LCOV - code coverage report
Current view: top level - synthesis/MeasurementEquations/lbfgs - fasttransforms.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 1150 0.0 %
Date: 2024-10-28 15:53:10 Functions: 0 44 0.0 %

          Line data    Source code
       1             : /*************************************************************************
       2             : ALGLIB 3.17.0 (source code generated 2020-12-27)
       3             : Copyright (c) Sergey Bochkanov (ALGLIB project).
       4             : 
       5             : >>> SOURCE LICENSE >>>
       6             : This program is free software; you can redistribute it and/or modify
       7             : it under the terms of the GNU General Public License as published by
       8             : the Free Software Foundation (www.fsf.org); either version 2 of the 
       9             : License, or (at your option) any later version.
      10             : 
      11             : This program is distributed in the hope that it will be useful,
      12             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14             : GNU General Public License for more details.
      15             : 
      16             : A copy of the GNU General Public License is available at
      17             : http://www.fsf.org/licensing/licenses
      18             : >>> END OF LICENSE >>>
      19             : *************************************************************************/
      20             : #ifdef _MSC_VER
      21             : #define _CRT_SECURE_NO_WARNINGS
      22             : #endif
      23             : #include "stdafx.h"
      24             : #include "fasttransforms.h"
      25             : 
      26             : // disable some irrelevant warnings
      27             : #if (AE_COMPILER==AE_MSVC) && !defined(AE_ALL_WARNINGS)
      28             : #pragma warning(disable:4100)
      29             : #pragma warning(disable:4127)
      30             : #pragma warning(disable:4611)
      31             : #pragma warning(disable:4702)
      32             : #pragma warning(disable:4996)
      33             : #endif
      34             : 
      35             : /////////////////////////////////////////////////////////////////////////
      36             : //
      37             : // THIS SECTION CONTAINS IMPLEMENTATION OF C++ INTERFACE
      38             : //
      39             : /////////////////////////////////////////////////////////////////////////
      40             : namespace alglib
      41             : {
      42             : 
      43             : #if defined(AE_COMPILE_FFT) || !defined(AE_PARTIAL_BUILD)
      44             : 
      45             : #endif
      46             : 
      47             : #if defined(AE_COMPILE_FHT) || !defined(AE_PARTIAL_BUILD)
      48             : 
      49             : #endif
      50             : 
      51             : #if defined(AE_COMPILE_CONV) || !defined(AE_PARTIAL_BUILD)
      52             : 
      53             : #endif
      54             : 
      55             : #if defined(AE_COMPILE_CORR) || !defined(AE_PARTIAL_BUILD)
      56             : 
      57             : #endif
      58             : 
      59             : #if defined(AE_COMPILE_FFT) || !defined(AE_PARTIAL_BUILD)
      60             : /*************************************************************************
      61             : 1-dimensional complex FFT.
      62             : 
      63             : Array size N may be arbitrary number (composite or prime).  Composite  N's
      64             : are handled with cache-oblivious variation of  a  Cooley-Tukey  algorithm.
      65             : Small prime-factors are transformed using hard coded  codelets (similar to
      66             : FFTW codelets, but without low-level  optimization),  large  prime-factors
      67             : are handled with Bluestein's algorithm.
      68             : 
      69             : Fastests transforms are for smooth N's (prime factors are 2, 3,  5  only),
      70             : most fast for powers of 2. When N have prime factors  larger  than  these,
      71             : but orders of magnitude smaller than N, computations will be about 4 times
      72             : slower than for nearby highly composite N's. When N itself is prime, speed
      73             : will be 6 times lower.
      74             : 
      75             : Algorithm has O(N*logN) complexity for any N (composite or prime).
