

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 1 of 42

CASA 4.3 Parallel Processing Framework
- Installation and advance user guide -

Version: 1.2

 Status: Development

Prepared By:
Name Organisation Date

Justo Gonzalez ESO 2014-05-20

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 2 of 42

Change Record

Version Date Affected Section Remarks

1.0 2014-05-20 All Initial version

1.1 2014-06-3

4.2 (mpi4py
installation)
4.4 (Compiling CASA
using MPI compilers)
5.2 (mpi4casa
initialization)

- Removed step to generate MPI-
enabled version of python interpreter
- Added gcwrap options so that SWIG
components don't use Python's GIL
- Changed the MPISErver/Client rank
convention

1.2 2014-10-10

4.3 (Boost MPI)
5.2 (mpi4casa
initialization)
6.0 (Packaging and
cluster integration)

- Corrected typo in the command to
build and install Boost MPI
- Added note regarding python binary
full path requirement when running in
interactive mode
- Added a new section for packaging
and cluster integration

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 3 of 42

Table of Contents

1	
 LIST OF TERMS AND ACRONYMS	
 ...	
 4	

2	
 LIST OF RELATED JIRA ISSUES	
 ...	
 4	

3	
 INTRODUCTION	
 ..	
 5	

4	
 INSTALLATION GUIDE	
 ...	
 6	

4.1	
 OPEN	
 MPI	
 ...	
 6	

4.2	
 MPI4PY	
 ..	
 8	

4.3	
 BOOST	
 MPI	
 ...	
 10	

4.4	
 CASA	
 COMPILE	
 CONFIGURATION	
 (CMAKE	
 SETTINGS)	
 ..	
 11	

5	
 MPI4CASA	
 ...	
 12	

5.1	
 MODULE	
 STRUCTURE	
 ...	
 12	

5.2	
 MPI4CASA	
 INITIALIZATION	
 ...	
 13	

5.3	
 MPICOMMANDCLIENT	
 LIFE	
 CYCLE	
 ...	
 15	

5.4	
 MPICOMMANDCLIENT	
 USAGE	
 ...	
 17	

5.5	
 MPICOMMANDCLIENT/SERVER	
 LOGGING	
 ..	
 22	

5.6	
 MPICOMMANDCLIENT/SERVER	
 ERROR	
 HANDLING	
 ..	
 23	

5.7	
 MPICOMMANDCLIENT	
 BASIC	
 PYTHON	
 EXAMPLES	
 ...	
 24	

5.8	
 MPICOMMANDCLIENT	
 CASA	
 TASKS	
 EXAMPLES	
 ...	
 31	

5.9	
 MPI4CASA	
 UNIT	
 TEST	
 SUIT	
 ..	
 35	

6	
 PACKAGING AND CLUSTER INTEGRATION	
 ..	
 36	

6.1	
 STAND-­‐ALONE	
 MPI	
 CASA	
 BUILD	
 ...	
 36	

6.2	
 RUN	
 A	
 TORQUE	
 BATCH	
 JOB	
 USING	
 MPI	
 ..	
 41	

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 4 of 42

1 List of terms and acronyms

CASA Common Astronomy Software Applications
MS Measurement Set
MSs Group of Measurement Sets
MMS Multi Measurement Set
MMSs Group of Multi Measurement Sets
Sub-MS Sub-Measurement Set (component of a Multi Measurement Set)
Sub-MSs Group of Sub-Measurement Sets
API Application Programing Interface
MPI Message Passing Interface
GUI Graphical User Interface
HPC High Performance Computing
stl C++ Standard Template Library
iPython Python command shell with advanced interactivity features such as rich

history, enhanced introspection, etc
InfiniBand Network communication link used in HPC applications

2 List of related Jira issues

CAS-5795 MPI-based CASA cluster infrastructure (container ticket, see issues under it)
CAS-5797 Test integration of MPI-based ipcluster with Torque
CAS-5798 Compare the various packages offering python bindings for MPI
CAS-5800 Analysis of schemes to support MPI in the CASA cluster environment
CAS-5801 Analysis of MPI implementations (system wise, apart from the python

bindings)

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 5 of 42

3 Introduction

This is a technical document (advance user and developer guide) describing how to
install and set up the necessary packages to use the new MPI-based parallel processing
framework for CASA 4.3. It also contains several examples on how to use mpi4casa, the
new Python module that enables MPI-based parallelism at the task level. The following list
described the package used, and why it is needed:

1. Open MPI: One of the advantages of MPI is the possibility to switch from one
implementation to another w/o suffering API changes. Despite of this I believe that
CASA should provide a preferred MPI implementation together with the release
package, and we should also have a standardized development environment, and that
means selecting a group of MPI implementations and use them for development and
testing. Having said this I've chosen Open MPI for my own development and testing
because it is the one of the newest implementations, with extensive development and
aims to support all common interconnects including InfiniBand and full MPI-2
compliance. Therefore I suggest to go ahead with it, and study in parallel what
advantages / disadvantages come along with other implementations.

2. mpi4py: This is basically the MPI Python bindings that allow to use MPI from the
Python layer. There are several choices, but mpi4py is the best in terms of
performance, completeness and supports communication of arbitrary python objects,
thus w/o requiring any serialization. It is necessary because in general CASA is best
parallelized from the task level, which is the highest level possible, and thus
minimizes the parallelization overhead. This is so for all the tasks that support trivial
parallelism, and therefore don't need efficient communication at the C++ level. The
exception is imaging, which due to the major/minor cycle structure requires efficient
communication among the parallel processes.

3. boostmpi: This is the preferred package providing a C++ interface for MPI. It

supports direct communication of all the stl library types and containers w/o
requiring further serialization, thus is a really good candidate. Furthermore boost has
become a standard in itself in the C++ modern development world, and it is a force
pushing for many changes in the new C++ standards (e.g. many new features of
C++11 are already available in C++99 via boost).

