LCOV - code coverage report
Current view: top level - synthesis/TransformMachines2 - EVLAAperture.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 332 0.0 %
Date: 2024-10-28 15:53:10 Functions: 0 18 0.0 %

          Line data    Source code
       1             : // -*- C++ -*-
       2             : //# EVLAAperture.cc: Implementation of the EVLAAperture class
       3             : //# Copyright (C) 1997,1998,1999,2000,2001,2002,2003
       4             : //# Associated Universities, Inc. Washington DC, USA.
       5             : //#
       6             : //# This library is free software; you can redistribute it and/or modify it
       7             : //# under the terms of the GNU Library General Public License as published by
       8             : //# the Free Software Foundation; either version 2 of the License, or (at your
       9             : //# option) any later version.
      10             : //#
      11             : //# This library is distributed in the hope that it will be useful, but WITHOUT
      12             : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      13             : //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
      14             : //# License for more details.
      15             : //#
      16             : //# You should have received a copy of the GNU Library General Public License
      17             : //# along with this library; if not, write to the Free Software Foundation,
      18             : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
      19             : //#
      20             : //# Correspondence concerning AIPS++ should be addressed as follows:
      21             : //#        Internet email: casa-feedback@nrao.edu.
      22             : //#        Postal address: AIPS++ Project Office
      23             : //#                        National Radio Astronomy Observatory
      24             : //#                        520 Edgemont Road
      25             : //#                        Charlottesville, VA 22903-2475 USA
      26             : //#
      27             : //# $Id$
      28             : //
      29             : #include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
      30             : #include <casacore/coordinates/Coordinates/LinearCoordinate.h>
      31             : #include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
      32             : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
      33             : #include <casacore/images/Images/SubImage.h>
      34             : #include <casacore/ms/MeasurementSets/MSColumns.h>
      35             : #include <msvis/MSVis/VisBuffer2.h>
      36             : #include <msvis/MSVis/VisibilityIterator2.h>
      37             : 
      38             : #include <synthesis/TransformMachines/SynthesisError.h>
      39             : #include <synthesis/TransformMachines2/EVLAAperture.h>
      40             : #include <synthesis/TransformMachines2/Utils.h>
      41             : #include <synthesis/TransformMachines2/VLACalcIlluminationConvFunc.h>
      42             : #include <synthesis/TransformMachines2/WTerm.h>
      43             : #include <synthesis/Utilities/FFT2D.h>
      44             : //
      45             : //---------------------------------------------------------------------
      46             : //
      47             : 
      48             : using namespace casacore;
      49             : namespace casa {
      50             : using namespace vi;
      51             : using namespace refim;
      52             : using namespace SynthesisUtils;
      53             : 
      54           0 : EVLAAperture::EVLAAperture() : AzElAperture(), polMap_p(), feedStokes_p() {
      55           0 :   telescopeName_p = "EVLA";
      56           0 :   Diameter_p = 25.0;
      57           0 : }
      58             : 
      59           0 : EVLAAperture &EVLAAperture::operator=(const EVLAAperture &other) {
      60           0 :   if (this != &other) {
      61             :     //  ConvolutionFunction::operator=(other);
      62           0 :     logIO_p = other.logIO_p;
      63             :     //  setParams(other.polMap_p_base, other.feedStokes_p);
      64           0 :     setPolMap(other.polMap_p_base);
      65           0 :     telescopeName_p = other.telescopeName_p;
      66           0 :     Diameter_p = other.Diameter_p;
      67           0 :     Nant_p = other.Nant_p;
      68           0 :     HPBW = other.HPBW;
      69           0 :     sigma = other.sigma;
