LCOV - code coverage report
Current view: top level - synthesis/TransformMachines - VLACalcIlluminationConvFunc.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 402 0.0 %
Date: 2024-12-11 20:54:31 Functions: 0 19 0.0 %

          Line data    Source code
       1             : // -*- C++ -*-
       2             : //# VLAIlluminationConvFunc.cc: Implementation for VLAIlluminationConvFunc
       3             : //# Copyright (C) 1996,1997,1998,1999,2000,2002
       4             : //# Associated Universities, Inc. Washington DC, USA.
       5             : //#
       6             : //# This library is free software; you can redistribute it and/or modify it
       7             : //# under the terms of the GNU Library General Public License as published by
       8             : //# the Free Software Foundation; either version 2 of the License, or (at your
       9             : //# option) any later version.
      10             : //#
      11             : //# This library is distributed in the hope that it will be useful, but WITHOUT
      12             : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      13             : //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
      14             : //# License for more details.
      15             : //#
      16             : //# You should have received a copy of the GNU Library General Public License
      17             : //# along with this library; if not, write to the Free Software Foundation,
      18             : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
      19             : //#
      20             : //# Correspondence concerning AIPS++ should be adressed as follows:
      21             : //#        Internet email: casa-feedback@nrao.edu.
      22             : //#        Postal address: AIPS++ Project Office
      23             : //#                        National Radio Astronomy Observatory
      24             : //#                        520 Edgemont Road
      25             : //#                        Charlottesville, VA 22903-2475 USA
      26             : //#
      27             : //#
      28             : //# $Id$
      29             : 
      30             : #define USETABLES 1
      31             : #include <synthesis/TransformMachines/VLACalcIlluminationConvFunc.h>
      32             : #include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
      33             : #include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
      34             : #include <casacore/coordinates/Coordinates/LinearCoordinate.h>
      35             : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
      36             : #include <synthesis/TransformMachines/Utils.h>
      37             : #include <synthesis/TransformMachines/SynthesisError.h>
      38             : #include <casacore/ms/MeasurementSets/MSColumns.h>
      39             : #include <casacore/lattices/LEL/LatticeExpr.h>
      40             : #include <casacore/lattices/LatticeMath/LatticeFFT.h>
      41             : #include <casacore/images/Images/ImageRegrid.h>
      42             : #include <casacore/images/Images/PagedImage.h>
      43             : #include <casacore/casa/Arrays/ArrayMath.h>
      44             : #include <casacore/casa/Utilities/Assert.h>
      45             : #include <casacore/casa/OS/File.h>
      46             : #include <fstream>
      47             : #include <sstream>
      48             : #include <casacore/casa/OS/Timer.h>
      49             : using namespace casacore;
      50             : namespace casa{
      51             : 
      52             :   //
      53             :   //------------------------------------------------------------------------
      54             :   //
      55           0 :   VLACalcIlluminationConvFunc::VLACalcIlluminationConvFunc():IlluminationConvFunc()
      56             :   {
      57             : 
      58           0 :     LogIO logIO(LogOrigin("VLACalcIlluminationConvFunc","ctor"));
      59           0 :     ap.oversamp = 3;
      60           0 :     ap.x0=-13.0; ap.y0=-13.0;
      61           0 :     ap.dx=0.5; ap.dy=0.5;
      62             : 
      63           0 :     ap.nx=ap.ny=104;
      64           0 :     ap.pa=lastPA=18000000;
      65           0 :     ap.freq=1.4;
      66           0 :     ap.band = BeamCalc_VLA_L;
      67             :     //    IPosition shape(4,ap.nx,ap.ny,4,1);
      68           0 :     IPosition shape(4,ap.nx,ap.ny,1,1);//Set poln. axis to be
      69             :                                        //degenerate (len=1).  This is
      70             :                                        //set to 2 if cross-hand
      71             :                                        //functions are requested.
      72           0 :     ap.aperture = new TempImage<Complex>();
      73           0 :     if (maximumCacheSize() > 0) ap.aperture->setMaximumCacheSize(maximumCacheSize());
      74           0 :     ap.aperture->resize(shape);
      75             : 
      76           0 :   }
      77             : 
      78             : 
      79           0 :   CoordinateSystem VLACalcIlluminationConvFunc::makeUVCoords(CoordinateSystem& imageCoordSys,
      80             :                                                              IPosition& shape,
      81             :                                                              Double /*refFreq*/)
      82             :   {
      83           0 :     CoordinateSystem FTCoords = imageCoordSys;
      84           0 :     Int dirIndex=FTCoords.findCoordinate(Coordinate::LINEAR);
      85             : 
      86             :     // If LINEAR axis is found, assume that the coordsys is alread in FT domain
      87           0 :     if (dirIndex >= 0) return FTCoords; 
      88             : 
      89           0 :     dirIndex=FTCoords.findCoordinate(Coordinate::DIRECTION);
      90           0 :     DirectionCoordinate dc=imageCoordSys.directionCoordinate(dirIndex);
      91           0 :     Vector<Bool> axes(2); axes=true;
      92           0 :     Vector<Int> dirShape(2); dirShape(0)=shape(0);dirShape(1)=shape(1);
      93           0 :     Coordinate* FTdc=dc.makeFourierCoordinate(axes,dirShape);
      94             :     // if (refFreq > 0)
      95             :     //   {
      96             :     //  Int index1 = FTCoords.findCoordinate(Coordinate::SPECTRAL);
      97             :     //  SpectralCoordinate SpC = FTCoords.spectralCoordinate(index1);
      98             :     //  Vector<Double> refVal = SpC.referenceValue();
      99             :     //  refVal = refFreq;
     100             :     //  SpC.setReferenceValue(refVal);
     101             :     //   }
     102             : 
     103           0 :     FTCoords.replaceCoordinate(*FTdc,dirIndex);
     104           0 :     delete FTdc;
     105             : 
     106           0 :     return FTCoords;
     107           0 :   }
     108             :   
     109             : //  CoordinateSystem VLACalcIlluminationConvFunc::makeJonesCoords(CoordinateSystem& imageCoordsys)
     110             : //
     111             : //
     112             :   //----------------------------------------------------------------------
     113             :   // Write PB to the pbImage
     114             :   //
     115           0 :   void VLACalcIlluminationConvFunc::applyPB(ImageInterface<Float>& /*pbImage*/,
     116             :                                             //const VisBuffer& vb, 
     117             :                                             Double& /*pa*/,
     118             :                                             const Vector<Float>& /*paList*/, 
     119             :                                             Int /*bandID*/, Bool /*doSquint*/)
     120             :   {
     121           0 :     throw(AipsError("applyPB(paList) called!"));
     122             :     // CoordinateSystem skyCS(pbImage.coordinates());
     123             :     // IPosition skyShape(pbImage.shape());
     124             :     // TempImage<Complex> uvGrid;
     125             :     // if (maximumCacheSize() > 0) uvGrid.setMaximumCacheSize(maximumCacheSize());
     126             :     // //    regridAperture(skyCS, skyShape, uvGrid, vb, paList, false, bandID);
     127             :     // regridAperture(skyCS, skyShape, uvGrid, pa, paList, doSquint, bandID);
