are present. If the requested
290 column does not exist, the task will exit with an error.
292 When datacolumn is set to either one of the values 'model','all',
293 'data,model,corrected', a sub-parameter realmodelcol will be enabled.
294 See description below.
296 realmodelcol -- Make real a virtual MODEL column. If set to True, a real MODEL_DATA
297 column will be added to the output MS based on the existing SOURCE_MODEL
298 column.
299 default: False
302 keepflags -- Keep completely flagged rows in the output or drop them. This has no
303 effect on partially flagged rows. All of the channels and correlations
304 of a row must be flagged for it to be droppable, and a row must be
305 well defined to be keepable.
307 IMPORTANT: Regardless of this parameter, flagged data is never included in
308 channel averaging. On the other hand, partially flagged rows will
309 always be included in time averaging. The average value of the
310 flagged data for averages containing ONLY flagged data in the relevant
311 output channel will be written to the output with the corresponding
312 flag set to True, while only unflagged data is used on averages where
313 there is some unflagged data with the flag set to False.
315 default: True (keep completely flagged rows in the output)
318 usewtspectrum -- Force creation of the columns WEIGHT_SPECTRUM and SIGMA_SPECTRUM in the
319 output MS. This flag can be used to force the creation of
320 WEIGHT_SPECTRUM and SIGMA_SPECTRUM when they are not present in the
321 input MS. When set to true, the output WEIGHT_SPECTRUM column will be
322 populated using the input WEIGHT column, such that each channel in the
323 WEIGHT_SPECTRUM column will get WEIGHT/nChannels. Note that if the
324 WEIGHT_SPECTRUM column is present in the input MS the columns will
325 always be created in the output MS, regardless of the value of this
326 parameter.
328 default: False
331 --- SPW combination parameters ---
332 combinespws -- Combine the input spws into a new output spw.
333 default: False
335 NOTE: This option is only supported when the number of channels is the same for
336 all the spws. Using this option with different numbers of channels for
337 different spws will result in an error.
339 NOTE: If the SPWs have different polarization settings only the common
340 polarizations will be output. For instance, if SPW 1 has XX XY YX YY and
341 SPW 2 has XX YY, the output MS will have a single SPW with XX YY polarizations
343 NOTE: Whenever the data to be combined has different EXPOSURE values
344 in the spectral windows, mstransform will use the WEIGHT_SPECTRUM
345 for the combination. If WEIGHT_SPECTRUM is not available, it will
346 use the values from the WEIGHT column. Each output channel is calculated
347 using the following equation:
349 outputChannel_j = SUM(inputChannel_i*contributionFraction_i*inputWeightSpectrum_i)
350 ------------------------------------------------------------------
351 SUM(contributionFraction_i*inputWeightSpectrum_i)
354 --- Channel averaging parameters ---
355 chanaverage -- Average data across channels. Partially flagged data is not be included in the average
356 unless all data contributing to a given output channel is flagged. In this case,
357 mstransform calculates the average of all flagged data, and writes it to the output MS
358 with the corresponding flag set to true. If present, WEIGHT_SPECTRUM/SIGMA_SPECTRUM
359 are used together with the channelized flags (FLAG), to compute a weighted average
360 (using WEIGHT_SPECTRUM for CORRECTED_DATA and SIGMA_SPECTRUM for DATA).
361 default: False
363 chanbin -- Bin width for channel average in number of input channels.
364 If a list is given, each bin applies to one of the selected SPWs.
366 default: 1 => no channel averaging.
367 options: (int) or [int]
368 example: chanbin=[2,3] => average 2 channels of 1st selected
369 spectral window and 3 in the second one.
371 NOTE: WEIGHT_SPECTRUM/SIGMA_SPECTRUM will be used (if present) in
372 addition to the flags to compute a weighted average. The calculations
373 is done as follows:
375 1) When WEIGHT_SPECTRUM/SIGMA_SPECTRUM are not present:
376 Avg = SUM(Chan_i*Flag_i)/SUM(Flag_i)
378 2) When WEIGHT_SPECTRUM/SIGMA_SPECTRUM are present:
379 Avg = SUM(Chan_i*Flag_i*WeightSpectrum_i)/SUM(Flag_i*WeightSpectrum_i)
381 If combinespws=True, then chanbin can only be a (int). This is because the
382 channel average then refers to the already combined MS after spw combination,
383 which has a single spw.