      70             :   }
      71           0 :   return *this;
      72             : }
      73           0 : Int EVLAAperture::getVLABandID(Double &vbRefFreq, String &telescopeName,
      74             :                                const CoordinateSystem &skyCoord) {
      75           0 :   LogIO log_l(LogOrigin("EVLAAperture", "getVLABandID[R&D]"));
      76             : 
      77             :   Double refFreq =
      78           0 :       skyCoord.spectralCoordinate(skyCoord.findCoordinate(Coordinate::SPECTRAL))
      79           0 :           .referenceValue()(0);
      80             :   //cerr << "getVLABand (Global VB Ref. min, CF Ref.): " << vbRefFreq << " , "
      81             :   //     << refFreq << endl;
      82           0 :   if (telescopeName == "VLA") {
      83           0 :     if ((refFreq >= 1.34E9) && (refFreq <= 1.73E9))
      84           0 :       return BeamCalc_VLA_L;
      85           0 :     else if ((refFreq >= 4.5E9) && (refFreq <= 5.0E9))
      86           0 :       return BeamCalc_VLA_C;
      87           0 :     else if ((refFreq >= 8.0E9) && (refFreq <= 8.8E9))
      88           0 :       return BeamCalc_VLA_X;
      89           0 :     else if ((refFreq >= 14.4E9) && (refFreq <= 15.4E9))
      90           0 :       return BeamCalc_VLA_U;
      91           0 :     else if ((refFreq >= 22.0E9) && (refFreq <= 24.0E9))
      92           0 :       return BeamCalc_VLA_K;
      93           0 :     else if ((refFreq >= 40.0E9) && (refFreq <= 50.0E9))
      94           0 :       return BeamCalc_VLA_Q;
      95           0 :     else if ((refFreq >= 100E6) && (refFreq <= 300E6))
      96           0 :       return BeamCalc_VLA_4;
      97           0 :   } else if (telescopeName == "EVLA") {
      98           0 :     if ((refFreq >= 0.9E9) && (refFreq <= 2.1E9))
      99           0 :       return BeamCalc_EVLA_L;
     100           0 :     else if ((refFreq >= 2.0E9) && (refFreq <= 4.0E9))
     101           0 :       return BeamCalc_EVLA_S;
     102           0 :     else if ((refFreq >= 4.0E9) && (refFreq <= 8.0E9))
     103           0 :       return BeamCalc_EVLA_C;
     104           0 :     else if ((refFreq >= 8.0E9) && (refFreq <= 12.0E9))
     105           0 :       return BeamCalc_EVLA_X;
     106           0 :     else if ((refFreq >= 12.0E9) && (refFreq <= 18.0E9))
     107           0 :       return BeamCalc_EVLA_U;
     108           0 :     else if ((refFreq >= 18.0E9) && (refFreq <= 26.5E9))
     109           0 :       return BeamCalc_EVLA_K;
     110           0 :     else if ((refFreq >= 26.5E9) && (refFreq <= 40.8E9))
     111           0 :       return BeamCalc_EVLA_A;
     112           0 :     else if ((refFreq >= 40.0E9) && (refFreq <= 50.0E9))
     113           0 :       return BeamCalc_EVLA_Q;
     114             :   }
     115           0 :   ostringstream mesg;
     116             :   log_l << telescopeName << "/" << refFreq << "(Hz) combination not recognized."
     117           0 :         << LogIO::EXCEPTION;
     118           0 :   return -1;
     119           0 : }
     120             : 
     121           0 : void EVLAAperture::setApertureParams(ApertureCalcParams &ap, const Float &Freq,
     122             :                                      const Float &pa, const Int &bandID,
     123             :                                      const IPosition &skyShape,
     124             :                                      const Vector<Double> &uvIncr) {
     125           0 :   Double Lambda = C::c / Freq;
     126             : 
     127           0 :   ap.oversamp = 3; 
     128           0 :   ap.pa = pa;
     129           0 :   ap.band = bandID;
     130           0 :   ap.freq = Freq / 1E9;
     131           0 :   ap.nx = skyShape(0);
     132           0 :   ap.ny = skyShape(1);
     133           0 :   ap.dx = abs(uvIncr(0) * Lambda);
     134           0 :   ap.dy = abs(uvIncr(1) * Lambda);
     135           0 :   ap.x0 = -(ap.nx / 2) * ap.dx;
     136           0 :   ap.y0 = -(ap.ny / 2) * ap.dy;
     137             :   //cerr << "pa= " << ap.pa << " band " << ap.band << " freq " << ap.freq
     138             :   //     << " nx ny " << ap.nx << "  " << ap.ny << " dx dy " << ap.dx << "  "
     139             :   //     << ap.dy << endl;
     140             :   //
     141             :   // If cross-hand pols. are requested, we need to compute both
     142             :   // the parallel-hand aperture illuminations.