     128             : 
     129             :     // fillPB(*(ap.aperture),pbImage);
     130             :   }
     131           0 :   void VLACalcIlluminationConvFunc::applyPB(ImageInterface<Float>& pbImage,
     132             :                                             //const VisBuffer& vb, 
     133             :                                             Double& pa,
     134             :                                             Int bandID,
     135             :                                             Bool doSquint, Double freqVal)
     136             :   {
     137           0 :     CoordinateSystem skyCS(pbImage.coordinates());
     138           0 :     IPosition skyShape(pbImage.shape());
     139             : 
     140           0 :     TempImage<Complex> uvGrid;
     141           0 :     if (maximumCacheSize() > 0) uvGrid.setMaximumCacheSize(maximumCacheSize());
     142             :     //    regridAperture(skyCS, skyShape, uvGrid, vb,false, bandID);
     143           0 :     regridAperture(skyCS, skyShape, uvGrid, pa, doSquint, bandID, 0, freqVal);
     144           0 :     fillPB(*(ap.aperture),pbImage);
     145           0 :   }
     146           0 :   void VLACalcIlluminationConvFunc::applyPB(ImageInterface<Complex>& pbImage, 
     147             :                                             //const VisBuffer& vb,
     148             :                                             Double& pa,
     149             :                                             Bool doSquint, Int bandID,Int muellerTerm, Double freqVal)
     150             :   {
     151           0 :     CoordinateSystem skyCS(pbImage.coordinates());
     152           0 :     IPosition skyShape(pbImage.shape()); 
     153             : //    cout<<"M = "<<muellerTerm<<"\n";
     154             : //    cout<<"bandID = "<<bandID<<"\n";
     155             : //    cout<<"doSquint = "<<doSquint<<"\n";
     156           0 :     TempImage<Complex> uvGrid;
     157             : 
     158           0 :     if (maximumCacheSize() > 0) uvGrid.setMaximumCacheSize(maximumCacheSize());
     159             :     //    regridAperture(skyCS, skyShape, uvGrid, vb, true, bandID);
     160           0 :     Int index= skyCS.findCoordinate(Coordinate::SPECTRAL);
     161           0 :     SpectralCoordinate spCS = skyCS.spectralCoordinate(index);
     162             : //    cout<<"Ref Freq for sky jones is :"<<spCS.referenceValue()(0);
     163             :     // index=skyCS.findCoordinate(Coordinate::DIRECTION);
     164             :     // AlwaysAssert(index>=0, AipsError);
     165             :     
     166           0 :     regridAperture(skyCS, skyShape, uvGrid, pa, doSquint, bandID, muellerTerm,freqVal);
     167             :     
     168           0 :     pbImage.setCoordinateInfo(skyCS);
     169             :     // {
     170             :     //   string name("aperture.im");
     171             :     //   storeImg(name,*(ap.aperture));
     172             :     // }
     173           0 :     fillPB(*(ap.aperture),pbImage);
     174             :     //{
     175             :     //   string name("apb.im");
     176             :     //   storeImg(name,pbImage);
     177             :     //}
     178           0 :   }
     179             :   //--------------------------------------------------------------------------
     180             :   // Write PB^2 to the pbImage
     181             :   //
     182           0 :   void VLACalcIlluminationConvFunc::applyPBSq(ImageInterface<Float>& /*pbImage*/,
     183             :                                               //const VisBuffer& vb, 
     184             :                                               Double& /*pa*/,
     185             :                                               const Vector<Float>& /*paList*/, 
     186             :                                               Int /*bandID*/,
     187             :                                               Bool /*doSquint*/)
     188             :   {
     189           0 :     throw(AipsError("applyPBSq(paList) called!"));
     190             :     // CoordinateSystem skyCS(pbImage.coordinates());
     191             :     // IPosition skyShape(pbImage.shape());
     192             :     // TempImage<Complex> uvGrid;
     193             :     // if (maximumCacheSize() > 0) uvGrid.setMaximumCacheSize(maximumCacheSize());
     194             :     // //    regridAperture(skyCS, skyShape, uvGrid, vb, paList, false, bandID);
     195             :     // regridAperture(skyCS, skyShape, uvGrid, pa, paList, doSquint, bandID);
     196             : 
     197             :     // fillPB(*(ap.aperture),pbImage, true);
     198             :   }
     199           0 :   void VLACalcIlluminationConvFunc::applyPBSq(ImageInterface<Float>& pbImage,
     200             :                                               //const VisBuffer& vb, 
     201             :                                               Double& pa,
     202             :                                               Int bandID,
     203             :                                               Bool doSquint)
     204             :   {
     205           0 :     CoordinateSystem skyCS(pbImage.coordinates());
     206           0 :     IPosition skyShape(pbImage.shape());
     207             : 
     208           0 :     TempImage<Complex> uvGrid;
     209           0 :     if (maximumCacheSize() > 0) uvGrid.setMaximumCacheSize(maximumCacheSize());
     210             :     //    regridAperture(skyCS, skyShape, uvGrid, vb,false, bandID);
     211           0 :     regridAperture(skyCS, skyShape, uvGrid, pa, doSquint, bandID);
     212           0 :     fillPB(*(ap.aperture),pbImage,true);
     213           0 :   }
     214           0 :   void VLACalcIlluminationConvFunc::applyPBSq(ImageInterface<Complex>& pbImage, 
     215             :                                               //const VisBuffer& vb, 
     216             :                                               Double& pa,
     217             :                                               Int bandID,
     218             :                                               Bool doSquint)
     219             :   {
     220           0 :     CoordinateSystem skyCS(pbImage.coordinates());
     221           0 :     IPosition skyShape(pbImage.shape());
     222             : 
     223           0 :     TempImage<Complex> uvGrid;
     224           0 :     if (maximumCacheSize() > 0) uvGrid.setMaximumCacheSize(maximumCacheSize());
     225             :     //    regridAperture(skyCS, skyShape, uvGrid, vb, true, bandID);
     226           0 :     regridAperture(skyCS, skyShape, uvGrid, pa, doSquint, bandID);
     227           0 :     fillPB(*(ap.aperture),pbImage, true);
     228           0 :   }
     229             :   //
     230             :   //--------------------------------------------------------------------------
     231             :   //
     232           0 :   void VLACalcIlluminationConvFunc::setApertureParams(ApertureCalcParams& ap,
     233             :                                                       const Float& Freq, const Float& pa, 
     234             :                                                       const Int& bandID,
     235             :                                                       const Int& /*inStokes*/,
     236             :                                                       const IPosition& skyShape,
     237             :                                                       const Vector<Double>& uvIncr)
     238             :   {
     239           0 :     Double Lambda = C::c/Freq;
     240             :     
     241           0 :     ap.pa=pa;
     242           0 :     ap.band = bandID;
     243           0 :     ap.freq = Freq/1E9;
     244           0 :     ap.nx = skyShape(0);           ap.ny = skyShape(1);
     245           0 :     ap.dx = abs(uvIncr(0)*Lambda); ap.dy = abs(uvIncr(1)*Lambda);
     246           0 :     ap.x0 = -(ap.nx/2)*ap.dx;      ap.y0 = -(ap.ny/2)*ap.dy;
     247             :     //
     248             :     // If cross-hand pols. are requested, we need to compute both
     249             :     // the parallel-hand aperture illuminations.
