LCOV - code coverage report
Current view: top level - bnmin1/src/f77 - pda_qrfac.f (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 54 0.0 %
Date: 2024-10-29 13:38:20 Functions: 0 1 0.0 %

          Line data    Source code
       1           0 :       subroutine pda_qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
       2             :       integer m,n,lda,lipvt
       3             :       integer ipvt(lipvt)
       4             :       logical pivot
       5             :       double precision a(lda,n),rdiag(n),acnorm(n),wa(n)
       6             : c     **********
       7             : c
       8             : c     subroutine pda_qrfac
       9             : c
      10             : c     this subroutine uses householder transformations with column
      11             : c     pivoting (optional) to compute a qr factorization of the
      12             : c     m by n matrix a. that is, pda_qrfac determines an orthogonal
      13             : c     matrix q, a permutation matrix p, and an upper trapezoidal
      14             : c     matrix r with diagonal elements of nonincreasing magnitude,
      15             : c     such that a*p = q*r. the householder transformation for
      16             : c     column k, k = 1,2,...,min(m,n), is of the form
      17             : c
      18             : c                           t
      19             : c           i - (1/u(k))*u*u
      20             : c
      21             : c     where u has zeros in the first k-1 positions. the form of
      22             : c     this transformation and the method of pivoting first
      23             : c     appeared in the corresponding linpack subroutine.
      24             : c
      25             : c     the subroutine statement is
      26             : c
      27             : c       subroutine pda_qrfac(m,n,a,lda,pivot,ipvt,lipvt,rdiag,acnorm,wa)
      28             : c
      29             : c     where
      30             : c
      31             : c       m is a positive integer input variable set to the number
      32             : c         of rows of a.
      33             : c
      34             : c       n is a positive integer input variable set to the number
      35             : c         of columns of a.
      36             : c
      37             : c       a is an m by n array. on input a contains the matrix for
      38             : c         which the qr factorization is to be computed. on output
      39             : c         the strict upper trapezoidal part of a contains the strict
      40             : c         upper trapezoidal part of r, and the lower trapezoidal
      41             : c         part of a contains a factored form of q (the non-trivial
      42             : c         elements of the u vectors described above).
      43             : c
      44             : c       lda is a positive integer input variable not less than m
      45             : c         which specifies the leading dimension of the array a.
      46             : c
      47             : c       pivot is a logical input variable. if pivot is set true,
      48             : c         then column pivoting is enforced. if pivot is set false,
      49             : c         then no column pivoting is done.
      50             : c
      51             : c       ipvt is an integer output array of length lipvt. ipvt
      52             : c         defines the permutation matrix p such that a*p = q*r.
      53             : c         column j of p is column ipvt(j) of the identity matrix.
      54             : c         if pivot is false, ipvt is not referenced.
      55             : c
      56             : c       lipvt is a positive integer input variable. if pivot is false,
      57             : c         then lipvt may be as small as 1. if pivot is true, then
      58             : c         lipvt must be at least n.
      59             : c
      60             : c       rdiag is an output array of length n which contains the
      61             : c         diagonal elements of r.
      62             : c
      63             : c       acnorm is an output array of length n which contains the
      64             : c         norms of the corresponding columns of the input matrix a.
      65             : c         if this information is not needed, then acnorm can coincide
      66             : c         with rdiag.
      67             : c
      68             : c       wa is a work array of length n. if pivot is false, then wa
      69             : c         can coincide with rdiag.
      70             : c
      71             : c     subprograms called
      72             : c
      73             : c       minpack-supplied ... pda_dpmpar,pda_enorm
      74             : c
      75             : c       fortran-supplied ... dmax1,dsqrt,min0
      76             : c
      77             : c     argonne national laboratory. minpack project. march 1980.