     143             :   //
     144             :   // if ((inStokes == Stokes::RL) || (inStokes == Stokes::LR))
     145             :   {
     146             :     // IPosition apShape(ap.aperture->shape());
     147             :     // cerr << "APshape " << apShape << endl;
     148             :     // apShape(3)=4;
     149             :     //cerr << "APSHPE=" << skyShape << endl;
     150             :     
     151             :     //ap.aperture->resize(skyShape);
     152             :   }
     153           0 : }
     154           0 : void EVLAAperture::cacheVBInfo(const String &telescopeName,
     155             :                                const Float &diameter) {
     156           0 :   telescopeName_p = telescopeName;
     157           0 :   Diameter_p = diameter;
     158           0 : }
     159             : 
     160           0 : void EVLAAperture::cacheVBInfo(const VisBuffer2 &vb) {
     161             :   const Vector<String> telescopeNames =
     162           0 :       vb.subtableColumns().observation().telescopeName().getColumn();
     163           0 :   for (uInt nt = 0; nt < telescopeNames.nelements(); nt++) {
     164           0 :     if ((telescopeNames(nt) != "VLA") && (telescopeNames(nt) != "EVLA")) {
     165           0 :       String mesg = "We can handle only (E)VLA antennas for now.\n";
     166           0 :       mesg += "Erroneous telescope name = " + telescopeNames(nt) + ".";
     167           0 :       SynthesisError err(mesg);
     168           0 :       throw(err);
     169           0 :     }
     170           0 :     if (telescopeNames(nt) != telescopeNames(0)) {
     171             :       String mesg =
     172           0 :           "We do not (yet) handle multiple telescopes for A-Projection!\n";
     173           0 :       mesg += "Not yet a \"priority\"!!";
     174           0 :       SynthesisError err(mesg);
     175           0 :       throw(err);
     176           0 :     }
     177             :   }
     178           0 :   telescopeName_p = telescopeNames[0];
     179             : 
     180             :   //    MSSpWindowColumns mssp(vb.msColumns().spectralWindow());
     181             :   // Freq = vb.msColumns().spectralWindow().refFrequency()(0);
     182           0 :   Diameter_p = 0;
     183           0 :   Nant_p = vb.subtableColumns().antenna().nrow();
     184           0 :   for (Int i = 0; i < Nant_p; i++)
     185           0 :     if (!vb.subtableColumns().antenna().flagRow()(i)) {
     186           0 :       Diameter_p = vb.subtableColumns().antenna().dishDiameter().getColumn()(i);
     187           0 :       break;
     188             :     }
     189           0 :   if (Diameter_p == 0) {
     190           0 :     logIO() << LogOrigin("EVLAAperture", "cacheVBInfo")
     191             :             << "No valid or finite sized antenna found in the antenna table. "
     192           0 :             << "Assuming diameter = 25m." << LogIO::WARN << LogIO::POST;
     193           0 :     Diameter_p = 25.0;
     194             :   }
     195           0 :   cacheVBInfo(telescopeNames[0], Diameter_p);
     196           0 : }
     197             : 
     198           0 : Int EVLAAperture::getBandID(const Double &freq,
     199             :                             const String & /*telescopeName*/,
     200             :                             const String &bandName) {
     201           0 :   Int bandID = 0;
     202           0 :   if (!isNoOp()) {
     203             :     // First #-separated token in bandName_p is the name of the band used
     204           0 :     Vector<String> tokens = SynthesisUtils::parseBandName(bandName);
     205           0 :     bandID = BeamCalc::Instance()->getBandID(freq, telescopeName_p, tokens(0));
     206           0 :   }
     207             : 
     208           0 :   return bandID;
     209             : };
     210           0 : String EVLAAperture::getVLABandName(const Double& freq,  const String& telescopeName) {
     211             :   
     212           0 :   String bandName = "EVLA_L";
     213           0 :   if (telescopeName == "VLA") {
     214             : //    if ((freq >= 1.34E9) && (freq <= 1.73E9))
     215           0 :     if((freq >= 9E8) && (freq <= 1.73E9))
     216           0 :       bandName = "VLA_L";