4. mpi4casa: This is the new CASA module implementing a complete MPI-based

parallel processing framework. It is built on top of mpi4py, and thus honors its name.
It uses a Client/Server model, where two completely different CASA environments
are loaded depending on the role. The 'main' Client process is basically a normal
CASA session, including all the associated GUIs and processes for interactive usage.
The other Server processes load the minimal CASA environment w/o GUIs, iPython
or any interactivity component, and communicate with the 'main' Client process via
MPI.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 6 of 42

4 Installation guide

4.1 Open MPI

4.1.1. Download Open MPI:

 wget http://www.open-mpi.org/software/ompi/v1.6/downloads/openmpi-1.6.5.tar.bz2

4.1.2. Unzip and untar package

 bunzip2 openmpi-1.6.5.tar.bz2

 tar -xvf openmpi-1.6.5.tar

 cd openmpi-1.6.5

4.1.3. Configure enabling thread-safe support, compile and install
NOTE: It is absolutely necessary that you explicitly add the multi-threading
support options, because they are not added by default.

 ./configure --enable-mpi-thread-multiple --enable-opal-multi-threads

 make all

 make install

4.1.4. Update the $HOME/.bash_profile file to include the location of the MPI
libraries in LD_LIBRARY_PATH

 vim $HOME/.bash_profile

 export LD_LIBRARY_PATH=/usr/local/lib

4.1.5. Make sure that MPI compilers and launchers are available in the PATH:

 MPI C compiler: /usr/local/bin/mpicc

 MPI C++ compiler: /usr/local/bin/mpicxx

 MPI F77 compiler: /usr/local/bin/mpif77

 MPI F90 compiler: /usr/local/bin/mpif90

 Pre MPI 2.0 launcher: /usr/local/bin/mpirun

 MPI 2.0 launcher /usr/local/bin/mpiexec

4.1.6. Enable password free ssh access to all the machines running MPI:

 ssh-keygen -t rsa

 $HOME/.ssh/id_rsa.pub | ssh user@hostname 'cat >> $HOME/.ssh/authorized_keys'

4.1.7. Make a basic test in the localhost to make sure MPI is properly install

 mpirun -n 4 ls

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 7 of 42

4.1.8. Prepare a simple hostfile with 2 nodes and 2 slots per node following the
Open MPI hostfile syntax:

 # This is an example hostfile. Comments begin with #

 # The following node is a single processor machine:

 foo.example.com

 # The following node is a dual-processor machine:

 bar.example.com slots=2

 # The following node is a quad-processor machine, and

 # we absolutely want to disallow over-subscribing it:

 yow.example.com slots=4 max-slots=4

4.1.9. Make a test using the hostfile from the previous step:

 [testhpc2@almahpc02 MPI]$ cat hostfile

 almahpc02.ads.eso.org slots=2

 almahpc01.hq.eso.org slots=2

 [testhpc2@almahpc02 MPI]$ mpirun -n 4 -hostfile hostfile hostname

 almahpc02

 almahpc02

 almahpc01

 almahpc01

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 8 of 42

4.2 mpi4py

4.2.1. Download mpi4py

 wget http://mpi4py.googlecode.com/files/mpi4py-1.3.1.tar.gz

4.2.2. Unzip and untar package

 tar -xzvf mpi4py-1.3.1.tar.gz

4.2.3. Build and install the mpi4py package using the python version shipped with
CASA. It will automatically detect the MPI implementation and use it for
compilation.

 /usr/lib64/casa/01/bin/python setup.py build

 /usr/lib64/casa/01/bin/python setup.py install

4.2.4. Run a simple parallel python test using one xterm per python process:

 mpirun -n 2 -xterm 0,1 /usr/lib64/casa/01/bin/python

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 9 of 42

4.2.5. Copy and paste the following test code in both xterm python terminals. It
basically sends a dictionary from the rank 0 python process to the rank 1 python
process. Make sure that the dictionary is received in the rank 1 process by
printing it.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 10 of 42

4.3 Boost MPI

4.3.1. Install bjam (boost setup utility)

wget http://sourceforge.net/projects/boost/files/boost-jam/3.1.18/boost-jam-
3.1.18.tgz/download
tar -xzvf boost-jam-3.1.18.tgz
cd boost-jam-3.1.18
./build.sh

cp bin.linuxx86_64/bjam /usr/local/bin/

4.3.2. Download and unpack boost:

wget
http://sourceforge.net/projects/boost/files/boost/1.41.0/boost_1_41_0.tar.gz/download

tar -xzvf boost_1_41_0.tar.gz

cd boost_1_41_0

4.3.3. Edit the boost configuration file to specify the python binary and add the

boos::mpi module

vim ./tools/build/v2/user-config.jam

=> Add using python : 2.7 : /usr/lib64/casa/01/bin/python ;

=> Add using mpi ;

4.3.4. Using bjam configure boost specifying as prefix the location where the CASA

boost packages is installed (/usr/lib64/casa/01)

bjam --debug-configuration --prefix= /usr/lib64/casa/01 install

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 11 of 42

4.4 CASA compile configuration (cmake settings)

4.4.1. Now all the pieces are ready to compile CASA C++ code with full MPI
support. To do it so it only necessary to specify the MPI compilers in the cmake
configuration step.	

cmake -DCMAKE_Fortran_COMPILER=/usr/bin/mpif90 -DCMAKE_C_COMPILER=/usr/bin/mpicc -
DCMAKE_CXX_COMPILER=/usr/bin/mpic++ (... other options ...)

This has to be done for all CASA modules (casacore, code, gcwrap, asap, etc) that
contain explicit calls to MPI (i.e. includes to mpi.h or boost::mpi).