386 --- Hanning smoothing parameters ---
387 hanning -- Hanning smooth frequency channel data to remove Gibbs ringing.
388 default: False
390 --- Regrid parameters ---
391 regridms -- Transform channel labels and visibilities to a different spectral reference frame.
392 Notice that u,v,w data is not transformed.
393 default: False
395 mode -- Regridding mode.
396 default: 'channel'; produces equidistant grid based on first selected channel.
397 options: 'velocity', 'frequency', 'channel_b'.
399 When set to velocity or frequency, it means that the channels must be specified
400 in the respective units. When set to channel_b it means an alternative 'channel'
401 mode that does not force an equidistant grid. It is faster.
403 nchan -- Number of channels in the output spw (int).
404 default: -1
406 start -- First channel to use in the output spw (depends on the mode)
407 default: 0 --> when mode='channel'
409 When mode='channel', 'start' means the first channel in the input spw
410 to use when creating the output spw. When mode='frequency' or mode='velocity',
411 'start' means the frequency or velocity, respectively, of the first output
412 channel. If this information is not available, leave it blank and mstransform
413 will calculate it.
415 width -- Width of input channels that are used to create an output channel.
416 default: 1
418 Note that mstransform will only shift spws with channel widths of the same
419 sign in a single operation. If you are regridding spws with mixed positive
420 and negative channel widths, you should run this task separated for each
421 group of spws. You can verify the channel widths for your MS using
422 listobs for example, and looking at the SPW table, column ChanWid.
424 nspw -- Number of output spws to create in the output MS/MMS (int).
425 default: 1 --> it means, do not separate the spws.
427 One can regrid the MS or not and further separate the
428 output into a given number of spws. Internally, the framework
429 will combine the selected spws before separating them so that
430 channel gaps and overlaps are taken into account. This parameter
431 will create a regular grid of spws in the output MS. If nchan
432 is set, it will refer to the number of output channels in each
433 of the separated spws.
435 interpolation -- Spectral interpolation method.
436 default: 'linear'
437 options: 'nearest', 'cubic', 'spline', 'fftshift'
439 phasecenter -- Direction measure or fieldid. To be used in mosaics to indicate
440 the center direction to be used in the spectral coordinate transformation.
441 default: '' (first selected field)
442 options: FIELD_ID (int) or center coordinate measure (str).
443 example: phasecenter=6 or phasecenter='J2000 19h30m00 -40d00m00'
445 restfreq -- Specify rest frequency to use for output.
446 default: ''; occasionally it is necessary to set this.
447 example1 for some VLA spectral line data.
448 example2 for NH_3 (1,1) put restfreq='23.694496GHz'.
450 outframe -- Output reference frame (case-insensitive).
451 default: ''; it will keep the input reference frame.
452 options: 'LSRK', 'LSRD', 'BARY', 'GALACTO', 'LGROUP', 'CMB', 'GEO', 'TOPO'.
454 veltype -- Definition of velocity (as used in mode).
455 default: 'radio'
457 preaverage -- Pre-average channels before regridding. This is done when the ratio
458 between the output and and input widths is greater than 2. This has
459 been disabled since CASA 5.0
460 default: False
463 --- Time averaging parameters ---
464 timeaverage -- Average data across time. Partially flagged data is not be included in the average
465 unless all data contributing to a given output channel is flagged. In this case,
466 mstransform calculates the average of all flagged data, and writes it to the output MS
467 with the corresponding flag set to true. If keepflags=False, the fully flagged data
468 is not be written to the output MS. If present, WEIGHT_SPECTRUM/SIGMA_SPECTRUM
469 are used together with the channelized flags (FLAG), to compute a weighted average
470 (using WEIGHT_SPECTRUM for CORRECTED_DATA and SIGMA_SPECTRUM for DATA). Otherwise
471 WEIGHT/SIGMA are used instead to average together data from different integrations.
473 default: False
475 timebin -- Bin width for time average in seconds.
476 default: '0s'
478 timespan -- Let the timebin span across scan, state or both.
479 State is equivalent to sub-scans. One scan may have several
480 state ids. For ALMA MSs, the sub-scans are limited to about
481 30s duration each. In these cases, the task will automatically
482 add state to the timespan parameter. To see the number of states
483 in an MS, use the msmd tool. See help msmd.