     217           0 :     else if ((freq >= 4.5E9) && (freq <= 5.0E9))
     218           0 :       bandName = "VLA_C";
     219           0 :     else if ((freq >= 8.0E9) && (freq <= 8.8E9))
     220           0 :       bandName = "VLA_X";
     221           0 :     else if ((freq >= 14.4E9) && (freq <= 15.4E9))
     222           0 :       bandName = "VLA_U";
     223           0 :     else if ((freq >= 22.0E9) && (freq <= 24.0E9))
     224           0 :       bandName = "VLA_K";
     225           0 :     else if ((freq >= 40.0E9) && (freq <= 50.0E9))
     226           0 :       bandName = "VLA_Q";
     227           0 :     else if ((freq >= 30E6) && (freq <= 100E6))
     228           0 :       bandName = "VLA_4";
     229             :     else
     230           0 :       throw(
     231           0 :           AipsError("Don't know VLA band for frequency=" + String::toString(freq)));
     232           0 :   } else if (telescopeName == "EVLA") {
     233           0 :     if (freq > 9e8 && freq <= 2.0e9)
     234           0 :       bandName = "EVLA_L";
     235           0 :     else if (freq > 2.0e9 && freq <= 4.0e9)
     236           0 :       bandName = "EVLA_S";
     237           0 :     else if (freq > 4.0e9 && freq <= 8.0e9)
     238           0 :       bandName = "EVLA_C";
     239           0 :     else if (freq > 8.e9 && freq <= 12.0e9)
     240           0 :       bandName = "EVLA_X";
     241           0 :     else if (freq > 12.0e9 && freq <= 18.0e9)
     242           0 :       bandName = "EVLA_U";
     243           0 :     else if (freq > 18.0e9 && freq <= 26.0e9)
     244           0 :       bandName = "EVLA_K";
     245           0 :     else if (freq > 26.e9 && freq <= 40.0e9)
     246           0 :       bandName = "EVLA_A";
     247           0 :     else if (freq > 40.0e9 && freq <= 50.0e9)
     248           0 :       bandName = "EVLA_Q";
     249             :     else
     250           0 :       throw(
     251           0 :           AipsError("Don't know EVLA band for frequency=" + String::toString(freq)));
     252             :   } else {
     253           0 :     throw(AipsError("Don't know telescope " + telescopeName));
     254             :   }
     255           0 :   return bandName;
     256           0 : }
     257           0 : Int EVLAAperture::getBandID(const Double &freq, const String& bandName) {
     258           0 :   Int bandID = 0;
     259           0 :   if(bandName=="")
     260           0 :     bandName_p = getVLABandName(freq,  telescopeName_p);
     261             :   else
     262           0 :     bandName_p=bandName;
     263             : 
     264           0 :   if (!isNoOp()) {
     265             :     // First #-separated token in bandName_p is the name of the band used
     266             :     // Vector<String> tokens = SynthesisUtils::parseBandName(bandName_p);
     267             :     // cerr << "TOKENS " << tokens << endl;
     268           0 :     bandID = BeamCalc::Instance()->getBandID(freq, telescopeName_p, bandName_p);
     269             :   }
     270             : 
     271           0 :   return bandID;
     272             : };
     273           0 : int EVLAAperture::getVisParams(const VisBuffer2 &vb,
     274             :                                const CoordinateSystem & /*im*/) {
     275           0 :   throw(AipsError("EVLAAperture::getVisParams() called"));
     276             :   Double Freq;
     277             :   cacheVBInfo(vb);
     278             : 
     279             :   Freq = vb.getFrequency(0, 0);
     280             :   Double Lambda = C::c / Freq;
     281             :   HPBW = Lambda / (Diameter_p * sqrt(log(2.0)));
     282             :   sigma = 1.0 / (HPBW * HPBW);
     283             : 
     284             :   return getBandID(Freq);
     285             :   // Int bandID=0;
     286             :   // if (!isNoOp())
     287             :   //   bandID = BeamCalc::Instance()->getBandID(Freq,telescopeName_p);
     288             : 
     289             :   // return bandID;
     290             : }
     291             : 
     292           0 : Int EVLAAperture::makePBPolnCoords(const VisBuffer2 &vb, const Int &convSize,
     293             :                                    const Int &convSampling,
     294             :                                    const CoordinateSystem &skyCoord,