     250             :     //
     251             :       //if ((inStokes == Stokes::RL) || (inStokes == Stokes::LR))
     252             :       {
     253           0 :         IPosition apShape(ap.aperture->shape());
     254           0 :         apShape(3)=4;
     255           0 :         ap.aperture->resize(apShape);
     256           0 :       }
     257           0 :   }
     258             :   //
     259             :   //--------------------------------------------------------------------------
     260             :   //
     261           0 :   void VLACalcIlluminationConvFunc::regridApertureEngine(ApertureCalcParams& ap,
     262             :                                                          const Int& /*inStokes*/)
     263             :   {
     264           0 :     IPosition apertureShape(ap.aperture->shape());
     265           0 :     apertureShape(0) = ap.nx;  apertureShape(1) = ap.ny;
     266           0 :     ap.aperture->resize(apertureShape);
     267           0 :     ap.aperture->set(0.0);
     268             :     //BeamCalc::Instance()->calculateAperture(&ap,inStokes);
     269             :     //cerr << ap.aperture->shape() << " " << inStokes << endl;
     270             : 
     271             :     // If full-pol. imaging, compute all 4 pols., else only the one given by inStokes.
     272           0 :     BeamCalc::Instance()->calculateAperture(&ap);// The call in the absence of instokes allows the computation of all
     273             :     //BeamCalc::Instance()->calculateAperture(&ap,inStokes);// The call in the absence of instokes allows the computation of all
     274             :                                                             // the four jones parameters at one time.
     275           0 : }
     276             :   //
     277             :   //--------------------------------------------------------------------------
     278             :   //
     279           0 :   void VLACalcIlluminationConvFunc::regridAperture(CoordinateSystem& skyCS,
     280             :                                                    IPosition& skyShape,
     281             :                                                    TempImage<Complex>& /*uvGrid*/,
     282             :                                                    //const VisBuffer& vb,
     283             :                                                    Double& pa,
     284             :                                                    Bool doSquint, Int bandID,Int muellerTerm ,Double freqVal)
     285             :   {
     286           0 :     LogIO logIO(LogOrigin("VLACalcIlluminationConvFunc","regrid"));
     287           0 :     CoordinateSystem skyCoords(skyCS);
     288             : 
     289             :     Int index;
     290             :     //UNUSED: Double timeValue = getCurrentTimeStamp(vb);
     291           0 :     AlwaysAssert(bandID>=-1, AipsError);
     292           0 :     if (bandID != -1) ap.band = bandID;
     293             :     //Float pa = getPA(vb);
     294             :     Float Freq, freqHi;
     295             : 
     296           0 :     if (lastPA == pa)
     297             :       {
     298             :         //      LogIO logIO;
     299             :         logIO << "Your CPU is being used to do computations for the same PA as for the previous call.  Report this!" 
     300           0 :               << LogIO::NORMAL1;
     301             :       }
     302             : 
     303             :     
     304           0 :     if (freqVal > 0)
     305             :       {
     306           0 :         Freq=freqHi=freqVal;
     307           0 :         ap.freq=freqHi/1E09;
     308             :       }
     309             :     else
     310             :       {
     311             :         //throw(AipsError("Freq. < 0 in VLACICF::regrid"));
     312             : 
     313             :         // Vector<Double> chanFreq = vb.frequency();
     314           0 :         index = skyCS.findCoordinate(Coordinate::SPECTRAL);
     315           0 :         SpectralCoordinate SpC = skyCS.spectralCoordinate(index);
     316           0 :         Vector<Double> refVal = SpC.referenceValue();
     317             :         
     318             :         // freqHi = max(chanFreq);
     319           0 :         freqHi = refVal[0];
     320             :         // freqLo = min(chanFreq);
     321           0 :         Freq = freqHi ;
     322           0 :         ap.freq = Freq/1E9;
     323           0 :       }
     324             :     
     325           0 :     IPosition imsize(skyShape);
     326           0 :     CoordinateSystem uvCoords = makeUVCoords(skyCoords,imsize,freqHi);
     327             : 
     328           0 :     index = uvCoords.findCoordinate(Coordinate::LINEAR);
     329           0 :     LinearCoordinate lc=uvCoords.linearCoordinate(index);
     330           0 :     Vector<Double> uvIncr = lc.increment();
     331             :     //Double Lambda = C::c/freqHi;
     332             :     
     333           0 :     index = uvCoords.findCoordinate(Coordinate::STOKES);
     334           0 :     Int inStokes = uvCoords.stokesCoordinate(index).stokes()(0);
     335             :     
     336             :     //Vector<Int> intSkyShape=skyShape.asVector();
     337           0 :     setApertureParams(ap, Freq, pa, bandID, inStokes,
     338             :                       skyShape, uvIncr);
     339             :     
     340           0 :     regridApertureEngine(ap, inStokes);
     341           0 :     IPosition apertureShape(ap.aperture->shape());
     342             : 
     343             :     // ap.freq = Freq/1E9;
     344             :     // ap.nx = skyShape(0); ap.ny = skyShape(1);
     345             :     // ap.dx = abs(uvIncr(0)*Lambda); ap.dy = abs(uvIncr(1)*Lambda);
     346             :     // ap.x0 = -(ap.nx/2)*ap.dx; 
     347             :     // ap.y0 = -(ap.ny/2)*ap.dy;
     348             :     // ap.pa=pa;
     349             :     // if ((inStokes == Stokes::RL) || (inStokes == Stokes::LR))
     350             :     //   ap.aperture->shape()(3)=2;
     351             : 
     352             :     // apertureShape(0) = ap.nx;  apertureShape(1) = ap.ny;
     353             :     // ap.aperture->resize(apertureShape);
     354             :     // ap.aperture->set(0.0);
     355             :     
     356             :     // BeamCalc::Instance()->calculateAperture(&ap,inStokes);
     357             :     
     358           0 :     if (!doSquint)
     359             :       {
     360           0 :         IPosition PolnRIndex(4,0,0,0,0), PolnLIndex(4,0,0,3,0);
     361           0 :         IPosition tndx(4,0,0,0,0);
     362           0 :         for(tndx(3)=0;tndx(3)<apertureShape(3);tndx(3)++)   // The freq. axis
     363           0 :           for(tndx(2)=0;tndx(2)<apertureShape(2);tndx(2)++) // The Poln. axis
     364           0 :             for(tndx(1)=0;tndx(1)<apertureShape(1);tndx(1)++)   // The spatial
     365           0 :               for(tndx(0)=0;tndx(0)<apertureShape(0);tndx(0)++) // axis.