      76             : 
      77             : INPUT PARAMETERS
      78             :     A   -   array[0..N-1] - complex function to be transformed
      79             :     N   -   problem size
      80             : 
      81             : OUTPUT PARAMETERS
      82             :     A   -   DFT of a input array, array[0..N-1]
      83             :             A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
      84             : 
      85             : 
      86             :   -- ALGLIB --
      87             :      Copyright 29.05.2009 by Bochkanov Sergey
      88             : *************************************************************************/
      89           0 : void fftc1d(complex_1d_array &a, const ae_int_t n, const xparams _xparams)
      90             : {
      91             :     jmp_buf _break_jump;
      92             :     alglib_impl::ae_state _alglib_env_state;
      93           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
      94           0 :     if( setjmp(_break_jump) )
      95             :     {
      96             : #if !defined(AE_NO_EXCEPTIONS)
      97           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
      98             : #else
      99             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     100             :         return;
     101             : #endif
     102             :     }
     103           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     104           0 :     if( _xparams.flags!=0x0 )
     105           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     106           0 :     alglib_impl::fftc1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, &_alglib_env_state);
     107           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     108           0 :     return;
     109             : }
     110             : 
     111             : /*************************************************************************
     112             : 1-dimensional complex FFT.
     113             : 
     114             : Array size N may be arbitrary number (composite or prime).  Composite  N's
     115             : are handled with cache-oblivious variation of  a  Cooley-Tukey  algorithm.
     116             : Small prime-factors are transformed using hard coded  codelets (similar to
     117             : FFTW codelets, but without low-level  optimization),  large  prime-factors
     118             : are handled with Bluestein's algorithm.
     119             : 
     120             : Fastests transforms are for smooth N's (prime factors are 2, 3,  5  only),
     121             : most fast for powers of 2. When N have prime factors  larger  than  these,
     122             : but orders of magnitude smaller than N, computations will be about 4 times
     123             : slower than for nearby highly composite N's. When N itself is prime, speed
     124             : will be 6 times lower.
     125             : 
     126             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     127             : 
     128             : INPUT PARAMETERS
     129             :     A   -   array[0..N-1] - complex function to be transformed
     130             :     N   -   problem size
     131             : 
     132             : OUTPUT PARAMETERS
     133             :     A   -   DFT of a input array, array[0..N-1]
     134             :             A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
     135             : 
     136             : 
     137             :   -- ALGLIB --
     138             :      Copyright 29.05.2009 by Bochkanov Sergey
     139             : *************************************************************************/
     140             : #if !defined(AE_NO_EXCEPTIONS)
     141           0 : void fftc1d(complex_1d_array &a, const xparams _xparams)
     142             : {
     143             :     jmp_buf _break_jump;
     144             :     alglib_impl::ae_state _alglib_env_state;    
     145             :     ae_int_t n;
     146             : 
     147           0 :     n = a.length();
     148           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     149           0 :     if( setjmp(_break_jump) )
     150           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     151           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     152           0 :     if( _xparams.flags!=0x0 )
     153           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     154           0 :     alglib_impl::fftc1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, &_alglib_env_state);
     155             : 
     156           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     157           0 :     return;
     158             : }
     159             : #endif
     160             : 
     161             : /*************************************************************************
     162             : 1-dimensional complex inverse FFT.
     163             : 
     164             : Array size N may be arbitrary number (composite or prime).  Algorithm  has
     165             : O(N*logN) complexity for any N (composite or prime).
     166             : 
     167             : See FFTC1D() description for more information about algorithm performance.
     168             : 
     169             : INPUT PARAMETERS
     170             :     A   -   array[0..N-1] - complex array to be transformed
     171             :     N   -   problem size
     172             : 
     173             : OUTPUT PARAMETERS
     174             :     A   -   inverse DFT of a input array, array[0..N-1]
     175             :             A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
     176             : 
     177             : 
     178             :   -- ALGLIB --
     179             :      Copyright 29.05.2009 by Bochkanov Sergey
     180             : *************************************************************************/
     181           0 : void fftc1dinv(complex_1d_array &a, const ae_int_t n, const xparams _xparams)
     182             : {
     183             :     jmp_buf _break_jump;
     184             :     alglib_impl::ae_state _alglib_env_state;
     185           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     186           0 :     if( setjmp(_break_jump) )
     187             :     {
     188             : #if !defined(AE_NO_EXCEPTIONS)
     189           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     190             : #else
     191             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     192             :         return;
     193             : #endif
     194             :     }
     195           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     196           0 :     if( _xparams.flags!=0x0 )
     197           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     198           0 :     alglib_impl::fftc1dinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, &_alglib_env_state);
     199           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     200           0 :     return;
     201             : }
     202             : 
     203             : /*************************************************************************
     204             : 1-dimensional complex inverse FFT.