4.4.2. Apart from using the MPI compilers, it is also necessary to use in the gwrap

cmake options a SWIG parameter so that the CASA SWIG components (Python
bindings) release the Python's GIL (global interpreter lock), and the
MPIClient/Server service threads get proper priority to run their tasks

• Python's GIL is in place for all threads launched at the Python level because

access to Python objects is not thread-safe.
• Python's GIL only allows a given thread to use CPU resources if all the

other threads are performing I/O operations (read, write, send, receive, etc)
• Python’s GIL net effect is that it prevents threads launched at the Python

level from using the CPU at the same time, thus only 1 CPU is used
regardless of the number of threads.

• Unfortunately it is not possible to bypass Python's GIL even if the different
threads access different Python object, thus there is not thread-safe risk.

• Fortunately SWIG has an option ('-threads)' so that the Python objects
generated are not affected by the Python's GIL, thus whenever a CASA
component call is invoked the Python's GIL is released, and threads at the
Python level (MPIClient/Server service threads can run their tasks).

cmake -DCMAKE_Fortran_COMPILER=/usr/bin/mpif90 -DCMAKE_C_COMPILER=/usr/bin/mpicc -
DCMAKE_CXX_COMPILER=/usr/bin/mpic++ -DCMAKE_SWIG_FLAGS="-threads" ..

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 12 of 42

5 mpi4casa

5.1 Module structure

The new module to support MPI at the CASA task level is called mpi4casa. It is
located under gcwrap/python/scripts/mpi4casa. The following table describes the
contents of the module:

MPIEnvironment.py Static class in charge of Initializing MPI and properly set the MPI-

related variables.
MPICommunicator.py Singleton class, which centralizes all the MPI, calls, using the

appropriate targets and tags.
MPICommandClient.py Singleton class, which provides access to high-level methods to: - Send

CASA commands to the remote side (with blocking, non-blocking
modes, targeting a single or multiple servers)
- Get the response from the remote calls (either return variables or
stack traces in case of error)

MPIMonitorClient.py Singleton class used primarily by MPIMonitorClient, to monitor the
state of the remote servers in terms of activity (busy/idle) and
responsiveness.

MPICommandServer.py Counterpart for MPICommandClient: Singleton class with a service
thread that checks for incoming MPI messages containing CASA (or in
general Python) command requests. It executes them and sends back
the response (return code), and back trace in case if error.

MPIMonitorServer.py Counterpart for MPIMonitorClient: Singleton class with a service
thread that checks for incoming MPI messages containing check status
requests.

mpi4casapy.py Runnable python script used to launch the MPI Server environment.
task_wrappers.py Python script containing the import definitions for the CASA tasks

wrappers to be used in the MPI Server environment.
task_macros.py Python script containing the macro definitions for the CASA tasks

wrappers to be used in the MPI Server environment.
test_mpi4casa.py Unit test suit with more than 60 cases covering:

- MPI client/server command cases:
* evaluation with return code or execution
* blocking and non-blocking modes
* single and multiple targets
* parameters provided via string or dictionary
* error/exception handling
* server timeout state handling
* server timeout recovery

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 13 of 42

5.2 mpi4casa initialization

As you can see in the previous section mpi4casa uses a Client/Server execution
model:

§ MPIClient: 'Main' MPI instance with all interactivity features (GUIs, iPython

shell, async, etc). That is, a complete normal CASA instance.

§ MPIServer: Minimal CASA environment without any interactivity features

• Basically a python script running in the background
• CASA env. Variables are sent as a dictionary via MPI from MPIClient (e.g.

log file, data paths, etc)

§ Convention: The established convention is that the Client is the process with
rank 0, (in MPI rank process rank numbering starts with 0). For this reason:

• stdin must be redirected only for the process with rank 0

mpirun -n 4 -stdin 0 $CASAROT/bin/casapy

• xterm must be initiated only for the process with rank 0

mpirun -n 4 -xterm 0 $CASAROT/bin/casapy

NOTE: stdin/out redirection from the terminal is not the recommended way
to interact with the client due to a miss-formatting that occurs when stdin/out
is redirected trough the mpirun process. Instead we recommend to use a
dedicated xterm window. However stdin/out redirection from terminal is the
only way to interact with the client in MACOX

NOTE: Due to the ssh-MPI interaction it is necessary to specify the full
path of the CASA binary when running in interactive mode.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 14 of 42

§ Initialization success: After launching CASA with mpirun, if	
 the	
 initialization	

is	
 successful	
 you	
 will	
 see	
 the	
 following	
 message:	

 casa::casapy::casa@almahpc02:MPIClient MPI Enabled at host almahpc02 with

rank 3 as MPIClient using MPI version 2.1 from Open MPI v1.6.5 implementation

This message indicates that the MPI version provided by the underlying MPI
implementation is correct, and also that thread-safe support is enabled.

Also, if all the processes are deployed in the same machine, you can see via
pstree how the processes are deployed from mpirun:

§ Initialization failure: If the mpi4casa initialization is not sucessfull (e.g.: the

underlying MPI implementation does not have thread-safe support) and error
message appears and it is not possible to use instantiate MPIClient:

 WARN casa::casapy::casa Provided MPI implementation (Open MPI v1.6.5)
is not thread safe configured, maximum thread safe level supported is: MPI THREAD SINGLE

 WARN casa::casapy::casa+ NOTE: In most MPI implementations thread-safety
can be enabled at pre-compile, by setting explicit thread-safe configuration options,

 WARN casa::casapy::casa+ e.g. (MPI 1.6.5) --enable-mpi-thread-multiple

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 15 of 42

5.3 MPICommandClient life cycle

As mentioned previously MPICommandClient creational pattern is a singleton. This
design choice is useful to avoid multiple initializations, which can cause resource
problems. Nevertheless, the user can control when the Client services are initialized or
de-initialized, in order to waste CPU resources when parallelization is not necessary.