     366             :                 {
     367           0 :                   PolnRIndex(0)=PolnLIndex(0)=tndx(0);
     368           0 :                   PolnRIndex(1)=PolnLIndex(1)=tndx(1);
     369           0 :                   Complex val, Rval /*, Lval*/;
     370             :                   Float phase;
     371           0 :                   val = ap.aperture->getAt(tndx);
     372           0 :                   Rval = ap.aperture->getAt(PolnRIndex);
     373             :                   //Lval = ap.aperture->getAt(PolnLIndex);
     374           0 :                   phase = arg(Rval);  Rval=Complex(cos(phase),sin(phase));
     375             :                   //phase = arg(Lval);  Lval=Complex(cos(phase),sin(phase));
     376             :                   
     377             :                   // if      (tndx(2)==0) ap.aperture->putAt(val*conj(Rval),tndx);
     378             :                   // else if (tndx(2)==1) ap.aperture->putAt(val*conj(Lval),tndx);
     379             :                   // else if (tndx(2)==2) ap.aperture->putAt(val*conj(Rval),tndx);
     380             :                   // else if (tndx(2)==3) ap.aperture->putAt(val*conj(Lval),tndx);
     381           0 :                   ap.aperture->putAt(val*conj(Rval),tndx);
     382             :                 }
     383           0 :       }
     384             : //    cout<<"Completed the regrid Aperture step"; 
     385             :     // Vector<Int> poln(4);
     386             :     // poln(0) = Stokes::RR;
     387             :     // poln(1) = Stokes::RL;
     388             :     // poln(2) = Stokes::LR;
     389             :     // poln(3) = Stokes::LL;
     390           0 :     Vector<Int> poln(1); poln(0)=inStokes;
     391           0 :     StokesCoordinate polnCoord(poln);
     392           0 :     SpectralCoordinate spectralCoord(MFrequency::TOPO,Freq,1.0,0.0);
     393             :     //    uvCoords.addCoordinate(dirCoord);
     394           0 :     index = uvCoords.findCoordinate(Coordinate::STOKES);
     395           0 :     uvCoords.replaceCoordinate(polnCoord,index);
     396           0 :     index = uvCoords.findCoordinate(Coordinate::SPECTRAL);
     397           0 :     uvCoords.replaceCoordinate(spectralCoord,index);
     398             :     //logIO << "The Stokes coordinate is", poln(0)<< LogIO::POST;
     399           0 :     ap.aperture->setCoordinateInfo(uvCoords);
     400           0 :      if (doSquint==true)
     401             :     {
     402             :     //  String name("aperture.im");
     403             :     //  storeImg(name,*(ap.aperture));
     404             :     }
     405             :     
     406             :     //
     407             :     // Now FT the re-gridded Fourier plane to get the primary beam.
     408             :     //
     409           0 :     ftAperture(*(ap.aperture),muellerTerm);
     410           0 :      if (doSquint==true)
     411             :     {
     412             :     //  String name("ftaperture.im");
     413             :     //  storeImg(name,*(ap.aperture));
     414             :     }
     415             :     
     416           0 :   }
     417           0 :   void VLACalcIlluminationConvFunc::regridAperture(CoordinateSystem& skyCS,
     418             :                                                    IPosition& skyShape,
     419             :                                                    TempImage<Complex>& uvGrid,
     420             :                                                    const VisBuffer &vb,
     421             :                                                    const Vector<Float>& paList,
     422             :                                                    Bool doSquint, Int bandID)
     423             :   {
     424           0 :     CoordinateSystem skyCoords(skyCS);
     425             :     
     426             :     Float pa, Freq;
     427           0 :     if (bandID != -1) ap.band = bandID;
     428           0 :     AlwaysAssert(ap.band>=-1, AipsError);
     429           0 :     Vector<Double> chanFreq = vb.frequency();
     430             :     
     431           0 :     const MSSpWindowColumns& spwCol = vb.msColumns().spectralWindow();
     432           0 :     ArrayColumn<Double> chanfreq = spwCol.chanFreq();
     433           0 :     ScalarColumn<Double> reffreq = spwCol.refFrequency();
     434             :     //    Freq = sum(chanFreq)/chanFreq.nelements();
     435             :     
     436           0 :     Freq = max(chanfreq.getColumn());
     437           0 :     IPosition imsize(skyShape);
     438           0 :     CoordinateSystem uvCoords = makeUVCoords(skyCoords,imsize,Freq);
     439           0 :     uvGrid.setCoordinateInfo(uvCoords);
     440             :     
     441           0 :     Int index = uvCoords.findCoordinate(Coordinate::LINEAR);
     442           0 :     LinearCoordinate lc=uvCoords.linearCoordinate(index);
     443           0 :     Vector<Double> incr = lc.increment();
     444           0 :     Double Lambda = C::c/Freq;
     445           0 :     ap.freq = Freq/1E9;
     446             :     
     447           0 :     ap.nx = skyShape(0); ap.ny = skyShape(1);
     448           0 :     IPosition apertureShape(ap.aperture->shape());
     449           0 :     apertureShape(0) = ap.nx;  apertureShape(1) = ap.ny;
     450           0 :     ap.aperture->resize(apertureShape);
     451             :     
     452           0 :     TempImage<Complex> tmpAperture;tmpAperture.resize(apertureShape);
     453           0 :     if (maximumCacheSize() > 0) tmpAperture.setMaximumCacheSize(maximumCacheSize());
     454             :     
     455           0 :     ap.dx = abs(incr(0)*Lambda); ap.dy = abs(incr(1)*Lambda);
     456             :     //  cout << ap.dx << " " << incr(0) << endl;
     457             :     //  ap.x0 = -(25.0/(2*ap.dx)+1)*ap.dx; ap.y0 = -(25.0/(2*ap.dy)+1)*ap.dy;
     458             :     // Following 3 lines go with the ANT tag in BeamCalc.cc
     459             :     //  Double antRadius=BeamCalcGeometryDefaults[ap.band].Rant;
     460             :     //  ap.x0 = -(antRadius/(ap.dx)+1)*ap.dx; 
     461             :     //  ap.y0 = -(antRadius/(ap.dy)+1)*ap.dy;
     462             :     // Following 2 lines go with the PIX tag in BeamCalc.cc
     463           0 :     ap.x0 = -(ap.nx/2)*ap.dx; 
     464           0 :     ap.y0 = -(ap.ny/2)*ap.dy;
     465             :     
     466             :     //
     467             :     // Accumulate apertures for a list of PA
     468             :     //
     469           0 :     for(uInt ipa=0;ipa<paList.nelements();ipa++)
     470             :       {
     471           0 :         pa = paList[ipa];
     472             :         
     473           0 :         ap.pa=pa;
     474           0 :         ap.aperture->set(0.0);
     475           0 :         BeamCalc::Instance()->calculateAperture(&ap);
     476             :         //
     477             :         // Set the phase of the aperture function to zero if doSquint==F
     478             :         // Poln. axis indices
     479             :         // 0: RR, 1:RL, 2:LR, 3:LL
     480             :         // This is electic field. 0=> Poln R, 
     481             :         //                        1=> Leakage of R->L
     482             :         //                        2=> Leakage of L->R
     483             :         //                        3=> Poln L
     484             :         //
     485             :         // The squint is removed in the following code using
     486             :         // honest-to-god pixel indexing. If this is not the most
     487             :         // efficient method of doing this in AIPS++ (i.e. instead use
     488             :         // slices etc.), then this cost will show up in making the
     489             :         // average PB.  Since this goes over each pixel of a full
     490             :         // stokes (poln. really) complex image, look here (also) for
     491             :         // optimization (if required).
     492             :         //
     493           0 :         if (!doSquint)
     494             :           {
     495           0 :             IPosition PolnRIndex(4,0,0,0,0), PolnLIndex(4,0,0,3,0);
     496           0 :             IPosition tndx(4,0,0,0,0);
     497           0 :             for(tndx(3)=0;tndx(3)<apertureShape(3);tndx(3)++)   // The freq. axis
     498           0 :               for(tndx(2)=0;tndx(2)<apertureShape(2);tndx(2)++) // The Poln. axis
     499           0 :                 for(tndx(1)=0;tndx(1)<apertureShape(1);tndx(1)++)   // The spatial
     500           0 :                   for(tndx(0)=0;tndx(0)<apertureShape(0);tndx(0)++) // axis.