     205             : 
     206             : Array size N may be arbitrary number (composite or prime).  Algorithm  has
     207             : O(N*logN) complexity for any N (composite or prime).
     208             : 
     209             : See FFTC1D() description for more information about algorithm performance.
     210             : 
     211             : INPUT PARAMETERS
     212             :     A   -   array[0..N-1] - complex array to be transformed
     213             :     N   -   problem size
     214             : 
     215             : OUTPUT PARAMETERS
     216             :     A   -   inverse DFT of a input array, array[0..N-1]
     217             :             A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
     218             : 
     219             : 
     220             :   -- ALGLIB --
     221             :      Copyright 29.05.2009 by Bochkanov Sergey
     222             : *************************************************************************/
     223             : #if !defined(AE_NO_EXCEPTIONS)
     224           0 : void fftc1dinv(complex_1d_array &a, const xparams _xparams)
     225             : {
     226             :     jmp_buf _break_jump;
     227             :     alglib_impl::ae_state _alglib_env_state;    
     228             :     ae_int_t n;
     229             : 
     230           0 :     n = a.length();
     231           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     232           0 :     if( setjmp(_break_jump) )
     233           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     234           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     235           0 :     if( _xparams.flags!=0x0 )
     236           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     237           0 :     alglib_impl::fftc1dinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, &_alglib_env_state);
     238             : 
     239           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     240           0 :     return;
     241             : }
     242             : #endif
     243             : 
     244             : /*************************************************************************
     245             : 1-dimensional real FFT.
     246             : 
     247             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     248             : 
     249             : INPUT PARAMETERS
     250             :     A   -   array[0..N-1] - real function to be transformed
     251             :     N   -   problem size
     252             : 
     253             : OUTPUT PARAMETERS
     254             :     F   -   DFT of a input array, array[0..N-1]
     255             :             F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
     256             : 
     257             : NOTE:
     258             :     F[] satisfies symmetry property F[k] = conj(F[N-k]),  so just one half
     259             : of  array  is  usually needed. But for convinience subroutine returns full
     260             : complex array (with frequencies above N/2), so its result may be  used  by
     261             : other FFT-related subroutines.
     262             : 
     263             : 
     264             :   -- ALGLIB --
     265             :      Copyright 01.06.2009 by Bochkanov Sergey
     266             : *************************************************************************/
     267           0 : void fftr1d(const real_1d_array &a, const ae_int_t n, complex_1d_array &f, const xparams _xparams)
     268             : {
     269             :     jmp_buf _break_jump;
     270             :     alglib_impl::ae_state _alglib_env_state;
     271           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     272           0 :     if( setjmp(_break_jump) )
     273             :     {
     274             : #if !defined(AE_NO_EXCEPTIONS)
     275           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     276             : #else
     277             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     278             :         return;
     279             : #endif
     280             :     }
     281           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     282           0 :     if( _xparams.flags!=0x0 )
     283           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     284           0 :     alglib_impl::fftr1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(f.c_ptr()), &_alglib_env_state);
     285           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     286           0 :     return;
     287             : }
     288             : 
     289             : /*************************************************************************
     290             : 1-dimensional real FFT.
     291             : 
     292             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     293             : 
     294             : INPUT PARAMETERS
     295             :     A   -   array[0..N-1] - real function to be transformed
     296             :     N   -   problem size
     297             : 
     298             : OUTPUT PARAMETERS
     299             :     F   -   DFT of a input array, array[0..N-1]
     300             :             F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
     301             : 
     302             : NOTE:
     303             :     F[] satisfies symmetry property F[k] = conj(F[N-k]),  so just one half
     304             : of  array  is  usually needed. But for convinience subroutine returns full
     305             : complex array (with frequencies above N/2), so its result may be  used  by
     306             : other FFT-related subroutines.