NOTE: mpi4py is already integrated with ParallelTaskHelper, so it is not necessary
to do anything (in particular initialize MPICommandClient) in order to run tasks in
parallel. ParalleTaskHelper re-uses or initializes the MPICommandClient singleton if
necessary.

§ MPICommandClient initialization: MPICommandClient is a singleton,

therefore it is necessary to initialize it only once, and all the other instances
created afterwards will point to the first one. This is done transparently for the
user.

 CASA <2>: from mpi4casa.MPICommandClient import MPICommandClient

 CASA <3>: client = MPICommandClient()

 CASA <4>: client.start_services()

MPICommandClient will not only initialize the client service, but also send a
message to the servers so that they are initialized:

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 16 of 42

§ MPICommandClient de-initialization: Since MPICommandClient is a
singleton its life cycle is handled carefully in a transparent way for the user, so
that the singleton instance is not deleted as long as other Python objects are using
it. This is not done trough a __del__ operator but using the atexit module instead,
to register an exit function which is executed when python is finalized.

Nevertheless it is possible to stop the services manually after running all the
parallel processing steps

CAUTION: When MPIClient services are stopped, the entire parallel system is
stopped, including finalization of the MPIServer processes. This means that it is
not longer possible to use the parallel processing framework after stopping the
MPIClient services.

 CASA <4>: client.stop_services()

Otherwise, if the MPIClient services are not stopped manually, the stop function
is automatically invoked when Python exists as described before:

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 17 of 42

5.4 MPICommandClient usage

MPICommandClient has mainly two public methods to interface with the user, in
order to send commands to the remote servers, and retrieve the results. Additionally
there is a method to retrieve the status of the remote servers, if that is necessary for
debugging reasons.

NOTE: mpi4py is already integrated with ParallelTaskHelper, so it is not necessary
to do anything (in particular initialize MPICommandClient) in order to run tasks in
parallel. ParalleTaskHelper re-uses or initializes the MPICommandClient singleton if
necessary.

§ def push_command_request(self,command,block=False,target_server=None,parameters=None)	

This method allows sending CASA/Python commands to the remote servers,
so that they are evaluated (with return code) or executed (w/o return code).

It is possible to call this method in block and non-block mode. When running
in non-block mode it will return a list of integers, corresponding to the
command request ids, which can be used in a second stage to retrieve the
response via the public method 'get_command_response' (explained later in
this section). When running in blocking mode it will return a list of
dictionaries, one per command request, containing the response parameters.

It is possible to specify a defined target server or group of target servers, by
providing a list of integers, corresponding to the MPI rank of the target
servers.

It is also possible to specify the command parameters via an auxiliary
dictionary, and the command will be executed in the remote servers after
injecting the variables specified in the parameters dictionary in the python
global variables namespace.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 18 of 42

• command: String containing the Python/CASA command to be executed.
The parameters can be specified in two ways:

♦ Within the command in itself, also as strings:

"flagdata(backup=True)"

♦ In the parameters dictionary, using the native types:

parameters={backup:True}

• block: Boolean to control whether command request is executed in blocking

or not:

♦ Block=True: It will block until the command is queue, sent to a remote

process, executed, and the corresponding response is received.
♦ Block=False: It will not block, just register the command request and

return an identifier which can be used later on to get the command
response

• target_server: List of integers (server ids) which are the target for the

command. The ids correspond to the MPI process rank of the target servers

NOTE: Remember that according with the mpi4casa convention the process
with highest rank corresponds to the client, and the other process are the
servers. e.g.: In a 4 processors run, the ranks with id 0,1,2 correspond to the
servers, and can be used as target_server, and the process with rank 0
corresponds to the client.

♦ target_server=None: The command will be executed by the first available

server
♦ target_server=2: The command will be executed by the server n#2 as soon

as it is available
♦ target_server=[0,1]: The command will be executed by the servers n #2

and #3 as soon as they are available

• parameters (optional): dictionary containing the parameters to be used in the
command execution. These parameters will be injected in the local variable
space of the server and deleted after execution. Any python (pickable) object
is accepted.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 19 of 42

• returns:

♦ In non-blocking mode: It	
 will	
 return	
 immediately,	
 giving	
 the	
 responses	

already	
 available	
 as	
 a	
 list	
 of	
 dictionaries,	
 one	
 per	
 command	
 request,	

containing	
 the	
 response	
 parameters.

♦ In blocking mode: It will not return until the responses for all the
command requests have been received. Then it returns a list of
dictionaries, one	
 per	
 command	
 request,	
 containing	
 the	
 response	

parameters.

The command response dictionary contains the following keys:

keyword type Description
command string CASA/Python command that was executed
id integer Identifier assigned to the command request
mode string There are two command modes:

- eval: The command was executed in eval mode which returns a variable
- exec: The command was just executed, w/o returning any variable

parameters dictionary Dictionary containing the parameters used for the command execution
ret (variable) Variable returned by the command
server integer MPI rank of the server process which executed the command request
status string Command request status:

- timeout: The server assigned to this command requested timeout.
- holding queue: This command request is still holding a queue, and has not been sent to the server yet.
- request sent: This command has already been sent to a server, and the response has been received.

successful boolean Boolean to specify if the command execution was successful or not, where successful means that the
command did not throw any exceptions.

traceback string When the command is not successful it throws an exception, whose back trace is stored in this
parameter.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 20 of 42

§ def get_command_response(self,command_request_id_list,block=False,verbose=True)	

This method to retrieve the response for a given command request id/ids
specified as a list of integers as returned by push_command_request in non-
blocking mode.