     501             :                     {
     502           0 :                       PolnRIndex(0)=PolnLIndex(0)=tndx(0);
     503           0 :                       PolnRIndex(1)=PolnLIndex(1)=tndx(1);
     504           0 :                       Complex val, Rval, Lval;
     505             :                       Float phase;
     506           0 :                       val = ap.aperture->getAt(tndx);
     507           0 :                       Rval = ap.aperture->getAt(PolnRIndex);
     508           0 :                       Lval = ap.aperture->getAt(PolnLIndex);
     509           0 :                       phase = arg(Rval); Rval=Complex(cos(phase),sin(phase));
     510           0 :                       phase = arg(Lval); Lval=Complex(cos(phase),sin(phase));
     511             :                       
     512           0 :                       if      (tndx(2)==0) ap.aperture->putAt(val*conj(Rval),tndx);
     513           0 :                       else if (tndx(2)==1) ap.aperture->putAt(val*conj(Lval),tndx);
     514           0 :                       else if (tndx(2)==2) ap.aperture->putAt(val*conj(Rval),tndx);
     515           0 :                       else if (tndx(2)==3) ap.aperture->putAt(val*conj(Lval),tndx);
     516             :                     }
     517           0 :           }
     518           0 :         tmpAperture += *(ap.aperture);
     519             :       }
     520           0 :     (ap.aperture)->copyData(tmpAperture);
     521           0 :     tmpAperture.resize(IPosition(1,1));//Release temp. store.
     522           0 :     Vector<Int> poln(4);
     523           0 :     poln(0) = Stokes::RR;
     524           0 :     poln(1) = Stokes::RL;
     525           0 :     poln(2) = Stokes::LR;
     526           0 :     poln(3) = Stokes::LL;
     527           0 :     StokesCoordinate polnCoord(poln);
     528           0 :     SpectralCoordinate spectralCoord(MFrequency::TOPO,Freq,1.0,0.0);
     529             :     //    uvCoords.addCoordinate(dirCoord);
     530           0 :     index = uvCoords.findCoordinate(Coordinate::STOKES);
     531           0 :     uvCoords.replaceCoordinate(polnCoord,index);
     532           0 :     index = uvCoords.findCoordinate(Coordinate::SPECTRAL);
     533           0 :     uvCoords.replaceCoordinate(spectralCoord,index);
     534             :     
     535           0 :     ap.aperture->setCoordinateInfo(uvCoords);
     536             :      //if (doSquint==false)
     537             :      //{
     538             :      // String name("aperture.im");
     539             :      // storeImg(name,*(ap.aperture));
     540             :         //logIO << "The aperture has been written to aperture.im"<< LogIO::POST;
     541             :      //}
     542             :     
     543           0 :     ftAperture(*(ap.aperture));
     544             :     //String name("aperture.im");
     545             :     //storeImg(name,*(ap.aperture));
     546             :     //logIO << "The fourier transform of the aperture has been written to ftaperture.im"<< LogIO::POST;
     547           0 :   }
     548             :   
     549             :   
     550             :   
     551           0 :   void VLACalcIlluminationConvFunc::fillPB(ImageInterface<Complex>& inImg,
     552             :                                            ImageInterface<Complex>& outImg,
     553             :                                            Bool Square)
     554             :   {
     555           0 :     IPosition imsize(outImg.shape());
     556           0 :     IPosition ndx(outImg.shape());
     557           0 :     IPosition inShape(inImg.shape()),inNdx;
     558           0 :     Vector<Int> inStokes,outStokes;
     559             :     Int index,s,index1;
     560             :     
     561             :     // Timer tim;
     562             :     // tim.mark();
     563           0 :     index = inImg.coordinates().findCoordinate(Coordinate::STOKES);
     564           0 :     inStokes = inImg.coordinates().stokesCoordinate(index).stokes();
     565           0 :     index = outImg.coordinates().findCoordinate(Coordinate::STOKES);
     566           0 :     outStokes = outImg.coordinates().stokesCoordinate(index).stokes();
     567           0 :     index = outImg.coordinates().findCoordinate(Coordinate::SPECTRAL);
     568           0 :     index1 = inImg.coordinates().findCoordinate(Coordinate::SPECTRAL);
     569           0 :     SpectralCoordinate inSpectralCoords = inImg.coordinates().spectralCoordinate(index1);
     570           0 :     CoordinateSystem outCS = outImg.coordinates();
     571           0 :     outCS.replaceCoordinate(inSpectralCoords,index);
     572           0 :     outImg.setCoordinateInfo(outCS);
     573             :     //tim.show("fillPB::CSStuff:");
     574           0 :     ndx(3)=0;
     575             :     // #ifdef HAS_OMP
     576             :     //     Int Nth=max(omp_get_max_threads()-2,1);
     577             :     // #endif
     578             :     //tim.mark();
     579           0 :     for(ndx(2)=0;ndx(2)<imsize(2);ndx(2)++) // The poln axes
     580             :       {
     581           0 :         for(s=0;s<inShape(2);s++) if (inStokes(s) == outStokes(ndx(2))) break;
     582             :         
     583           0 :         for(ndx(0)=0;ndx(0)<imsize(0);ndx(0)++)
     584             :           //#pragma omp parallel default(none) firstprivate(s,iy) shared(twoPiW,convSize) num_threads(Nth)
     585             :           {
     586             :             //#pragma omp for
     587           0 :             for(ndx(1)=0;ndx(1)<imsize(1);ndx(1)++)
     588             :               {
     589           0 :                 Complex cval;
     590           0 :                 inNdx = ndx; inNdx(2)=s;
     591           0 :                 cval = inImg.getAt(inNdx);
     592           0 :                 if (Square) cval = cval*conj(cval);
     593           0 :                 outImg.putAt(cval*outImg.getAt(ndx),ndx);
     594             :               }
     595             :           }
     596             :       }
     597             :     //tim.show("fillPB: ");
     598           0 :   }
     599             :   
     600           0 :   void VLACalcIlluminationConvFunc::fillPB(ImageInterface<Complex>& inImg,
     601             :                                            ImageInterface<Float>& outImg,
     602             :                                            Bool Square)
     603             :   {
     604           0 :     IPosition imsize(outImg.shape());
     605           0 :     IPosition ndx(outImg.shape());
     606           0 :     IPosition inShape(inImg.shape()),inNdx;
     607             :     
     608           0 :     Vector<Int> inStokes,outStokes;
     609             :     Int index,s;
     610             :     
     611             :     // Timer tim;
     612             :     // tim.mark();
     613           0 :     index = inImg.coordinates().findCoordinate(Coordinate::STOKES);
     614           0 :     inStokes = inImg.coordinates().stokesCoordinate(index).stokes();
     615           0 :     index = outImg.coordinates().findCoordinate(Coordinate::STOKES);
     616           0 :     outStokes = outImg.coordinates().stokesCoordinate(index).stokes();
     617           0 :     ndx(3)=0;
     618             :     //tim.show("fillPB::CSStuff2:");
     619             :     
     620             :     //tim.mark();
     621           0 :     for(ndx(2)=0;ndx(2)<imsize(2);ndx(2)++) // The poln axes