     307             : 
     308             : 
     309             :   -- ALGLIB --
     310             :      Copyright 01.06.2009 by Bochkanov Sergey
     311             : *************************************************************************/
     312             : #if !defined(AE_NO_EXCEPTIONS)
     313           0 : void fftr1d(const real_1d_array &a, complex_1d_array &f, const xparams _xparams)
     314             : {
     315             :     jmp_buf _break_jump;
     316             :     alglib_impl::ae_state _alglib_env_state;    
     317             :     ae_int_t n;
     318             : 
     319           0 :     n = a.length();
     320           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     321           0 :     if( setjmp(_break_jump) )
     322           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     323           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     324           0 :     if( _xparams.flags!=0x0 )
     325           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     326           0 :     alglib_impl::fftr1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(f.c_ptr()), &_alglib_env_state);
     327             : 
     328           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     329           0 :     return;
     330             : }
     331             : #endif
     332             : 
     333             : /*************************************************************************
     334             : 1-dimensional real inverse FFT.
     335             : 
     336             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     337             : 
     338             : INPUT PARAMETERS
     339             :     F   -   array[0..floor(N/2)] - frequencies from forward real FFT
     340             :     N   -   problem size
     341             : 
     342             : OUTPUT PARAMETERS
     343             :     A   -   inverse DFT of a input array, array[0..N-1]
     344             : 
     345             : NOTE:
     346             :     F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just  one
     347             : half of frequencies array is needed - elements from 0 to floor(N/2).  F[0]
     348             : is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd,  then
     349             : F[floor(N/2)] has no special properties.
     350             : 
     351             : Relying on properties noted above, FFTR1DInv subroutine uses only elements
     352             : from 0th to floor(N/2)-th. It ignores imaginary part of F[0],  and in case
     353             : N is even it ignores imaginary part of F[floor(N/2)] too.
     354             : 
     355             : When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
     356             : - you can pass either either frequencies array with N elements or  reduced
     357             : array with roughly N/2 elements - subroutine will  successfully  transform
     358             : both.
     359             : 
     360             : If you call this function using reduced arguments list -  "FFTR1DInv(F,A)"
     361             : - you must pass FULL array with N elements (although higher  N/2 are still
     362             : not used) because array size is used to automatically determine FFT length
     363             : 
     364             : 
     365             :   -- ALGLIB --
     366             :      Copyright 01.06.2009 by Bochkanov Sergey
     367             : *************************************************************************/
     368           0 : void fftr1dinv(const complex_1d_array &f, const ae_int_t n, real_1d_array &a, const xparams _xparams)
     369             : {
     370             :     jmp_buf _break_jump;
     371             :     alglib_impl::ae_state _alglib_env_state;
     372           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     373           0 :     if( setjmp(_break_jump) )
     374             :     {
     375             : #if !defined(AE_NO_EXCEPTIONS)
     376           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     377             : #else
     378             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     379             :         return;
     380             : #endif
     381             :     }
     382           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     383           0 :     if( _xparams.flags!=0x0 )
     384           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     385           0 :     alglib_impl::fftr1dinv(const_cast<alglib_impl::ae_vector*>(f.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(a.c_ptr()), &_alglib_env_state);
     386           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     387           0 :     return;
     388             : }
     389             : 
     390             : /*************************************************************************
     391             : 1-dimensional real inverse FFT.
     392             : 
     393             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     394             : 
     395             : INPUT PARAMETERS
     396             :     F   -   array[0..floor(N/2)] - frequencies from forward real FFT
     397             :     N   -   problem size
     398             : 
     399             : OUTPUT PARAMETERS
     400             :     A   -   inverse DFT of a input array, array[0..N-1]
     401             : 
     402             : NOTE:
     403             :     F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just  one
     404             : half of frequencies array is needed - elements from 0 to floor(N/2).  F[0]
     405             : is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd,  then
     406             : F[floor(N/2)] has no special properties.
     407             : 
     408             : Relying on properties noted above, FFTR1DInv subroutine uses only elements
     409             : from 0th to floor(N/2)-th. It ignores imaginary part of F[0],  and in case
     410             : N is even it ignores imaginary part of F[floor(N/2)] too.