This method also has a blocking and non-blocking modes, where blocking
means that the method will not return until all the responses have been
received, and non-blocking will return immediately, giving the responses
already available as a list of dictionaries, one per command request,
containing the response parameters.

The verbose parameter control the information provided when the command
responses have not been received yet. When verbose mode is True it will
inform about the servers which are running the command requests whose
answer has not been received yet.

• Command Request Id: List with ids (integers) of the command response to
retrieve

• Block: Boolean to control whether command request is executed in blocking
or not:

♦ Block=True: It will block until the response from all command is received

♦ Block=False: It will not block, and just return the available responses

NOTE: If a command was sent to a server which is not responsive at retrieval
time, it will not block the return of this method, but notify of the time-out
error instead

• verbose: Boolean to control weather information about command request
status is posted in non-blocking mode

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 21 of 42

• returns:

♦ In non-blocking mode: It	
 will	
 return	
 immediately,	
 giving	
 the	
 responses	

already	
 available	
 as	
 a	
 list	
 of	
 dictionaries,	
 one	
 per	
 command	
 request,	

containing	
 the	
 response	
 parameters.

♦ In blocking mode: It will not return until the responses for all the

command requests have been received. Then it returns a list of
dictionaries, one	
 per	
 command	
 request,	
 containing	
 the	
 response	

parameters.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 22 of 42

5.5 MPICommandClient/Server logging
In the current version (CASA 4.3) both sides (client and servers) send the logs to the same
log file, and it is possible to inspect the server logs in real time, by using the casalog GUI in
the client side. However, the server logs will not appear in the Client terminal directly.

Provided that the logs form all servers are flushed to the same file, the MPI rank of each
server has been added to the log origin to facilitate the log analysis. However, this has been
done only at the Python level, and in second iteration it will be added to the C++ level. It is a
rather trivial step but since it involves compiling CASA with MPI compilers I have decided
to postpone this step until we have a proper CASa development environment with MPI
enabled.

In future version the plan is that the logger in the server side sends the logs to the client
logger, which in turns can send them to the terminal and/or the log file.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 23 of 42

5.6 MPICommandClient/Server error handling

MPICommandClient/Server are ready to handle any python exception that occurs in the
server, and report it back to the client side, properly formatted.

When a python/CASA command is not successful (i.e. and exception is thrown), then the
command response sets the Boolean field 'successful' to False, and the string field 'traceback'
contains the python trace-back already formatted (using the python module traceback).

NOTE: Please notice that in terms of Python a command execution is considered not
successful only when it throws an exception. In terms of CASA, some tasks return a Boolean
False when the call is not successful, but w/o throwing any exception. In this case, the return
variable 'ret' of the command response will contain a Boolean False, but the Boolean field
'successful' will be set to True.

§ ex 1.: exception thrown when opening a tool

parameters = {'vis':'fileNotFound.ms'}

response = client.push_command_request('myimagertool.open(vis)',True,[0],parameters)

CASA <11>: if not response[0]['successful']:
 : print response[0]['traceback']
 :
 :
Traceback (most recent call last):
 File "/data1/jagonzal/mpi4py/linux_64b/python/2.7/mpi4casa/MPICommandServer.py", line
145, in __command_request_handler_service
 command_response['ret'] = eval(command_request['command'])
 File "<string>", line 1, in <module>
 File "/data1/jagonzal/mpi4py/linux_64b/python/2.7/__casac__/imager.py", line 1932, in
open
 return _imager.imager_open(self, *args, **kwargs)
RuntimeError: Table /data1/testhpc2/MPI/fileNotFound.ms does not exist

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 24 of 42

5.7 MPICommandClient basic python examples

§ ex 1: Blocking mode, string parameters, undefined target server

command_response_list = client.push_command_request("1+1",True,None)

§ ex 2: Blocking mode, string parameters, defined target server

command_response_list = client.push_command_request("1+1",True,[0])

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 25 of 42

§ ex 3: Blocking mode, string parameters, multiple target server

command_response_list = client.push_command_request("1+1",True,[0,1])

§ ex 4: Non-Blocking mode, string parameters, undefined target server

command_request_id_list = self.client.push_command_request("1+1",False,None)
Try to get responses before time in non-blocking more
command_response_list = client.get_command_response(command_request_id_list,False,True)
Get response in blocking mode
command_response_list = client.get_command_response(command_request_id_list,True,True)

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 26 of 42

§ ex 5: Non-Blocking mode, string parameters, defined target server

command_request_id_list = self.client.push_command_request("1+1",False,[0])
Try to get responses before time in non-blocking more
command_response_list = self.client.get_command_response(command_request_id_list,False,True)
Get response in blocking mode
command_response_list

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 27 of 42

§ ex 6: Non-Blocking mode, string parameters, multiple target servers

command_request_id_list = self.client.push_command_request("1+1",False,[0,1])
Try to get responses before time in non-blocking more
command_response_list = self.client.get_command_response(command_request_id_list,False,True)
Get response in blocking mode
command_response_list = self.client.get_command_response(command_request_id_list,True,True)

§ ex 7: Blocking mode, dictionary parameters, undefined target server

command_response_list = self.client.push_command_request("a+b",True,None,{'a':1,'b':2})

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 28 of 42

§ ex 8: Blocking mode, dictionary parameters, defined target server

command_response_list = self.client.push_command_request("a+b",True,[0],{'a':1,'b':2})

§ ex 9: Blocking mode, dictionary parameters, multiple target server

command_response_list = self.client.push_command_request("a+b",True,[0,1],{'a':1,'b':2})

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 29 of 42

§ ex 10: Non-Blocking mode, dictionary parameters, undefined target server

command_request_id_list = self.client.push_command_request("a+b",False,None,{'a':1,'b':2})
Try to get responses before time in non-blocking more
command_response_list = self.client.get_command_response(command_request_id_list,False,True)
Get response in blocking mode
command_response_list = self.client.get_command_response(command_request_id_list,True,True)