     295             :                                    const Int &skyNx, const Int & /*skyNy*/,
     296             :                                    CoordinateSystem &feedCoord)
     297             : //                                   Vector<Int>& cfStokes)
     298             : {
     299           0 :   feedCoord = skyCoord;
     300             :   //
     301             :   // Make a two dimensional image to calculate auto-correlation of
     302             :   // the ideal illumination pattern. We want this on a fine grid in
     303             :   // the UV plane
     304             :   //
     305           0 :   Int directionIndex = skyCoord.findCoordinate(Coordinate::DIRECTION);
     306             :   //    cout<<"Direction index is "<< directionIndex<<endl;
     307           0 :   AlwaysAssert(directionIndex >= 0, AipsError);
     308           0 :   DirectionCoordinate dc = skyCoord.directionCoordinate(directionIndex);
     309           0 :   Vector<Double> sampling;
     310           0 :   sampling = dc.increment();
     311             :   //    cout<<"Image sampling set to : "<<sampling<<endl;
     312           0 :   sampling *= Double(convSampling);
     313           0 :   sampling *= Double(skyNx) / Double(convSize);
     314           0 :   dc.setIncrement(sampling);
     315             :   //    cout<<"Resized sampling is : "<<sampling<<endl;
     316             : 
     317           0 :   Vector<Double> unitVec(2);
     318           0 :   unitVec = convSize / 2;
     319           0 :   dc.setReferencePixel(unitVec);
     320             : 
     321             :   // Set the reference value to that of the image
     322           0 :   feedCoord.replaceCoordinate(dc, directionIndex);
     323             : 
     324             :   //
     325             :   // Make an image with circular polarization axis.
     326             :   //
     327           0 :   Int NPol = 0, M, N = 0;
     328           0 :   M = polMap_p_base.nelements();
     329           0 :   for (Int i = 0; i < M; i++)
     330           0 :     if (polMap_p_base(i) > -1)
     331           0 :       NPol++;
     332           0 :   Vector<Int> poln(NPol);
     333             : 
     334             :   Int index;
     335           0 :   Vector<Int> inStokes;
     336           0 :   index = feedCoord.findCoordinate(Coordinate::STOKES);
     337           0 :   inStokes = feedCoord.stokesCoordinate(index).stokes();
     338           0 :   N = 0;
     339             :   try {
     340             :     //  cerr << "### " << polMap_p_base << " " << vb.corrType() << endl;
     341           0 :     for (Int i = 0; i < M; i++)
     342           0 :       if (polMap_p_base(i) > -1) {
     343           0 :         poln(N) = vb.correlationTypes()(i);
     344           0 :         N++;
     345             :       }
     346           0 :     StokesCoordinate polnCoord(poln);
     347           0 :     Int StokesIndex = feedCoord.findCoordinate(Coordinate::STOKES);
     348           0 :     feedCoord.replaceCoordinate(polnCoord, StokesIndex);
     349             :     //  cfStokes = poln;
     350           0 :   } catch (AipsError &x) {
     351           0 :     throw(SynthesisFTMachineError(
     352             :         "Likely cause: Discrepancy between the poln. "
     353           0 :         "axis of the data and the image specifications."));
     354           0 :   }
     355             : 
     356           0 :   return NPol;
     357           0 : }
     358             : 
     359           0 : Bool EVLAAperture::findSupport(Array<Complex> &func, Float &threshold,
     360             :                                Int &origin, Int &R) {
     361             :   Double NSteps;
     362           0 :   Int PixInc = 1;
     363           0 :   Vector<Complex> vals;
     364           0 :   IPosition ndx(4, origin, 0, 0, 0);
     365           0 :   Bool found = false;
     366           0 :   IPosition cfShape = func.shape();
     367           0 :   Int convSize = cfShape(0);
     368           0 :   for (R = convSize / 4; R > 1; R--) {
     369           0 :     NSteps = 90 * R / PixInc; // Check every PixInc pixel along a
     370             :     // circle of radious R
     371           0 :     vals.resize((Int)(NSteps + 0.5));