     622             :       {
     623           0 :         if (outStokes(ndx(2)) == Stokes::I)
     624             :           {
     625             :             //
     626             :             // Fill the outImg wiht (inImg(RR)+inImage(LL))/2 
     627             :             //
     628           0 :             for(ndx(0)=0;ndx(0)<imsize(0);ndx(0)++)
     629           0 :               for(ndx(1)=0;ndx(1)<imsize(1);ndx(1)++)
     630             :                 {
     631           0 :                   Complex cval;
     632           0 :                   inNdx = ndx; 
     633           0 :                   inNdx(2)=0; cval = inImg.getAt(inNdx);
     634           0 :                   inNdx(2)=3; cval += inImg.getAt(inNdx);
     635           0 :                   cval/2;
     636             :                   
     637           0 :                   if (Square) cval = cval*conj(cval);
     638             :                   
     639           0 :                   outImg.putAt(abs(cval*outImg.getAt(ndx)),ndx);
     640             :                 }
     641             :           }
     642           0 :         else if ((outStokes(ndx(2)) == Stokes::RR) ||
     643           0 :                  (outStokes(ndx(2)) == Stokes::RL) ||
     644           0 :                  (outStokes(ndx(2)) == Stokes::LR) ||
     645           0 :                  (outStokes(ndx(2)) == Stokes::LL))
     646             :           {
     647           0 :             for(s=0;s<inShape(2);s++) if (inStokes(s) == outStokes(ndx(2))) break;
     648             :             
     649           0 :             for(ndx(0)=0;ndx(0)<imsize(0);ndx(0)++)
     650           0 :               for(ndx(1)=0;ndx(1)<imsize(1);ndx(1)++)
     651             :                 {
     652           0 :                   Complex cval;
     653           0 :                   inNdx = ndx; inNdx(2)=s;
     654           0 :                   cval = inImg.getAt(inNdx);
     655           0 :                   if (Square) cval = cval*conj(cval);
     656           0 :                   outImg.putAt(abs(cval*outImg.getAt(ndx)),ndx);
     657             :                 }
     658             :           }
     659           0 :         else throw(AipsError("Unsupported Stokes found in VLACalcIlluminationConvFunc::fillPB."));
     660             :       }
     661             :     //tim.show("fillPB2:");
     662           0 :   }
     663             :   
     664             :   /*
     665             :     void VLACalcIlluminationConvFunc::fillPB(ImageInterface<Complex>& inImg,
     666             :     ImageInterface<Float>& outImg)
     667             :     {
     668             :     IPosition imsize(outImg.shape());
     669             :     IPosition ndx(outImg.shape());
     670             :     IPosition inShape(inImg.shape()), inNdx;
     671             :     Vector<Int> inStokes,outStokes;
     672             :     Int index;
     673             :     index = inImg.coordinates().findCoordinate(Coordinate::STOKES);
     674             :     inStokes = inImg.coordinates().stokesCoordinate(index).stokes();
     675             :     index = outImg.coordinates().findCoordinate(Coordinate::STOKES);
     676             :     outStokes = outImg.coordinates().stokesCoordinate(index).stokes();
     677             :     
     678             :     ndx(3)=0;
     679             :     for(ndx(0)=0;ndx(0)<imsize(0);ndx(0)++)
     680             :     {
     681             :     
     682             :     for(ndx(1)=0;ndx(1)<imsize(1);ndx(1)++)
     683             :     {
     684             :     //
     685             :     // Average along the polarization axes and fillin the
     686             :     // amp. of the average in the output image.
     687             :     // 
     688             :     Complex cval=0.0;
     689             :     
     690             :     ndx(2)=0;cval = inImg.getAt(ndx);
     691             :     for(ndx(2)=0;ndx(2)<imsize(2);ndx(2)++) // The poln axes
     692             :     outImg.putAt(abs(cval*outImg.getAt(ndx)),ndx);
     693             :     }
     694             :     }
     695             :     }
     696             :     
     697             :   */
     698             :   
     699             : //  void VLACalcIlluminationConvFunc::ftAperture(TempImage<Complex>& uvgrid, Bool makeMueller)
     700           0 :   void VLACalcIlluminationConvFunc::ftAperture(ImageInterface<Complex>& uvgrid, Int muellerTerm)
     701             :   {
     702             :     //
     703             :     // Make SkyJones
     704             :     //
     705             :     // {
     706             :        //String name("uvgrid.im");
     707             :        //storeImg(name,uvgrid);
     708             :     // }
     709           0 :     LatticeFFT::cfft2d(uvgrid);
     710             : //    {
     711             : //      Int index = uvgrid.coordinates().findCoordinate(Coordinate::STOKES);
     712             : //      Int inStokes = uvgrid.coordinates().stokesCoordinate(index).stokes()(0);
     713             : //      IPosition shape = uvgrid.shape();
     714             :       //ostringstream tt;
     715             :       //String name("ftuvgrid.im");
     716             :       //tt << name << "_"<< inStokes;
     717             :       //storeImg(String(tt),uvgrid);
     718             : //    }
     719             :     // {
     720             :        //String name("ftuvgrid.im");
     721             :        //storeImg(name,uvgrid);
     722             :     // }
     723             :     
     724             :     // Now make SkyMuller
     725             :     //
     726             :     //skyMuller(uvgrid);
     727           0 :     Int tempmueller=-1; // Set to -1 to use sanjay's code which pass the regressions.
     728           0 :     tempmueller=0;    // Full-pol. imaging is requested, use PJ's code.  Else use SB's.
     729             : 
     730             :     //if (uvgrid.shape()(3) > 2) tempmueller=0;
     731             : 
     732           0 :     if (tempmueller==0)
     733           0 :       skyMuller(uvgrid,muellerTerm);
     734             :     else
     735           0 :       skyMuller(uvgrid,-1);
     736           0 :   }
     737             :   
     738           0 :   void VLACalcIlluminationConvFunc::loadFromImage(String& /*fileName*/)
     739             :   {
     740           0 :     throw(AipsError("VLACalcIlluminationConvFunc::loadFromImage() not yet supported."));
     741             :   };
     742             :   
     743           0 :   void VLACalcIlluminationConvFunc::skyMuller(Array<Complex>& buf,
     744             :                                               const IPosition& shape,
     745             :                                               const Int& inStokes)
     746             :   {
     747           0 :     Array<Complex> tmp;
     748           0 :     IPosition t(4,0,0,0,0),n0(4,0,0,0,0),n1(4,0,0,0,0);
     749             :     Float peak;
     750           0 :     peak=0;
     751           0 :     for(t(2)=0;t(2)<shape(2);t(2)++)
     752           0 :       for(t(1)=0;t(1)<shape(1);t(1)++)
     753           0 :         for(t(0)=0;t(0)<shape(0);t(0)++)
     754           0 :           if (abs(buf(t)) > peak) peak = abs(buf(t));
     755           0 :     if (peak > 1E-8)
     756           0 :       for(t(3)=0;t(3)<shape(3);t(3)++)       // Freq axis