485 default: '' (separate time bins by both of the above)
486 options: 'scan', 'state', 'state,scan'
488 examples:
489 timespan = 'scan'; can be useful when the scan number
490 goes up with each integration as in many WSRT MSs.
491 timespan = ['scan', 'state']: disregard scan and state
492 numbers when time averaging.
493 timespan = 'state,scan'; same as above.
495 maxuvwdistance -- Provide a maximum separation of start-to-end baselines
496 that can be included in an average. (int)
497 default: 0.0 (given in meters)
499 --- On-the-fly calibration parameters ---
500 docallib -- Enable on-the-fly (OTF) calibration as in task applycal
501 default: False
503 callib -- Path to calibration library file, which is a ascii file containing
504 the parameters to correct the data as task in task applycal, namely
505 gaintable/gainfield/interp/spwmap/calwt. In a Cal Library file, each
506 row expresses the calibration apply instructions for a particular
507 caltable and (optionally) a specific selection of data in the MS to
508 which it is to be applied.
510 default: '' (there is no default callib file)
512 examples:
514 caltable='cal.G' tinterp='linear' calwt=True
516 -> Arrange a caltable called cal.G to be applied (with no detailed selection)
517 to all MS data with linear interpolation in time, and with the weights also
518 calibrated.
520 caltable='cal.G' tinterp='linear' fldmap='nearest' spwmap=[0,1,1,3] calwt=True
521 caltable='cal.B' finterp='linear' fldmap='3' spwmap=[0,0,0,0] calwt=False
523 -> In this case, solutions from cal.G will be selected based on directional
524 proximity ('nearest') for each MS field via the fldmap parameter, and spw 2
525 will be calibrated by spw 1 solutions. For cal.B, solutions from field id 3
526 will be used exclusively, with spw 0 calibrating all MS spws.
531 ------ Multi-MS Processing and Heuristics ---------
533 ** Input Multi-MS (MMS) **
535 Task mstransform will process an input MMS in parallel whenever possible. Each sub-MS of
536 the MMS will be processed in a separate engine and the results will be post-processed at the
537 end to create an output MMS. The output MMS will have the same separationaxis of the input
538 MMS, which will be written to the table.info file inside the MMS directory.
540 Naturally, some transformations available in mstransform require more care when the user
541 first partition the MS. If one wants to do a combination of spws by setting the parameter
542 combinespws = True in mstransform, the input MMS needs to contain all the
543 selected spws in each of the sub-MSs or the processing will fail. For this, one may set the initial
544 separationaxis to scan or use the default auto with a proper numsubms set so that each sub- MS in
545 the MMS is self-contained with all the necessary spws for the combination.
547 The task will check if the sub-MSs contain all the selected spws when combinespws=True
548 and if not, it will issue a warning and process the input MMS as a monolithic MS. In this
549 case, the separation axis of the output MMS will be set to scan, regardless of what the input
550 axis was.
552 A similar case happens when the separation axis of the input MMS is per scan and the user
553 asks to do time averaging with time spanning across scans. If the individual sub-MSs are not
554 self-contained of the necessary scans and the duration of the scans is shorter than the given
555 timebin, the spanning will not be possible. In this case, the task will process the input MMS as
556 a monolithic MS and will set the axis of the output MMS to spw.
558 It is important that the user sets the separation axis correctly when first partitioning the MS.
559 See the table below for when it is possible to process the input MMS in parallel or not, using
560 mstransform.
562 input MMS axis combinespws=True nspw > 1 timeaverage=True, timespan='scan'
563 -------------------------------------------------------------------------------
564 scan YES YES NO
565 spw NO NO YES
566 auto MAYBE MAYBE MAYBE
569 ------ EXAMPLES ------
571 More documentation on mstransform can be found here:
572 http://www.eso.org/~scastro/ALMA/casa/MST/MSTransformDocs/MSTransformDocs.html
574 1) Split out a single channel.
575 mstransform(vis='ctb80-vsm.ms', outputvis='mychn.ms', datacolumn='data', spw='0:25')
577 2) Only combine the selected spws into a single output spw.
578 mstransform(vis='Four_ants.ms', outputvis='myspw.ms', combinespws=True, spw='0~3')
580 3) Combine two spws and regrid one field, using two input channels to make one output.
