Coverage for /wheeldirectory/casa-6.7.0-11-py3.10.el8/lib/py/lib/python3.10/site-packages/casatools/synthesisutils.py: 59%
46 statements
« prev ^ index » next coverage.py v7.6.4, created at 2024-10-23 15:54 +0000
« prev ^ index » next coverage.py v7.6.4, created at 2024-10-23 15:54 +0000
1##################### generated by xml-casa (v2) from synthesisutils.xml ############
2##################### 19f133338e28509761eee6c6c563b16d ##############################
3from __future__ import absolute_import
4from .__casac__.synthesisutils import synthesisutils as _synthesisutils
6from .errors import create_error_string
7from .typecheck import CasaValidator as _validator
8_pc = _validator( )
9from .coercetype import coerce as _coerce
10from .synthesisimstore import synthesisimstore as _wrap_synthesisimstore
12class synthesisutils:
13 _info_group_ = """synthesisutils"""
14 _info_desc_ = """tool for synthesis imaging"""
15 ### self
16 def __init__(self, *args, **kwargs):
17 """This is used to construct {tt synthesisutils} tool.
18 """
19 self._swigobj = kwargs.get('swig_object',None)
20 if self._swigobj is None:
21 self._swigobj = _synthesisutils()
23 def contdatapartition(self, selpars={ }, npart=int(1)):
24 """
25 """
26 return self._swigobj.contdatapartition(selpars, npart)
28 def advisechansel(self, freqstart=[ ], freqend=[ ], freqstep=[ ], freqframe='LSRK', ephemtable='', msname='', fieldid=int(0), getfreqrange=False, spwselection=''):
29 """It is a helper function, for cube imaging, that allows you to
30 determine the spectral window data selection you may need to cover a
31 given range of frequencies.
33 In the mode with getfreqrange=False, the freqstep can be used (i.e., set to the channel width) to achieve the extra padding needed for data selection at the beginning and end of the desired cube range in order to retrieve all channels that will potentially contribute to the edge channels of the cube (to maximize S/N). If freqstep is not specified, it is taken as zero, and the output channel range will typically be slightly smaller.
35 The meaning of freqframe parameter is dependent on the value of getfreqrange.
36 When getfreqrange=False, frequency parameters are considered as input parameters that are known to be in the frame specified by freqframe; but when getfreqrange=True, the frequency parameters are output parameters that will be determined in the frame specified by freqframe. In the former case, the frequencies will be converted to the frame of the data as a function of time in order to locate which channels match.
38 You need to specify the field_id for which this calculation is
39 being done.
41 If the parameter {tt getfreqrange=True} then the reverse is requested. You set {tt spwselection} to be the range of data selection you want to use and you'll get the range of frequency covered in the frame you set. The freqstart and freqend output values correspond to the frequency of the extreme edges of the requested channel range.
42 Inputs
43 ----------------
44 freqstart
45 Begining of frequency range
46 allowed: double, string, quantity
47 example: freqstart='1.0GHz'
48 Default:
49 ----------------
50 freqend
51 End of frequency range
52 allowed: double, string, quantity
53 example: freqend='2.0GHz'
54 Default:''
55 -----------------
56 freqstep
57 spectral channel resolution of intended image
58 allowed: double, string, quantity
59 example: freqstep='1.0MHz'
60 Default:''
61 -----------------
62 freqframe
63 frame in which frequency is being expressed in other parameters. For solar system moving sources if the frame of the source is intended then this parameter can be 'SOURCE'
64 allowed : one of the following strings 'LSRK', 'LSRD', 'BARY', 'GEO', 'TOPO', 'GALACTO', 'LGROUP','CMB', 'SOURCE'
65 Default: 'LSRK'
66 ----------------
67 msname
68 name of a valid measurement set.
69 allowed: string
70 Default: ''
71 -----------------
72 ephemtable
73 when freqframe='SOURCE' this parameter is used
74 name of a valid ephemeris table or 'TRACKFIELD' to use the ephemeris table attached to the FIELD subtable of the ms or one of the following solar system object: 'MERCURY', 'VENUS', 'MARS', 'JUPITER', 'SATURN', 'URANUS', 'NEPTUNE', 'PLUTO', 'SUN', 'MOON'
75 allowed: string
76 Default: ''
77 -----------------
78 fieldid
79 fieldid to use (needed to get the direction on the sky for any spectral frame conversion)
80 allowed: integer
81 Default: 0
82 -------------------
83 getfreqrange
84 if set then freqrange is returned in the frame requested for the data selected
85 allowed: bool
86 Default: False
87 -----------------
88 spwselection
89 if getfreqrange=True then this is needed to find the range of frequency in the frame requested. It should have the spectral window selection syntax as defined in the msselection (Casa memo 3)
90 allowed: string
91 Default: ''
92 """
93 return self._swigobj.advisechansel(freqstart, freqend, freqstep, freqframe, ephemtable, msname, fieldid, getfreqrange, spwselection)
95 def cubedatapartition(self, selpars={ }, npart=int(1), fstart=[ ], fend=[ ], frame='LSRK'):
96 """returns a dictionary with data spectral parttiion that maps data to nparts
97 of the input range frequency... usually to be used for doing data selection
98 when imaging a cube from fstart to fend in npart subcubes
99 """
100 return self._swigobj.cubedatapartition(selpars, npart, fstart, fend, frame)
102 def cubeimagepartition(self, impars={ }, npart=int(1)):
103 """
104 """
105 return self._swigobj.cubeimagepartition(impars, npart)
107 def cubedataimagepartition(self, selpars={ }, incsys={ }, npart=int(1), nchannel=int(1)):
108 """
109 """
110 return self._swigobj.cubedataimagepartition(selpars, incsys, npart, nchannel)
112 def checkselectionparams(self, selpars={ }):
113 """
114 """
115 return self._swigobj.checkselectionparams(selpars)
117 def checkimageparams(self, impars={ }):
118 """
119 """
120 return self._swigobj.checkimageparams(impars)
122 def checkgridparams(self, gridpars={ }):
123 """
124 """
125 return self._swigobj.checkgridparams(gridpars)
127 def updateimpars(self, impars={ }):
128 """
129 """
130 return self._swigobj.updateimpars(impars)
132 def getOptimumSize(self, size=int(100)):
133 """
134 """
135 return self._swigobj.getOptimumSize(size)
137 def fitPsfBeam(self, imagename='', nterms=int(1), psfcutoff=float(0.35)):
138 """
139 """
140 return self._swigobj.fitPsfBeam(imagename, nterms, psfcutoff)
142 def taylor_coeffs_to_cube(self, cubename='', mtname='', nterms=int(2), reffreq=''):
143 """
144 """
145 return self._swigobj.taylor_coeffs_to_cube(cubename, mtname, nterms, reffreq)
147 def cube_to_taylor_sum(self, cubename='', mtname='', nterms=int(2), reffreq='', imtype=int(0), pblimit=float(0.2)):
148 """
149 """
150 return self._swigobj.cube_to_taylor_sum(cubename, mtname, nterms, reffreq, imtype, pblimit)
152 def remove_freq_dep_pb(self, cubename='', mtname='', pblimit=float(0.2)):
153 """
154 """
155 return self._swigobj.remove_freq_dep_pb(cubename, mtname, pblimit)
157 def apply_freq_dep_pb(self, cubename='', mtname='', pblimit=float(0.2)):
158 """
159 """
160 return self._swigobj.apply_freq_dep_pb(cubename, mtname, pblimit)
162 def done(self):
163 """
164 """
165 return self._swigobj.done()