     757           0 :         for(t(2)=0;t(2)<shape(2);t(2)++)     // Poln axis
     758           0 :           for(t(1)=0;t(1)<shape(1);t(1)++)   // y axis
     759           0 :             for(t(0)=0;t(0)<shape(0);t(0)++) // X axis
     760           0 :               buf(t) = buf(t)/peak;
     761             :     // {
     762             :     //   skyJones.put(buf);
     763             :     //   String name("skyjones.im");
     764             :     //   storeImg(name,skyJones);
     765             :     // }
     766             :     
     767           0 :     tmp.assign(buf);
     768             : 
     769           0 :     t(0)=t(1)=t(2)=t(3)=0;
     770             :     
     771           0 :     if ((inStokes == Stokes::RR) || (inStokes == Stokes::LL))
     772             :       {
     773           0 :         t(2)=0;n0(2)=0;n1(2)=0; //RR
     774           0 :         for(  n0(0)=n1(0)=t(0)=0;n0(0)<shape(0);n0(0)++,n1(0)++,t(0)++)
     775           0 :           for(n0(1)=n1(1)=t(1)=0;n0(1)<shape(1);n0(1)++,n1(1)++,t(1)++)
     776           0 :             buf(t) = (tmp(n0)*conj(tmp(n1)));
     777             :       }
     778             :     
     779           0 :     if ((inStokes == Stokes::LR) || (inStokes == Stokes::RL))
     780             :       {
     781           0 :         t(2)=0;n0(3)=1;n1(2)=0; //LR
     782           0 :         for(  n0(0)=n1(0)=t(0)=0;n0(0)<shape(0);n0(0)++,n1(0)++,t(0)++)
     783           0 :           for(n0(1)=n1(1)=t(1)=0;n0(1)<shape(1);n0(1)++,n1(1)++,t(1)++)
     784           0 :             buf(t) = (tmp(n0)*conj(tmp(n1)));
     785             :              
     786             :       }
     787             :     
     788             : //    if (inStokes == Stokes::RL)
     789             : //      {
     790             : //      t(2)=0;n0(2)=0;n1(3)=1; //LR
     791             : //      for(  n0(0)=n1(0)=t(0)=0;n0(0)<shape(0);n0(0)++,n1(0)++,t(0)++)
     792             : //        for(n0(1)=n1(1)=t(1)=0;n0(1)<shape(1);n0(1)++,n1(1)++,t(1)++)
     793             : //          buf(t) = (tmp(n0)*conj(tmp(n1)));
     794             : 
     795             : //      }
     796             :       //{
     797             :          //skyJones.put(buf);
     798             :         // ostringstream tt;
     799             :          //String name("skyjones.im");
     800             :          //tt << name << "_" << inStokes;    
     801             :          //storeImg(tt.string(),skyJones);
     802             :        //}      
     803             : 
     804             :     //cout<<"Regular skyjones \n";
     805           0 :   }
     806             :   
     807             : //  void VLACalcIlluminationConvFunc::skyMuller(ImageInterface<Complex>& skyJones)
     808             : //  {
     809             : //    Int index = skyJones.coordinates().findCoordinate(Coordinate::STOKES);
     810             : //    Int inStokes = skyJones.coordinates().stokesCoordinate(index).stokes()(0);
     811             : //    Array<Complex> buf=skyJones.get();
     812             :     //Vector<Int> shape(buf.shape().asVector());
     813             : //    IPosition shape=skyJones.shape();
     814             : //    skyMuller(buf,shape, inStokes);
     815             : //    skyJones.put(buf);
     816             : //  }
     817             : 
     818           0 :   void VLACalcIlluminationConvFunc::skyMuller(ImageInterface<Complex>& skyJones, Int muellerTerm)
     819             :   {
     820           0 :     Int index = skyJones.coordinates().findCoordinate(Coordinate::STOKES);
     821           0 :     Int inStokes = skyJones.coordinates().stokesCoordinate(index).stokes()(0);
     822           0 :     Array<Complex> buf=skyJones.get(),tmp;
     823           0 :     IPosition shape=skyJones.shape();
     824           0 :     if(muellerTerm == -1)
     825             :     {
     826             :       //cout<<"####Temp - bypassing the full mueller convolution function generation \n";    
     827           0 :         skyMuller(buf,shape,inStokes);
     828           0 :         skyJones.put(buf);
     829             :     }
     830             :     else
     831             :     {
     832             :       //cout<<"####Temp - Proceeding with IQUV convolution function generation\n";
     833           0 :     Array<Complex> M0,M1,M2,M3;
     834             :     //Vector<Int> shape(buf.shape().asVector());
     835             : //    IPosition shape=skyJones.shape();
     836             : //    cout<<"The shape of sky Jones matrix is "<<shape<<"\n";
     837           0 :     Array<Complex> Jp,Jq,Jpq,Jqp;
     838             : //    skyMuller(buf,shape, inStokes);
     839             : 
     840             :     // if (muellerTerm == 5)
     841             :     // {
     842             :     //   skyJones.put(buf);
     843             :     //   String name("skyjones5.im");
     844             :     //   storeImg(name,skyJones);
     845             :     // }
     846             :     // Int index = skyJones.coordinates().findCoordinate(Coordinate::STOKES);
     847             :     // Int inStokes = skyJones.coordinates().stokesCoordinate(index).stokes()(0);
     848             :     // Array<Complex> buf=skyJones.get(),tmp;
     849             :     
     850           0 :     IPosition t(4,0,0,0,0),n0(4,0,0,0,0),n1(4,0,0,0,0);
     851             :     
     852           0 :     skyJones.put(buf);
     853             : //    ostringstream tt;
     854             : //    String name("skyjones.im");
     855             : //    tt << name << "_"<< inStokes;
     856             : //    storeImg(String(tt),skyJones);
     857             : //    skyJones.put(buf);
     858             : //  cout<<"Finished writing the initial sky jones \n";
     859             : //    exit(0);
     860             : //    skyMuller(buf,shape, inStokes);
     861             : 
     862           0 :     Float Normalizesq,pqscale=100.0;
     863             :     Int midx,midy;
     864           0 :     Normalizesq=0;
     865           0 :     midx = shape(0)/2; // This gives the central pixel(not the peak) of RR and LL.
     866           0 :     midy = shape(1)/2; // This normalization scheme was tested to be correct in the python code.
     867             :     
     868           0 :     tmp=buf;
     869           0 :     for(t(2)=0;t(2)<shape(2);t(2)++) // Start with poln axis as we want to loop in freq for the moment
     870           0 :         for(t(3)=0;t(3)<shape(3);t(3)++) // The freq axis each one of 4 chans contains a jones element
     871           0 :             for(t(1)=0;t(1)<shape(1);t(1)++)
     872           0 :                 for(t(0)=0;t(0)<shape(0);t(0)++)
     873           0 :                     if((t(0)== midx)&&(t(1)==midy))
     874           0 :                         Normalizesq = Normalizesq + abs(buf(t)*buf(t))/2.0; // This needs to be changed so that Normalizesq stays complex 
     875             : 
     876             : 
     877           0 :     for(t(2)=0;t(2)<shape(2);t(2)++)
     878           0 :          for(t(3)=0;t(3)<shape(3);t(3)++)
     879           0 :             for(t(1)=0;t(1)<shape(1);t(1)++)
     880           0 :                 for(t(0)=0;t(0)<shape(0);t(0)++)
     881           0 :                    if((t(3)==1)||(t(3)==2))
     882           0 :                         tmp(t)=pqscale*conj(tmp(t)/sqrt(Normalizesq)); // This is the crosshand scale factor to be determined and hardcoded, currently is arbitrary.