§ ex 11: Non-Blocking mode, dictionary parameters, defined target server

command_request_id_list = self.client.push_command_request("a+b",False,[0],{'a':1,'b':2})
Try to get responses before time in non-blocking more
command_response_list = self.client.get_command_response(command_request_id_list,False,True)
Get response in blocking mode
command_response_list = self.client.get_command_response(command_request_id_list,True,True)

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 30 of 42

§ ex 12: Non-Blocking mode, dictionary parameters, multiple target server

command_request_id_list = self.client.push_command_request("a+b",False,[0,1],{'a':1,'b':2})
Try to get responses before time in non-blocking more
command_response_list = self.client.get_command_response(command_request_id_list,False,True)
Get response in blocking mode
command_response_list = self.client.get_command_response(command_request_id_list,True,True)

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 31 of 42

5.8 MPICommandClient CASA tasks examples
Executing a CASA task command does not differ at all from executing a basic python
command, but for the sake of completeness I have prepared some basic examples here:

NOTE: mpi4py is already integrated with ParallelTaskHelper, so it is not necessary to do
anything (in particular initialize MPICommandClient) in order to run tasks in parallel.
ParalleTaskHelper re-uses or initializes the MPICommandClient singleton if necessary.

§ ex 1.: flagdata rflag, string parameters, blocking mode, defined server

client.push_command_request(“flagdata(vis='Four_ants_3C286.ms',mode='summary')”,True,[1])

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 32 of 42

§ ex 2.: flagdata summary, dict parameters, blocking mode, defined server

parameters = {'vis':'Four_ants_3C286.ms','mode':'rflag','flagbackup':False}

client.push_command_request('flagdata()',True,[0],parameters)

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 33 of 42

§ ex 3.: create an imager tool in each remote server, blocking mode

client.push_command_request('myimager=imager()',True,[0,1,2])

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 34 of 42

§ ex 4.: open newly created imager tool in each remote server, dict parameters,
blocking mode

parameters={'vis':'Four_ants_3C286.ms'}

client.push_command_request('myimager.open(vis)',True,[0,1,2],parameters)

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 35 of 42

5.9 mpi4casa unit test suit

mpi4casa has a complete unit test suit, with more than 60 tests, which can be launched using
CASA's unit test tools, specifying a configurable number of parallel processors, or even
specifying a distributed environment via hostfile.

mpirun -n 4 casapy --nologger --log2term -c runUnitTest.py test_mpi4casa

mpirun -n 4 -hostfile host casapy --nologger --log2term -c runUnitTest.py test_mpi4casa

The unit test suit covers all combinations of MPICommandClient/Server usage:

Ø blocking and non-blocking mode
Ø execution mode

o with return variable (eval)
o w/o return variable (exec)

Ø target server specification
o undefined server
o defined server
o multiple servers
o busy/iddle server

Ø parameters specification
o Via command string
o Via parameter dictionary

Ø error handling cases:
o ImportError
o NameError
o ZeroDivisionError
o TypeError
o IndexError
o KeyError

Ø Server timeout handling
o Server timeout
o Assignment to timeout server
o Timeout recovery

Ø Singleton behavior
o Invalid MPICommandClient/Server instantiation
o MPICommandClient destruction

It also covers integration via ParallelTaskHelper with the following tasks:

Ø flagdata
Ø applycal
Ø uvcontsub
Ø setjy

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 36 of 42

6 Packaging and cluster integration

During the CASA technical forum conferences it was decided to choose OpenMPI as a
preferred MPI implementation for CASA. Following up this decision we have prepared a
build, packaging and integration procedure to run CASA in the standard NRAO/ESO/NAOJ
clusters which currently are configured as follows:

Ø RHEL 6.X 64b OS
Ø Access to a Lustre shared file system via an Infiniband connection as
Ø Use Torque as resource manager, in particular for dispatching batch jobs.

One of the advantages of OpenMPI is that it aims to support all interconnects including
Infiniband transparently, and also uses a hostfile format compatible with that produced
automatically by Torque, so it is not necessary to create a custom hostfile like in the case of
the previous iPython -based clusters.

6.1 Stand-alone MPI CASA build

Section 4 describes how to install and configure all the necessary packages to enable MPI in
CASA, however, it assumes root access to the system, and this condition cannot be
guaranteed in the general case.

The following procedure aims to prepare a stand-alone version of CASA together with all
the needed packages to bypass the default system OpenMPI configuration (in case it exists)
and compile both, auxiliary packages (like mpi4py and Boost MPI) and the CASA source
coda against our local OpenMPI installation.

For a reference the 3rd party package versions are described as follow:

Package name Version Usage
Open MPI 1.6.5 MPI Implementation
bjam 3.1.8 Boost build manager
boost (including boost MPI) 1.41.0 C++ MPI binding
mpi4py 1.3.1 Python MPI binding

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 37 of 42

All the steps described below are contained in the following scripts available to download:

• Script to build CASA using a custom configured version of OpenMPI
Ø build-­‐casa-­‐source-­‐with-­‐mpi-­‐packages.sh	

• Scripts to prepare a stand-alone package from the previous step:

Ø pack-­‐casa-­‐3rd-­‐party-­‐non-­‐mpi-­‐packages.sh	

Ø findreplace.py	

• Example of cluster.req and qsub.sh scripts to commit a CASA MPI batch job to

Torque:
Ø cluster.req
Ø qsub.sh	

6.1.1 Prepare environment and build area

NOTE: The installation path must be identical in the build and target machine.