581 mstransform(vis='jupiter6cm.demo.ms',outputvis='test1.ms',datacolumn='DATA',field='11',
582 spw='0,1', combinespws=True, regridms=True, nchan=1, width=2)
584 4) Combine 24 spws and regrid in frequency mode to create 21 output channels. Change the
585 phase center.
586 mstransform(vis='g19_d2usb_targets_line.ms', outputvis='test2.ms', datacolumn='DATA',
587 combinespws=True, regridms=True, mode='frequency', nchan=21, start='229587.0MHz',
588 width='1600kHz', phasecenter="J2000 18h25m56.09 -12d04m28.20")
590 5) Only apply Hanning smoothing to MS.
591 mstransform(vis='g19_d2usb_targets_line.ms', outputvis='test3.ms', datacolumn='DATA',
592 hanning=True)
594 6) Change the reference frame and apply Hanning smoothing after combining all spws.
595 mstransform(vis='g19_d2usb_targets_line.ms', outputvis='test4.ms', datacolumn='DATA',
596 combinespws=True, regridms=True, mode="channel", outframe="BARY",
597 phasecenter="J2000 18h25m56.09 -12d04m28.20", hanning = True)
599 7) Apply time averaging using a bin of 30 seconds on the default CORRECTED column.
600 mstransform(vis='g19_d2usb_targets_line.ms', outputvis='test5.ms', timeaverage=True,
601 timebin='30s')
603 8) Apply OTF calibration to ng5921 using a calibration library
604 mstransform(vis='ngc5921.ms', outputvis='ngc5921_calibrated.ms',docallib=True,
605 callib='unittest/mstransform/ngc5921_regression/ngc5921_callib.txt')
608 """
610 _info_group_ = """manipulation"""
611 _info_desc_ = """Split the MS, combine/separate/regrid spws and do channel and time averaging"""
613 def __call__( self, vis='', outputvis='', createmms=False, separationaxis='auto', numsubms='auto', tileshape=[ int(0) ], field='', spw='', scan='', antenna='', correlation='', timerange='', intent='', array='', uvrange='', observation='', feed='', datacolumn='corrected', realmodelcol=False, keepflags=True, usewtspectrum=False, combinespws=False, chanaverage=False, chanbin=int(1), hanning=False, regridms=False, mode='channel', nchan=int(-1), start=int(0), width=int(1), nspw=int(1), interpolation='linear', phasecenter='', restfreq='', outframe='', veltype='radio', preaverage=False, timeaverage=False, timebin='0s', timespan='', maxuvwdistance=float(0.0), docallib=False, callib='', douvcontsub=False, fitspw='', fitorder=int(0), want_cont=False, denoising_lib=True, nthreads=int(1), niter=int(1), disableparallel=False, ddistart=int(-1), taql='', monolithic_processing=False, reindex=True ):
614 schema = {'vis': {'type': 'cReqPath', 'coerce': _coerce.expand_path}, 'outputvis': {'type': 'cStr', 'coerce': _coerce.to_str}, 'createmms': {'type': 'cBool'}, 'separationaxis': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'baseline', 'AUTO', 'SPW', 'SCAN', 'auto', 'spw', 'BASELINE', 'scan' ]}, 'numsubms': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cInt'}]}, 'tileshape': {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}, 'field': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'spw': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'scan': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'antenna': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'correlation': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}]}, 'timerange': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'intent': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'array': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'uvrange': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'observation': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'feed': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, {'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'datacolumn': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'DATA', 'model', 'corrected', 'LAG_DATA', 'lag_data', 'FLOAT_DATA,DATA', 'FLOAT_DATA', 'CORRECTED', 'lag_data,data', 'float_data', 'float_data,data', 'DATA,MODEL,CORRECTED', 'ALL', 'MODEL', 