     372           0 :     vals = 0;
     373           0 :     for (Int th = 0; th < NSteps; th++) {
     374           0 :       ndx(0) = (int)(origin + R * sin(2.0 * M_PI * th * PixInc / R));
     375           0 :       ndx(1) = (int)(origin + R * cos(2.0 * M_PI * th * PixInc / R));
     376             : 
     377           0 :       if ((ndx(0) < cfShape(0)) && (ndx(1) < cfShape(1)))
     378           0 :         vals(th) = func(ndx);
     379             :     }
     380           0 :     if (max(abs(vals)) > threshold) {
     381           0 :       found = true;
     382           0 :       break;
     383             :     }
     384             :   }
     385           0 :   return found;
     386           0 : }
     387             : 
     388           0 : void EVLAAperture::makeFullJones(ImageInterface<Complex> &pbImage,
     389             :                                  const VisBuffer2 &vb, Bool doSquint,
     390             :                                  Int &bandID, Double freqVal) {
     391             : 
     392           0 :   if (!isNoOp()) {
     393           0 :     VLACalcIlluminationConvFunc vlaPB;
     394           0 :     Long cachesize = (HostInfo::memoryTotal(true) / 8) * 1024;
     395           0 :     vlaPB.setMaximumCacheSize(cachesize);
     396           0 :     bandID = getBandID(freqVal);
     397           0 :     vlaPB.makeFullJones(pbImage, vb, doSquint, bandID, freqVal);
     398           0 :   }
     399           0 : }
     400             : 
     401           0 : void EVLAAperture::applyAvgSkyJones(ImageInterface<Complex> &outImage) {
     402           0 :   TempImage<Complex> temp(outImage.shape(), outImage.coordinates());
     403           0 :   temp.setMiscInfo(outImage.miscInfo());
     404           0 :   temp.set(1.0);
     405           0 :   applyDiagSkyJones(temp, 0.0);
     406             :   // Taking the RL beam
     407           0 :   IPosition blc(4, 0, 0, 1, 0);
     408           0 :   IPosition trc=outImage.shape()-1;
     409           0 :   trc(2)=1;
     410           0 :   Slicer sl(blc, trc, Slicer::endIsLast);
     411           0 :   SubImage<Complex> rl(temp, sl, false);
     412           0 :   for (Int k = 0; k <4; ++k ) {
     413           0 :    trc[2] = k;
     414           0 :    blc[2] = k;
     415           0 :    sl = Slicer(blc, trc, Slicer::endIsLast);
     416           0 :    SubImage<Complex> outsub(outImage,  sl,  true);
     417           0 :    outsub.copyData(LatticeExpr<Complex>(real(rl)));
     418           0 :   }
     419             :   
     420             :   
     421           0 : }
     422             : 
     423           0 : void EVLAAperture::applyDiagSkyJones(ImageInterface<Complex> &outImage,
     424             :                                      const Double pa) {
     425             : 
     426           0 :   ApertureCalcParams ap;
     427           0 :   Long memtot=HostInfo::memoryFree();
     428           0 :   Double memtobeused= Double(memtot)*1024.0;
     429           0 :   String bandname="";
     430             :   //cerr << "diagMisc " << outImage.miscInfo() << endl;
     431           0 :   if(outImage.miscInfo().isDefined("bandname"))
     432           0 :     outImage.miscInfo().get("bandname", bandname);
     433             :   //cerr << "diagSky BANDNAME " << bandname << endl;
     434             : 
     435           0 :   ap.apertureptr = make_shared< TempImage<Complex> >(outImage.shape(),  outImage.coordinates(), memtobeused/10.0);  
     436           0 :   ap.aperture = ap.apertureptr.get();
     437           0 :   CoordinateSystem csys = outImage.coordinates();
     438             : 
     439           0 :   Int index = csys.findCoordinate(Coordinate::SPECTRAL);
     440           0 :   Double freqVal = 0.0;
     441           0 :   csys.spectralCoordinate(index).toWorld(freqVal, 0.0);
     442             :   //cerr <<  "####FREQVAL " <<  freqVal <<  endl;
     443           0 :   Int bandID = getBandID(freqVal, bandname);
     444             :   //cerr << "bandid " << bandID << endl;
     445             :   CoordinateSystem uvCoords = refim::VLACalcIlluminationConvFunc::makeUVCoords(
     446           0 :       csys, outImage.shape(), freqVal);
     447           0 :   index = uvCoords.findCoordinate(Coordinate::LINEAR);