     411             : 
     412             : When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
     413             : - you can pass either either frequencies array with N elements or  reduced
     414             : array with roughly N/2 elements - subroutine will  successfully  transform
     415             : both.
     416             : 
     417             : If you call this function using reduced arguments list -  "FFTR1DInv(F,A)"
     418             : - you must pass FULL array with N elements (although higher  N/2 are still
     419             : not used) because array size is used to automatically determine FFT length
     420             : 
     421             : 
     422             :   -- ALGLIB --
     423             :      Copyright 01.06.2009 by Bochkanov Sergey
     424             : *************************************************************************/
     425             : #if !defined(AE_NO_EXCEPTIONS)
     426           0 : void fftr1dinv(const complex_1d_array &f, real_1d_array &a, const xparams _xparams)
     427             : {
     428             :     jmp_buf _break_jump;
     429             :     alglib_impl::ae_state _alglib_env_state;    
     430             :     ae_int_t n;
     431             : 
     432           0 :     n = f.length();
     433           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     434           0 :     if( setjmp(_break_jump) )
     435           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     436           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     437           0 :     if( _xparams.flags!=0x0 )
     438           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     439           0 :     alglib_impl::fftr1dinv(const_cast<alglib_impl::ae_vector*>(f.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(a.c_ptr()), &_alglib_env_state);
     440             : 
     441           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     442           0 :     return;
     443             : }
     444             : #endif
     445             : #endif
     446             : 
     447             : #if defined(AE_COMPILE_FHT) || !defined(AE_PARTIAL_BUILD)
     448             : /*************************************************************************
     449             : 1-dimensional Fast Hartley Transform.
     450             : 
     451             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     452             : 
     453             : INPUT PARAMETERS
     454             :     A   -   array[0..N-1] - real function to be transformed
     455             :     N   -   problem size
     456             : 
     457             : OUTPUT PARAMETERS
     458             :     A   -   FHT of a input array, array[0..N-1],
     459             :             A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)
     460             : 
     461             : 
     462             :   -- ALGLIB --
     463             :      Copyright 04.06.2009 by Bochkanov Sergey
     464             : *************************************************************************/
     465           0 : void fhtr1d(real_1d_array &a, const ae_int_t n, const xparams _xparams)
     466             : {
     467             :     jmp_buf _break_jump;
     468             :     alglib_impl::ae_state _alglib_env_state;
     469           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     470           0 :     if( setjmp(_break_jump) )
     471             :     {
     472             : #if !defined(AE_NO_EXCEPTIONS)
     473           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     474             : #else
     475             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     476             :         return;
     477             : #endif
     478             :     }
     479           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     480           0 :     if( _xparams.flags!=0x0 )
     481           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     482           0 :     alglib_impl::fhtr1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, &_alglib_env_state);
     483           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     484           0 :     return;
     485             : }
     486             : 
     487             : /*************************************************************************
     488             : 1-dimensional inverse FHT.
     489             : 
     490             : Algorithm has O(N*logN) complexity for any N (composite or prime).
     491             : 
     492             : INPUT PARAMETERS
     493             :     A   -   array[0..N-1] - complex array to be transformed
     494             :     N   -   problem size
     495             : 
     496             : OUTPUT PARAMETERS
     497             :     A   -   inverse FHT of a input array, array[0..N-1]
     498             : 
     499             : 
     500             :   -- ALGLIB --
     501             :      Copyright 29.05.2009 by Bochkanov Sergey
     502             : *************************************************************************/
     503           0 : void fhtr1dinv(real_1d_array &a, const ae_int_t n, const xparams _xparams)
     504             : {
     505             :     jmp_buf _break_jump;
     506             :     alglib_impl::ae_state _alglib_env_state;
     507           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     508           0 :     if( setjmp(_break_jump) )
     509             :     {
     510             : #if !defined(AE_NO_EXCEPTIONS)
     511           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     512             : #else
     513             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     514             :         return;
     515             : #endif
     516             :     }
     517           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     518           0 :     if( _xparams.flags!=0x0 )
     519           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     520           0 :     alglib_impl::fhtr1dinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, &_alglib_env_state);
     521           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     522           0 :     return;
     523             : }
     524             : #endif
     525             : 
     526             : #if defined(AE_COMPILE_CONV) || !defined(AE_PARTIAL_BUILD)
     527             : /*************************************************************************
     528             : 1-dimensional complex convolution.