      78             : c     burton s. garbow, kenneth e. hillstrom, jorge j. more
      79             : c
      80             : c     **********
      81             :       integer i,j,jp1,k,kmax,minmn
      82             :       double precision ajnorm,epsmch,one,p05,sum,temp,zero
      83             :       double precision pda_dpmpar,pda_enorm
      84             :       data one,p05,zero /1.0d0,5.0d-2,0.0d0/
      85             : c
      86             : c     epsmch is the machine precision.
      87             : c
      88           0 :       epsmch = pda_dpmpar(1)
      89             : c
      90             : c     compute the initial column norms and initialize several arrays.
      91             : c
      92           0 :       do 10 j = 1, n
      93           0 :          acnorm(j) = pda_enorm(m,a(1,j))
      94           0 :          rdiag(j) = acnorm(j)
      95           0 :          wa(j) = rdiag(j)
      96           0 :          if (pivot) ipvt(j) = j
      97           0 :    10    continue
      98             : c
      99             : c     reduce a to r with householder transformations.
     100             : c
     101           0 :       minmn = min0(m,n)
     102           0 :       do 110 j = 1, minmn
     103           0 :          if (.not.pivot) go to 40
     104             : c
     105             : c        bring the column of largest norm into the pivot position.
     106             : c
     107           0 :          kmax = j
     108           0 :          do 20 k = j, n
     109           0 :             if (rdiag(k) .gt. rdiag(kmax)) kmax = k
     110           0 :    20       continue
     111           0 :          if (kmax .eq. j) go to 40
     112           0 :          do 30 i = 1, m
     113           0 :             temp = a(i,j)
     114           0 :             a(i,j) = a(i,kmax)
     115           0 :             a(i,kmax) = temp
     116           0 :    30       continue
     117           0 :          rdiag(kmax) = rdiag(j)
     118           0 :          wa(kmax) = wa(j)
     119           0 :          k = ipvt(j)
     120           0 :          ipvt(j) = ipvt(kmax)
     121           0 :          ipvt(kmax) = k
     122             :    40    continue
     123             : c
     124             : c        compute the householder transformation to reduce the
     125             : c        j-th column of a to a multiple of the j-th unit vector.
     126             : c
     127           0 :          ajnorm = pda_enorm(m-j+1,a(j,j))
     128           0 :          if (ajnorm .eq. zero) go to 100
     129           0 :          if (a(j,j) .lt. zero) ajnorm = -ajnorm
     130           0 :          do 50 i = j, m
     131           0 :             a(i,j) = a(i,j)/ajnorm
     132           0 :    50       continue
     133           0 :          a(j,j) = a(j,j) + one
     134             : c
     135             : c        apply the transformation to the remaining columns
     136             : c        and update the norms.
     137             : c
     138           0 :          jp1 = j + 1
     139           0 :          if (n .lt. jp1) go to 100
     140           0 :          do 90 k = jp1, n
     141           0 :             sum = zero
     142           0 :             do 60 i = j, m
     143           0 :                sum = sum + a(i,j)*a(i,k)
     144           0 :    60          continue
     145           0 :             temp = sum/a(j,j)
     146           0 :             do 70 i = j, m
     147           0 :                a(i,k) = a(i,k) - temp*a(i,j)
     148           0 :    70          continue
     149           0 :             if (.not.pivot .or. rdiag(k) .eq. zero) go to 80
     150           0 :             temp = a(j,k)/rdiag(k)
     151           0 :             rdiag(k) = rdiag(k)*dsqrt(dmax1(zero,one-temp**2))
     152           0 :             if (p05*(rdiag(k)/wa(k))**2 .gt. epsmch) go to 80
     153           0 :             rdiag(k) = pda_enorm(m-j,a(jp1,k))
     154           0 :             wa(k) = rdiag(k)
     155             :    80       continue
     156           0 :    90       continue
     157             :   100    continue
     158           0 :          rdiag(j) = -ajnorm
     159           0 :   110    continue
     160           0 :       return
     161             : c
     162             : c     last card of subroutine pda_qrfac.
     163             : c
     164             :       end

Generated by: LCOV version 1.16