     448           0 :   if (index < 0)
     449           0 :     throw(AipsError("Could not get uv-coordinates in applyDiagSkyJones"));
     450           0 :   LinearCoordinate lc = uvCoords.linearCoordinate(index);
     451           0 :   Vector<Double> uvIncr = lc.increment();
     452           0 :   setApertureParams(ap, freqVal, pa, bandID, outImage.shape(), uvIncr);
     453             :   //ap.aperture->setCoordinateInfo(uvCoords);
     454             :   // Can replace this call with PBMathInterface::applyVP for other type of known beams
     455           0 :   BeamCalc::Instance()->calculateAperture(&ap);
     456             :   //cerr <<  "MAx MIN " <<  max(ap.aperture->get()) <<  " " <<  min(ap.aperture->get()) << endl;
     457             :   // need to ft to voltagepattern
     458           0 :   FFT2D ft;
     459           0 :   ft.c2cFFT(*(ap.apertureptr));
     460             :   // diagonal Mueller beam terms
     461             :   // First lets normalize voltage beam
     462             :   // In VLACalcIlluminationConvFunc::skyMuller function there is a double conj
     463             :   //  first when normalizing tmp ...then when calculation M0 etc
     464             :   // So here we are just doing the conj once at multiplication
     465             :   // Copying the normalization from skyMuller ...hey it was tested in python must be right
     466           0 :   IPosition mid = outImage.shape()-1;
     467           0 :   mid[0] = outImage.shape()[0]/2;
     468           0 :   mid[1] = outImage.shape()[1]/2;
     469           0 :   Float normalizesq = 0.0;
     470           0 :   for (Int k = 0; k < 4; ++k ) {
     471           0 :     mid[2] = k;
     472           0 :     Complex valmid = ap.aperture->getAt(mid);
     473             :     //cerr << " mid " <<  mid <<  " val " <<  valmid <<  endl;
     474           0 :     normalizesq +=  abs(valmid*valmid)/2.0;
     475             :   }
     476           0 :   if (normalizesq == 0.0) {
     477           0 :    throw(AipsError("Voltage patterns are 0 at the center")); 
     478             :   }
     479           0 :   (ap.aperture)-> copyData(LatticeExpr<Complex>((*(ap.aperture))/sqrt(normalizesq)));
     480             :   // now lets calculate the diag Mueller terms remember we are conj the multipliers to match the 
     481             :   // double conj that VLACalcIlluminationConvFunc does !
     482             :   // For heterogenous arrays that is where we'll multiply the voltage pattern of ant1 with that 
     483             :   // of ant2
     484             :   
     485             :   {
     486             :     //  We'll overwrite the 2 middle planes with Jp*conj(Jq) and Jq*conj(Jp) (see skyMuller)
     487             :     // because we did not do a conj while normalizing it will be conj(Jp)*Jq and conj(Jq)*Jp 
     488             :     //  respectively
     489           0 :     IPosition blc(4, 0, 0, 0, 0);
     490           0 :     IPosition trc=outImage.shape()-1;
     491           0 :     trc(2)=0;
     492           0 :     Slicer sl(blc, trc, Slicer::endIsLast);
     493           0 :     SubImage<Complex> jp(*(ap.aperture), sl, true);
     494           0 :     blc(2) = 3;
     495           0 :     trc(2) = 3;
     496           0 :     sl = Slicer(blc, trc, Slicer::endIsLast);
     497           0 :     SubImage<Complex> jq(*(ap.aperture), sl, true);
     498           0 :     blc(2) = 1;
     499           0 :     trc(2) = 1;
     500           0 :     sl = Slicer(blc, trc, Slicer::endIsLast);
     501           0 :     SubImage<Complex> jpq(*(ap.aperture), sl, true);
     502           0 :     jpq.copyData(LatticeExpr<Complex>(jq*conj(jp)));
     503           0 :     blc(2) = 2;
     504           0 :     trc(2) = 2;
     505           0 :     sl = Slicer(blc, trc, Slicer::endIsLast);
     506           0 :     SubImage<Complex> jqp(*(ap.aperture), sl, true);
     507           0 :     jqp.copyData(LatticeExpr<Complex>(conj(jq)*jp));
     508             :     // Now the first and last plane
     509           0 :     jp.copyData(LatticeExpr<Complex>(conj(jp)*jp));
     510           0 :     jq.copyData(LatticeExpr<Complex>(conj(jq)*jq));
     511           0 :   }
     512             :   //cerr <<  "SHAPES " <<  ap.aperture->shape() <<  "  " <<  outImage.shape() <<  endl;