     529             : 
     530             : For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
     531             : choose between three implementations: straightforward O(M*N)  formula  for
     532             : very small N (or M), overlap-add algorithm for  cases  where  max(M,N)  is
     533             : significantly larger than min(M,N), but O(M*N) algorithm is too slow,  and
     534             : general FFT-based formula for cases where two previois algorithms are  too
     535             : slow.
     536             : 
     537             : Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
     538             : 
     539             : INPUT PARAMETERS
     540             :     A   -   array[0..M-1] - complex function to be transformed
     541             :     M   -   problem size
     542             :     B   -   array[0..N-1] - complex function to be transformed
     543             :     N   -   problem size
     544             : 
     545             : OUTPUT PARAMETERS
     546             :     R   -   convolution: A*B. array[0..N+M-2].
     547             : 
     548             : NOTE:
     549             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
     550             : functions have non-zero values at negative T's, you  can  still  use  this
     551             : subroutine - just shift its result correspondingly.
     552             : 
     553             :   -- ALGLIB --
     554             :      Copyright 21.07.2009 by Bochkanov Sergey
     555             : *************************************************************************/
     556           0 : void convc1d(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r, const xparams _xparams)
     557             : {
     558             :     jmp_buf _break_jump;
     559             :     alglib_impl::ae_state _alglib_env_state;
     560           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     561           0 :     if( setjmp(_break_jump) )
     562             :     {
     563             : #if !defined(AE_NO_EXCEPTIONS)
     564           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     565             : #else
     566             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     567             :         return;
     568             : #endif
     569             :     }
     570           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     571           0 :     if( _xparams.flags!=0x0 )
     572           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     573           0 :     alglib_impl::convc1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     574           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     575           0 :     return;
     576             : }
     577             : 
     578             : /*************************************************************************
     579             : 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
     580             : 
     581             : Algorithm has M*log(M)) complexity for any M (composite or prime).
     582             : 
     583             : INPUT PARAMETERS
     584             :     A   -   array[0..M-1] - convolved signal, A = conv(R, B)
     585             :     M   -   convolved signal length
     586             :     B   -   array[0..N-1] - response
     587             :     N   -   response length, N<=M
     588             : 
     589             : OUTPUT PARAMETERS
     590             :     R   -   deconvolved signal. array[0..M-N].
     591             : 
     592             : NOTE:
     593             :     deconvolution is unstable process and may result in division  by  zero
     594             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
     595             : 
     596             : NOTE:
     597             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
     598             : functions have non-zero values at negative T's, you  can  still  use  this
     599             : subroutine - just shift its result correspondingly.
     600             : 
     601             :   -- ALGLIB --
     602             :      Copyright 21.07.2009 by Bochkanov Sergey
     603             : *************************************************************************/
     604           0 : void convc1dinv(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r, const xparams _xparams)
     605             : {
     606             :     jmp_buf _break_jump;
     607             :     alglib_impl::ae_state _alglib_env_state;
     608           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     609           0 :     if( setjmp(_break_jump) )
     610             :     {
     611             : #if !defined(AE_NO_EXCEPTIONS)
     612           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     613             : #else
     614             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     615             :         return;
     616             : #endif
     617             :     }
     618           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     619           0 :     if( _xparams.flags!=0x0 )
     620           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     621           0 :     alglib_impl::convc1dinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     622           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     623           0 :     return;
     624             : }
     625             : 
     626             : /*************************************************************************
     627             : 1-dimensional circular complex convolution.
     628             : 
     629             : For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
     630             : complexity for any M/N.
     631             : 
     632             : IMPORTANT:  normal convolution is commutative,  i.e.   it  is symmetric  -
     633             : conv(A,B)=conv(B,A).  Cyclic convolution IS NOT.  One function - S - is  a
     634             : signal,  periodic function, and another - R - is a response,  non-periodic
     635             : function with limited length.