     883             :                    
     884             :                    else
     885           0 :                         tmp(t)=conj(tmp(t)/sqrt(Normalizesq));
     886             :         
     887             : //  cout<<"The Jones Matrix has been normalized using:"<< sqrt(Normalizesq)<<"\n";
     888           0 :     skyJones.put(tmp);
     889             :    // ostringstream tt1;
     890             :    // String name1("skyjones_normalized_conj.im");
     891             :    // tt1 << name1 << "_"<< inStokes;
     892             :    // storeImg(String(tt1),skyJones);
     893             :    // // exit(0);
     894             :    // // skyJones.put(tmp);
     895             :    // cout<<"Finished writing the normalized conjugate sky jones \n";
     896             :                 
     897             : //    cout<<"Begining the compute of Mueller Matrix term images \n";
     898             : 
     899           0 :     IPosition sliceStart0(4,0,0,0,0),sliceStart1(4,0,0,0,1),sliceLength0(4,shape(0),shape(1),1,1),sliceLength1(4,shape(0),shape(1),1,1);
     900           0 :     IPosition sliceStart2(4,0,0,0,2),sliceStart3(4,0,0,0,3),sliceLength2(4,shape(0),shape(1),1,1),sliceLength3(4,shape(0),shape(1),1,1);
     901           0 :     Slicer s0(sliceStart0,sliceLength0),s1(sliceStart1,sliceLength1);
     902           0 :     Slicer s2(sliceStart2,sliceLength2),s3(sliceStart3,sliceLength3);
     903             : 
     904             : //  For the sake of pixel math we are resizing the four initial jones buffers.
     905           0 :     IPosition shp=buf.shape();
     906             : //    shp = buf.shape();
     907             : //    shp(2)=shp(3);
     908             : //    shp(3)=1;
     909           0 :     shp(2)=shp(3)=1;
     910           0 :     Jp.resize(shp);
     911           0 :     Jpq.resize(shp);
     912           0 :     Jqp.resize(shp);
     913           0 :     Jq.resize(shp);
     914             : //    cout<<"The Jones buffer shape is :"<< shp <<"\n";
     915             : 
     916           0 :     Jp(s0)=tmp(s0);Jpq(s0)=tmp(s1);
     917           0 :     Jqp(s0)=tmp(s2);Jq(s0)=tmp(s3);
     918           0 :     M0=M1=M2=M3=tmp;
     919             : //  We will initialize the Mueller rows to zero as per need and then slice and return with only the first slice with written values
     920             :       
     921           0 :     M0(s0)=Jp*conj(Jp); M0(s1)=Jp*conj(Jpq); M0(s2)=Jpq*conj(Jp); M0(s3)=Jpq*conj(Jpq);
     922           0 :     M1(s0)=Jp*conj(Jqp); M1(s1)=Jp*conj(Jq); M1(s2)=Jpq*conj(Jqp); M1(s3)=Jpq*conj(Jq);
     923           0 :     M2(s0)=Jqp*conj(Jp); M2(s1)=Jqp*conj(Jpq); M2(s2)=Jq*conj(Jq); M2(s3)=Jq*conj(Jpq);
     924           0 :     M3(s0)=Jqp*conj(Jqp); M3(s1)=Jqp*conj(Jq); M3(s2)=Jq*conj(Jqp); M3(s3)=Jq*conj(Jq);
     925             : //  cout<<"Slicing Complete"<<"\n";
     926             : //    cout<<"Mueller row selection in place is :" << muellerTerm << "\n";
     927           0 :     if (muellerTerm <= 3)
     928             :       {
     929           0 :           M0=0;
     930           0 :           if (muellerTerm==0) {
     931           0 :               M0(s0)=Jp*conj(Jp);
     932             :           }
     933           0 :           else if (muellerTerm==1){
     934           0 :               M0(s0)=Jp*conj(Jpq);
     935             :           }
     936           0 :           else if (muellerTerm==2){
     937           0 :               M0(s0)=Jpq*conj(Jp);
     938             :           }
     939             :           else {
     940           0 :               M0(s0)=Jpq*conj(Jpq);
     941             :           }
     942           0 :           skyJones.put(M0);
     943             :           // String name2("M0.im");
     944             :           // storeImg(name2,skyJones);
     945             :           // cout<<"Writing M0 to disk, muellerTerm : "<< muellerTerm <<"\n";
     946           0 :           M0.resize();
     947             :       }
     948           0 :       else if ((4<=muellerTerm)&&(muellerTerm<8))
     949             :       {
     950           0 :           M1=0;
     951           0 :           if (muellerTerm==4) {
     952           0 :               M1(s0)=Jp*conj(Jqp);
     953             :           }
     954           0 :           else if (muellerTerm==5){
     955           0 :               M1(s0)=Jp*conj(Jq);
     956             :           }
     957           0 :           else if (muellerTerm==6){
     958           0 :              M1(s0)=Jpq*conj(Jqp);
     959             :           }
     960             :           else {
     961           0 :               M1(s0)=Jpq*conj(Jq);
     962             :           }
     963           0 :           skyJones.put(M1);
     964             :           // String name3("M1.im");
     965             :           // storeImg(name3,skyJones);
     966             :           // cout<<"Writing M1 to disk, muellerTerm : "<< muellerTerm <<"\n";
     967           0 :           M1.resize();
     968             :      }
     969           0 :      else if ((8<=muellerTerm)&&(muellerTerm<12))
     970             :      {
     971           0 :           M2=0;
     972           0 :           if (muellerTerm==8) {
     973           0 :               M2(s0)=Jqp*conj(Jp);
     974             :           }
     975           0 :           else if (muellerTerm==9){
     976           0 :               M2(s0)=Jqp*conj(Jpq);
     977             :           }
     978           0 :           else if (muellerTerm==10){
     979           0 :               M2(s0)=Jq*conj(Jp);
     980             :           }
     981             :           else {
     982           0 :               M2(s0)=Jq*conj(Jpq);
     983             :           }
     984           0 :           skyJones.put(M2);
     985             :           // String name4("M2.im");
     986             :           // storeImg(name4,skyJones);
     987             :           // cout<<"Writing M2 to disk, muellerTerm : "<< muellerTerm <<"\n";
     988           0 :           M2.resize();
     989             :      }
     990           0 :      else if ((12<=muellerTerm)&&(muellerTerm<16))
     991             :      {
     992           0 :           M3=0;
     993           0 :           if (muellerTerm==12) {
     994           0 :               M3(s0)=Jqp*conj(Jqp);
     995             :           }
     996           0 :           else if (muellerTerm==13){
     997           0 :               M3(s0)=Jqp*conj(Jq);
     998             :           }
     999           0 :           else if (muellerTerm==14){
    1000           0 :               M3(s0)=Jq*conj(Jqp);
    1001             :           }
    1002             :           else {
    1003           0 :               M3(s0)=Jq*conj(Jq);
    1004             :           }
    1005           0 :           skyJones.put(M3);
    1006             :           // String name5("M3.im");
    1007             :           // storeImg(name5,skyJones);
    1008             :           // cout<<"Writing M3 to disk, muellerTerm : "<< muellerTerm <<"\n";
    1009           0 :           M3.resize();
    1010             :      }
    1011             : //    cout<<"Mueller Matrix row computation complete \n";       
    1012           0 :      }
    1013             : //    skyJones.put(buf);
    1014             : 
    1015           0 :     }
    1016             :   
    1017             : 
    1018             :   
    1019           0 :   void VLACalcIlluminationConvFunc::makeFullJones(ImageInterface<Complex>& /*pbImage*/, 
    1020             :                                                   const VisBuffer& /*vb*/, 
    1021             :                                                   Bool /*doSquint*/,
    1022             :                                                   Int /*bandID*/, 
    1023             :                                                   Double /*freqVal*/) 
    1024           0 :   {}
    1025             : 
    1026             :   
    1027             : };

Generated by: LCOV version 1.16