     513           0 :   LatticeExpr<Complex> le((*ap.aperture) * outImage);
     514           0 :   outImage.copyData(le);
     515           0 : }
     516             : 
     517           0 : void EVLAAperture::applySky(ImageInterface<Complex> &outImages,
     518             :                             const VisBuffer2 &vb, const Bool doSquint,
     519             :                             const Int &cfKey, const Int &muellerTerm,
     520             :                             const Double freqVal) {
     521           0 :   Double freq = freqVal;
     522           0 :   if (freq < 0.0)
     523           0 :     freq = vb.getFrequency(0, 0);
     524             :   //     (void)cfKey;
     525             :   //     if (!isNoOp())
     526             :   //       {
     527             :   //    VLACalcIlluminationConvFunc vlaPB;
     528             :   //    Long cachesize=(HostInfo::memoryTotal(true)/8)*1024;
     529             :   //    vlaPB.setMaximumCacheSize(cachesize);
     530             :   //    bandID = getBandID(freqVal,telescopeName_p);
     531             :   // // cout<<"EVLAAperture : muellerTerm"<<muellerTerm <<"\n";
     532             :   //    //vlaPB.applyPB(outImages, doSquint,bandID,muellerTerm,freqVal);
     533             :   //    Double pa=getPA(vb);
     534             :   //    vlaPB.applyPB(outImages, pa, doSquint,bandID,muellerTerm,freqVal);
     535             : 
     536             :   //       }
     537           0 :   Double pa = getPA(vb);
     538             :   //cerr << "PA=" << pa << endl;
     539           0 :   applySky(outImages, pa, doSquint, cfKey, muellerTerm, freq);
     540           0 : }
     541             : //
     542             : // This one without VB.  Should become the default (and the only one!).
     543             : //
     544           0 : void EVLAAperture::applySky(ImageInterface<Complex> &outImages,
     545             :                             const Double &pa, const Bool doSquint,
     546             :                             const Int &cfKey, const Int &muellerTerm,
     547             :                             const Double freqVal) {
     548             :   (void)cfKey;
     549           0 :   if (!isNoOp()) {
     550           0 :     VLACalcIlluminationConvFunc vlaPB;
     551           0 :     Long cachesize = (HostInfo::memoryTotal(true) / 8) * 1024;
     552           0 :     vlaPB.setMaximumCacheSize(cachesize);
     553             :     Int bandID;
     554           0 :     bandID = getBandID(freqVal);
     555             :     // vlaPB.applyPB(outImages, doSquint,bandID,muellerTerm,freqVal);
     556           0 :     Double pa_l = pa; // Due to goofup in making sure complier type checking
     557             :                       // does not come in the way!
     558             :     //cerr << "PA_L=" << pa_l << " bandID= " << bandID << endl;
     559           0 :     vlaPB.applyPB(outImages, pa_l, doSquint, bandID, muellerTerm, freqVal);
     560           0 :   }
     561           0 : }
     562             : 
     563           0 : void EVLAAperture::applySky(ImageInterface<Float> &outImages,
     564             :                             const VisBuffer2 &vb, const Bool doSquint,
     565             :                             const Int &cfKey, const Int &muellerTerm,
     566             :                             const Double freqVal) {
     567             :   (void)cfKey;
     568             :   (void)muellerTerm;
     569           0 :   Double freq = freqVal;
     570           0 :   if (freq < 0.0)
     571           0 :     freq = vb.getFrequency(0, 0);
     572           0 :   if (!isNoOp()) {
     573           0 :     VLACalcIlluminationConvFunc vlaPB;
     574           0 :     Long cachesize = (HostInfo::memoryTotal(true) / 8) * 1024;
     575           0 :     vlaPB.setMaximumCacheSize(cachesize);
     576             :     Int bandID;
     577           0 :     bandID = getBandID(freq);
     578             : 
     579           0 :     Double pa = getPA(vb);
     580           0 :     vlaPB.applyPB(outImages, pa, bandID, doSquint, freq);
     581           0 :   }
     582           0 : }
     583             : 
     584             : }; // namespace casa

Generated by: LCOV version 1.16