     636             : 
     637             : INPUT PARAMETERS
     638             :     S   -   array[0..M-1] - complex periodic signal
     639             :     M   -   problem size
     640             :     B   -   array[0..N-1] - complex non-periodic response
     641             :     N   -   problem size
     642             : 
     643             : OUTPUT PARAMETERS
     644             :     R   -   convolution: A*B. array[0..M-1].
     645             : 
     646             : NOTE:
     647             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
     648             : negative T's, you can still use this subroutine - just  shift  its  result
     649             : correspondingly.
     650             : 
     651             :   -- ALGLIB --
     652             :      Copyright 21.07.2009 by Bochkanov Sergey
     653             : *************************************************************************/
     654           0 : void convc1dcircular(const complex_1d_array &s, const ae_int_t m, const complex_1d_array &r, const ae_int_t n, complex_1d_array &c, const xparams _xparams)
     655             : {
     656             :     jmp_buf _break_jump;
     657             :     alglib_impl::ae_state _alglib_env_state;
     658           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     659           0 :     if( setjmp(_break_jump) )
     660             :     {
     661             : #if !defined(AE_NO_EXCEPTIONS)
     662           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     663             : #else
     664             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     665             :         return;
     666             : #endif
     667             :     }
     668           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     669           0 :     if( _xparams.flags!=0x0 )
     670           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     671           0 :     alglib_impl::convc1dcircular(const_cast<alglib_impl::ae_vector*>(s.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
     672           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     673           0 :     return;
     674             : }
     675             : 
     676             : /*************************************************************************
     677             : 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
     678             : 
     679             : Algorithm has M*log(M)) complexity for any M (composite or prime).
     680             : 
     681             : INPUT PARAMETERS
     682             :     A   -   array[0..M-1] - convolved periodic signal, A = conv(R, B)
     683             :     M   -   convolved signal length
     684             :     B   -   array[0..N-1] - non-periodic response
     685             :     N   -   response length
     686             : 
     687             : OUTPUT PARAMETERS
     688             :     R   -   deconvolved signal. array[0..M-1].
     689             : 
     690             : NOTE:
     691             :     deconvolution is unstable process and may result in division  by  zero
     692             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
     693             : 
     694             : NOTE:
     695             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
     696             : negative T's, you can still use this subroutine - just  shift  its  result
     697             : correspondingly.
     698             : 
     699             :   -- ALGLIB --
     700             :      Copyright 21.07.2009 by Bochkanov Sergey
     701             : *************************************************************************/
     702           0 : void convc1dcircularinv(const complex_1d_array &a, const ae_int_t m, const complex_1d_array &b, const ae_int_t n, complex_1d_array &r, const xparams _xparams)
     703             : {
     704             :     jmp_buf _break_jump;
     705             :     alglib_impl::ae_state _alglib_env_state;
     706           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     707           0 :     if( setjmp(_break_jump) )
     708             :     {
     709             : #if !defined(AE_NO_EXCEPTIONS)
     710           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     711             : #else
     712             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     713             :         return;
     714             : #endif
     715             :     }
     716           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     717           0 :     if( _xparams.flags!=0x0 )
     718           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     719           0 :     alglib_impl::convc1dcircularinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     720           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     721           0 :     return;
     722             : }
     723             : 
     724             : /*************************************************************************
     725             : 1-dimensional real convolution.
     726             : 
     727             : Analogous to ConvC1D(), see ConvC1D() comments for more details.
     728             : 
     729             : INPUT PARAMETERS
     730             :     A   -   array[0..M-1] - real function to be transformed
     731             :     M   -   problem size
     732             :     B   -   array[0..N-1] - real function to be transformed
     733             :     N   -   problem size
     734             : 
     735             : OUTPUT PARAMETERS
     736             :     R   -   convolution: A*B. array[0..N+M-2].
     737             : 
     738             : NOTE:
     739             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
     740             : functions have non-zero values at negative T's, you  can  still  use  this
     741             : subroutine - just shift its result correspondingly.