'all', 'data,model,corrected', 'LAG_DATA,DATA', 'data' ]}, 'realmodelcol': {'type': 'cBool'}, 'keepflags': {'type': 'cBool'}, 'usewtspectrum': {'type': 'cBool'}, 'combinespws': {'type': 'cBool'}, 'chanaverage': {'type': 'cBool'}, 'chanbin': {'anyof': [{'type': 'cInt'}, {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}]}, 'hanning': {'type': 'cBool'}, 'regridms': {'type': 'cBool'}, 'mode': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'channel', 'velocity', 'frequency', 'channel_b' ]}, 'nchan': {'type': 'cInt'}, 'start': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'width': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'nspw': {'type': 'cInt'}, 'interpolation': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'nearest', 'linear', 'spline', 'fftshift', 'cubic' ]}, 'phasecenter': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'restfreq': {'type': 'cStr', 'coerce': _coerce.to_str}, 'outframe': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'SOURCE', 'LSRK', 'CMB', 'geo', 'source', 'bary', 'GALACTO', 'GEO', 'TOPO', 'LSRD', 'lsrk', 'topo', 'LGROUP', 'BARY', 'lsrd', 'cmb', 'galacto', 'lgroup', '' ]}, 'veltype': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'optical', 'radio', 'OPTICAL', 'RADIO' ]}, 'preaverage': {'type': 'cBool'}, 'timeaverage': {'type': 'cBool'}, 'timebin': {'type': 'cStr', 'coerce': _coerce.to_str}, 'timespan': {'anyof': [{'type': 'cStr', 'coerce': _coerce.to_str}, {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}]}, 'maxuvwdistance': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'docallib': {'type': 'cBool'}, 'callib': {'type': 'cStr', 'coerce': _coerce.to_str}, 'douvcontsub': {'type': 'cBool'}, 'fitspw': {'type': 'cStr', 'coerce': _coerce.to_str}, 'fitorder': {'type': 'cInt'}, 'want_cont': {'type': 'cBool'}, 'denoising_lib': {'type': 'cBool'}, 'nthreads': {'type': 'cInt'}, 'niter': {'type': 'cInt'}, 'disableparallel': {'type': 'cBool'}, 'ddistart': {'type': 'cInt'}, 'taql': {'type': 'cStr', 'coerce': _coerce.to_str}, 'monolithic_processing': {'type': 'cBool'}, 'reindex': {'type': 'cBool'}}
615 doc = {'vis': vis, 'outputvis': outputvis, 'createmms': createmms, 'separationaxis': separationaxis, 'numsubms': numsubms, 'tileshape': tileshape, 'field': field, 'spw': spw, 'scan': scan, 'antenna': antenna, 'correlation': correlation, 'timerange': timerange, 'intent': intent, 'array': array, 'uvrange': uvrange, 'observation': observation, 'feed': feed, 'datacolumn': datacolumn, 'realmodelcol': realmodelcol, 'keepflags': keepflags, 'usewtspectrum': usewtspectrum, 'combinespws': combinespws, 'chanaverage': chanaverage, 'chanbin': chanbin, 'hanning': hanning, 'regridms': regridms, 'mode': mode, 'nchan': nchan, 'start': start, 'width': width, 'nspw': nspw, 'interpolation': interpolation, 'phasecenter': phasecenter, 'restfreq': restfreq, 'outframe': outframe, 'veltype': veltype, 'preaverage': preaverage, 'timeaverage': timeaverage, 'timebin': timebin, 'timespan': timespan, 'maxuvwdistance': maxuvwdistance, 'docallib': docallib, 'callib': callib, 'douvcontsub': douvcontsub, 'fitspw': fitspw, 'fitorder': fitorder, 'want_cont': want_cont, 'denoising_lib': denoising_lib, 'nthreads': nthreads, 'niter': niter, 'disableparallel': disableparallel, 'ddistart': ddistart, 'taql': taql, 'monolithic_processing': monolithic_processing, 'reindex': reindex}
616 assert _pc.validate(doc,schema), create_error_string(_pc.errors)