Custom configuration

export BUILD_CORES=8

export ARCH="linux_64b"

export REPO="trunk"

export WORKAREA="/lustre/user/mpi"

Download CASA repositories

mkdir $WORKAREA

cd $WORKAREA

svn co https://svn.cv.nrao.edu/svn/casa/trunk

export BASECAMP="$WORKAREA/$REPO"

Dowload CASA data repository

export DATA="$BASECAMP/data"

mkdir $DATA

cd $DATA

svn co https://svn.cv.nrao.edu/svn/casa-data/trunk/ephemerides

svn co https://svn.cv.nrao.edu/svn/casa-data/trunk/geodetic

Prepare build areas

mkdir $BASECAMP/packages

mkdir $BASECAMP/build

mkdir $BASECAMP/casacore/build

mkdir $BASECAMP/code/build

mkdir $BASECAMP/gcwrap/build

mkdir $BASECAMP/asap/build

export BUILDROOT="$BASECAMP/$ARCH"

Update path

export PATH="$BUILDROOT/bin:$PATH"

export LD_LIBRARY_PATH="$BUILDROOT/lib:$LD_LIBRARY_PATH"

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 38 of 42

6.1.2 Build 3rd party packages and install them under $CASAPATH

Open MPI 1.6.5

cd $BASECAMP/packages

wget wget http://www.open-mpi.org/software/ompi/v1.6/downloads/openmpi-1.6.5.tar.bz2

bunzip2 openmpi-1.6.5.tar.bz2

tar -xvf openmpi-1.6.5.tar

cd openmpi-1.6.5

./configure --enable-mpi-thread-multiple --enable-opal-multi-threads --prefix=$BUILDROOT

make all -j$BUILD_CORES

make install

bjam 3.1.18

cd $BASECAMP/packages

wget http://sourceforge.net/projects/boost/files/boost-jam/3.1.18/boost-jam-3.1.18.tgz

tar -xzvf boost-jam-3.1.18.tgz

cd boost-jam-3.1.18

./build.sh

cp bin.linuxx86_64/bjam $BUILDROOT/bin/

boost 1.41.0

cd $BASECAMP/packages

wget http://sourceforge.net/projects/boost/files/boost/1.41.0/boost_1_41_0.tar.gz

tar -xzvf boost_1_41_0.tar.gz

cd boost_1_41_0

echo "using python : 2.7 : /usr/lib64/casa/01/bin/python ;" >> ./tools/build/v2/user-
config.jam

echo "using mpi ;" >> ./tools/build/v2/user-config.jam

bjam --debug-configuration --prefix=$BUILDROOT install

mpi4py 1.3.1

cd $BASECAMP/packages

wget http://mpi4py.googlecode.com/files/mpi4py-1.3.1.tar.gz

tar -xzvf mpi4py-1.3.1.tar.gz

cd mpi4py-1.3.1

/usr/lib64/casa/01/bin/python setup.py build

/usr/lib64/casa/01/bin/python setup.py install --prefix=$BUILDROOT

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 39 of 42

6.1.3 Build CASA

NOTE: ASAP CMake settings don't work with Open MPI Fortran compiler in the section to
find Fortran libs, therefore ASAP Fortran code is not compiled using the OpenMPI
compilers for the time being

casacore

cd $BASECAMP/casacore/build

cmake -DCMAKE_INSTALL_PREFIX=$BUILDROOT -DCMAKE_Fortran_COMPILER=$BUILDROOT/bin/mpif90 -
DCMAKE_C_COMPILER=$BUILDROOT/bin/mpicc -DCMAKE_CXX_COMPILER=$BUILDROOT/bin/mpic++ ..

make all -j$BUILD_CORES

make install

code

cd $BASECAMP/code/build

cmake -DCMAKE_INSTALL_PREFIX=$BUILDROOT -DCMAKE_Fortran_COMPILER=$BUILDROOT/bin/mpif90 -
DCMAKE_C_COMPILER=$BUILDROOT/bin/mpicc -DCMAKE_CXX_COMPILER=$BUILDROOT/bin/mpic++ -
DBOOST_ROOT=$BUILDROOT -DUSE_ALMAWVR=ON ..

make all -j$BUILD_CORES

Source casainit

source $BASECAMP/casainit.sh

gcwrap

cd $BASECAMP/gcwrap/build

cmake -DCMAKE_INSTALL_PREFIX=$BUILDROOT -DCMAKE_Fortran_COMPILER=$BUILDROOT/bin/mpif90 -
DCMAKE_C_COMPILER=$BUILDROOT/bin/mpicc -DCMAKE_CXX_COMPILER=$BUILDROOT/bin/mpic++ -
DCMAKE_SWIG_FLAGS="-threads" -DBOOST_ROOT=$BUILDROOT ..

make all -j$BUILD_CORES

asap

cd $BASECAMP/asap/build

cmake -DCMAKE_INSTALL_PREFIX=$BUILDROOT -DCMAKE_C_COMPILER=$BUILDROOT/bin/mpicc -
DCMAKE_CXX_COMPILER=$BUILDROOT/bin/mpic++ -DBOOST_ROOT=$BUILDROOT ..

make all -j$BUILD_CORES

6.1.4 Create link to include mpi4py in CASA PYTHON container

NOTE: Python prefix convention is different from that of CASA, therefore this step has to
be done manually instead of at mpi4py configuration time

export PYTHONPATH="$BUILDROOT/python/2.7"

ln -s $BUILDROOT/lib/python2.7/site-packages/mpi4py $PYTHONPATH

6.1.5 Pack non-MPI 3rd party packages together with CASA under $CASAROOT

NOTE: This procedure is the same that the imaging team follows to test a CASA
development build in the cluster environment. It basically copies the system libraries under
$CASAROOT, but also it is necessary to replace some hard-coded paths. We have extended
it to include some optional packages like ALMA WVR calibration package.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 40 of 42

NOTE: The findreplace.py script, which is used in this step, is the original one from the
imaging team and can be downloaded from the links provided in introduction of the 6.1
sections. It has to be located in the folder from where this procedure is executed.

ROOT="/lustre/user/mpi/trunk"

ARCH="linux_64b"

PYBIN="bin/python2.7"

FINDREPLACE="findreplace.py"

CASA3PARTYSTR="/usr/lib64/casa/01"

export EL6PATH=$ROOT/$ARCH

STEPS="1 2 3 4 5 6 7"

for step in $STEPS

do

STEP (1)

 if [$step == '1'];

 then

 cp -ar /usr/lib64/casa/01/lib/* $EL6PATH/lib

 cp -a /usr/lib64/casa/01/bin/* $EL6PATH/bin

 cp -a /usr/lib64/libwcs* $EL6PATH/lib/

 cp -a /usr/lib64/libpgsbox* $EL6PATH/lib

 cp -a /usr/lib64/libaatm.* $EL6PATH/lib

 cp -a /usr/lib64/libxerces-c.* $EL6PATH/lib

 cp -a /usr/lib64/libcfitsio.* $EL6PATH/lib

 cp -a /usr/lib64/libalmawvr* $EL6PATH/lib

 fi

STEP (2)

 if [$step == '2'];

 then

(2) Modify $EL6PATH/bin/casapy (for Linux, not Mac) to change the "casa3party"
variable from "/usr/lib64/casa/01" to $EL6PATH

 sed -e "s|"$CASA3PARTYSTR"|"$EL6PATH"|g" $EL6PATH/bin/casapy >| /tmp/casapy.$USER

 cp /tmp/casapy.$USER $EL6PATH/bin/casapy

 fi

STEP (3)

 if [$step == '3'];

 then

(3) export LD_LIBRARY_PATH=$EL6PATH/lib:LD_LIBRARY_PATH

 export LD_LIBRARY_PATH=$EL6PATH/lib:$LD_LIBRARY_PATH

 fi

STEP (4) Modify findreplace.py to put the new python2.7 path in...

 if [$step == '4'];

 then

 CMD="s|HUUUHAAA|"$ROOT\/$ARCH\/$PYBIN"|g"

 sed -e $CMD $FINDREPLACE >| /tmp/findreplace.py.$USER

 fi

STEP (5) cd $EL6PATH

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 41 of 42

 if [$step == '5'];

 then

 cd $EL6PATH; python /tmp/findreplace.py.$USER #(or from wherever it is)

 fi

STEP (6) cd $EL6PATH/bin

 if [$step == '6'];

 then

(This step is required just once.... for the stuff copied in (1))

 cd $EL6PATH/bin

 chmod +x *

 fi

STEP (7)

 if [$step == '7'];

 then

#To run from a different machine :

 source $ROOT/casainit.sh

 export LD_LIBRARY_PATH=$ROOT/$ARCH/lib:$LD_LIBRARY_PATH

 echo $LD_LIBRARY_PATH

 fi

#casapy

done

--

After rebuilding using the build scripts, we need to repeat only (2).

--

6.2 Run a Torque batch job using MPI

As described previously OpenMPI uses a hostfile format compatible with that produced
automatically by Torque, so it is not necessary to create a custom hostfile like in the case of
the previous iPython -based clusters.

In particular, after submitting a batch job request, Torque sets an environmental variable
named $PBS_NODEFILE, which points to a file with the list of nodes reserved by Torque to
run the submitted batch job.

When more than one core per host is available then the corresponding hostname is repeated
as many times as cores available for the job. This format is natively understood by OpenMPI
and therefore it is necessary to only point OpenMPI to the $PBS_NODEFILE using the --
hostfile option.

This, together with the mpirun launcher has to be used as a command which is stored in a
bash script which Torque finds via the $COMMAND variable in the cluster.req request file.

CASA 4.3 MPI Parallel Processing
Framework

Date: 2014-10-10
Status: Development
Page: 42 of 42

The only precautions needed are the following:

• The	
 installation	
 path	
 must	
 be	
 identical	
 in	
 the	
 build	
 and	
 target	
 machine.

• We	
 are	
 using	
 a	
 local	
 installation	
 of	
 the	
 system	
 libraries	
 (including	
 OpenMPI)	

which	
 are	
 packed	
 together	
 with	
 the	
 CASA	
 libraries	
 under	
 $CASAROOT.	

Therefore	
 the	
 .bashrc	
 file	
 of	
 the	
 user	
 running	
 the	
 Torque	
 batch	
 job	
 must	
 set	
 the	

environment	
 properly	
 to	
 use	
 these.	

Ø Example of .bashrc user environment settings

CASAROOT="/lustre/user/mpi/trunk/linux_64bit

source $CASAROOT/casainit.sh
export LD_LIBRARY_PATH="$CASAROOT/lib:$LD_LIBRARY_PATH"

Ø Example of cluster.req file to submit a job to Torque

Required settings

MEMORY="8gb"

WORK_DIR="/lustre/user/workarea"

COMMAND="/lustre/user/workarea/qsub.sh"

Optional settings

NUM_NODES="4" # default is 1

NUM_CORES="2" # default is 1

STDOUT="run.log" # file relative to WORK_DIR. default is no output
STDERR="run.log" # file relative to WORK_DIR. default is no output

Ø Example of qsub.sh file containing the command to run

mpirun -hostfile $PBS_NODEFILE casapy --nologger --log2term --nogui -c "alma-m100-
analysis-hpc-regression.py"

NOTE: Notice that it is not necessary to specify the number of MPI processes because this
information is already contained in the $PBS_NODEFILE file generated automatically by
Torque.

Ø Command to submit a job to Torque

submit -f cluster.req