617 _logging_state_ = _start_log( 'mstransform', [ 'vis=' + repr(_pc.document['vis']), 'outputvis=' + repr(_pc.document['outputvis']), 'createmms=' + repr(_pc.document['createmms']), 'separationaxis=' + repr(_pc.document['separationaxis']), 'numsubms=' + repr(_pc.document['numsubms']), 'tileshape=' + repr(_pc.document['tileshape']), 'field=' + repr(_pc.document['field']), 'spw=' + repr(_pc.document['spw']), 'scan=' + repr(_pc.document['scan']), 'antenna=' + repr(_pc.document['antenna']), 'correlation=' + repr(_pc.document['correlation']), 'timerange=' + repr(_pc.document['timerange']), 'intent=' + repr(_pc.document['intent']), 'array=' + repr(_pc.document['array']), 'uvrange=' + repr(_pc.document['uvrange']), 'observation=' + repr(_pc.document['observation']), 'feed=' + repr(_pc.document['feed']), 'datacolumn=' + repr(_pc.document['datacolumn']), 'realmodelcol=' + repr(_pc.document['realmodelcol']), 'keepflags=' + repr(_pc.document['keepflags']), 'usewtspectrum=' + repr(_pc.document['usewtspectrum']), 'combinespws=' + repr(_pc.document['combinespws']), 'chanaverage=' + repr(_pc.document['chanaverage']), 'chanbin=' + repr(_pc.document['chanbin']), 'hanning=' + repr(_pc.document['hanning']), 'regridms=' + repr(_pc.document['regridms']), 'mode=' + repr(_pc.document['mode']), 'nchan=' + repr(_pc.document['nchan']), 'start=' + repr(_pc.document['start']), 'width=' + repr(_pc.document['width']), 'nspw=' + repr(_pc.document['nspw']), 'interpolation=' + repr(_pc.document['interpolation']), 'phasecenter=' + repr(_pc.document['phasecenter']), 'restfreq=' + repr(_pc.document['restfreq']), 'outframe=' + repr(_pc.document['outframe']), 'veltype=' + repr(_pc.document['veltype']), 'preaverage=' + repr(_pc.document['preaverage']), 'timeaverage=' + repr(_pc.document['timeaverage']), 'timebin=' + repr(_pc.document['timebin']), 'timespan=' + repr(_pc.document['timespan']), 'maxuvwdistance=' + repr(_pc.document['maxuvwdistance']), 'docallib=' + repr(_pc.document['docallib']), 'callib=' + repr(_pc.document['callib']), 'douvcontsub=' + repr(_pc.document['douvcontsub']), 'fitspw=' + repr(_pc.document['fitspw']), 'fitorder=' + repr(_pc.document['fitorder']), 'want_cont=' + repr(_pc.document['want_cont']), 'denoising_lib=' + repr(_pc.document['denoising_lib']), 'nthreads=' + repr(_pc.document['nthreads']), 'niter=' + repr(_pc.document['niter']), 'disableparallel=' + repr(_pc.document['disableparallel']), 'ddistart=' + repr(_pc.document['ddistart']), 'taql=' + repr(_pc.document['taql']), 'monolithic_processing=' + repr(_pc.document['monolithic_processing']), 'reindex=' + repr(_pc.document['reindex']) ] )
618 task_result = None
619 try:
620 task_result = _mstransform_t( _pc.document['vis'], _pc.document['outputvis'], _pc.document['createmms'], _pc.document['separationaxis'], _pc.document['numsubms'], _pc.document['tileshape'], _pc.document['field'], _pc.document['spw'], _pc.document['scan'], _pc.document['antenna'], _pc.document['correlation'], _pc.document['timerange'], _pc.document['intent'], _pc.document['array'], _pc.document['uvrange'], _pc.document['observation'], _pc.document['feed'], _pc.document['datacolumn'], _pc.document['realmodelcol'], _pc.document['keepflags'], _pc.document['usewtspectrum'], _pc.document['combinespws'], _pc.document['chanaverage'], _pc.document['chanbin'], _pc.document['hanning'], _pc.document['regridms'], _pc.document['mode'], _pc.document['nchan'], _pc.document['start'], _pc.document['width'], _pc.document['nspw'], _pc.document['interpolation'], _pc.document['phasecenter'], _pc.document['restfreq'], _pc.document['outframe'], _pc.document['veltype'], _pc.document['preaverage'], _pc.document['timeaverage'], _pc.document['timebin'], _pc.document['timespan'], _pc.document['maxuvwdistance'], _pc.document['docallib'], _pc.document['callib'], _pc.document['douvcontsub'], _pc.document['fitspw'], _pc.document['fitorder'], _pc.document['want_cont'], _pc.document['denoising_lib'], _pc.document['nthreads'], _pc.document['niter'], _pc.document['disableparallel'], _pc.document['ddistart'], _pc.document['taql'], _pc.document['monolithic_processing'], _pc.document['reindex'] )
621 except Exception as exc:
622 _except_log('mstransform', exc)
623 raise
624 finally:
625 task_result = _end_log( _logging_state_, 'mstransform', task_result )
626 return task_result
628mstransform = _mstransform( )