     742             : 
     743             :   -- ALGLIB --
     744             :      Copyright 21.07.2009 by Bochkanov Sergey
     745             : *************************************************************************/
     746           0 : void convr1d(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r, const xparams _xparams)
     747             : {
     748             :     jmp_buf _break_jump;
     749             :     alglib_impl::ae_state _alglib_env_state;
     750           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     751           0 :     if( setjmp(_break_jump) )
     752             :     {
     753             : #if !defined(AE_NO_EXCEPTIONS)
     754           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     755             : #else
     756             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     757             :         return;
     758             : #endif
     759             :     }
     760           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     761           0 :     if( _xparams.flags!=0x0 )
     762           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     763           0 :     alglib_impl::convr1d(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     764           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     765           0 :     return;
     766             : }
     767             : 
     768             : /*************************************************************************
     769             : 1-dimensional real deconvolution (inverse of ConvC1D()).
     770             : 
     771             : Algorithm has M*log(M)) complexity for any M (composite or prime).
     772             : 
     773             : INPUT PARAMETERS
     774             :     A   -   array[0..M-1] - convolved signal, A = conv(R, B)
     775             :     M   -   convolved signal length
     776             :     B   -   array[0..N-1] - response
     777             :     N   -   response length, N<=M
     778             : 
     779             : OUTPUT PARAMETERS
     780             :     R   -   deconvolved signal. array[0..M-N].
     781             : 
     782             : NOTE:
     783             :     deconvolution is unstable process and may result in division  by  zero
     784             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
     785             : 
     786             : NOTE:
     787             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
     788             : functions have non-zero values at negative T's, you  can  still  use  this
     789             : subroutine - just shift its result correspondingly.
     790             : 
     791             :   -- ALGLIB --
     792             :      Copyright 21.07.2009 by Bochkanov Sergey
     793             : *************************************************************************/
     794           0 : void convr1dinv(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r, const xparams _xparams)
     795             : {
     796             :     jmp_buf _break_jump;
     797             :     alglib_impl::ae_state _alglib_env_state;
     798           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     799           0 :     if( setjmp(_break_jump) )
     800             :     {
     801             : #if !defined(AE_NO_EXCEPTIONS)
     802           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     803             : #else
     804             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     805             :         return;
     806             : #endif
     807             :     }
     808           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     809           0 :     if( _xparams.flags!=0x0 )
     810           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     811           0 :     alglib_impl::convr1dinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     812           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     813           0 :     return;
     814             : }
     815             : 
     816             : /*************************************************************************
     817             : 1-dimensional circular real convolution.
     818             : 
     819             : Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
     820             : 
     821             : INPUT PARAMETERS
     822             :     S   -   array[0..M-1] - real signal
     823             :     M   -   problem size
     824             :     B   -   array[0..N-1] - real response
     825             :     N   -   problem size
     826             : 
     827             : OUTPUT PARAMETERS
     828             :     R   -   convolution: A*B. array[0..M-1].
     829             : 
     830             : NOTE:
     831             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
     832             : negative T's, you can still use this subroutine - just  shift  its  result
     833             : correspondingly.
     834             : 
     835             :   -- ALGLIB --
     836             :      Copyright 21.07.2009 by Bochkanov Sergey
     837             : *************************************************************************/
     838           0 : void convr1dcircular(const real_1d_array &s, const ae_int_t m, const real_1d_array &r, const ae_int_t n, real_1d_array &c, const xparams _xparams)
     839             : {
     840             :     jmp_buf _break_jump;
     841             :     alglib_impl::ae_state _alglib_env_state;
     842           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     843           0 :     if( setjmp(_break_jump) )
     844             :     {
     845             : #if !defined(AE_NO_EXCEPTIONS)
     846           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     847             : #else
     848             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     849             :         return;
     850             : #endif
     851             :     }
     852           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     853           0 :     if( _xparams.flags!=0x0 )
     854           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     855           0 :     alglib_impl::convr1dcircular(const_cast<alglib_impl::ae_vector*>(s.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
     856           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     857           0 :     return;
     858             : }
     859             : 
     860             : /*************************************************************************
     861             : 1-dimensional complex deconvolution (inverse of ConvC1D()).
     862             : 
     863             : Algorithm has M*log(M)) complexity for any M (composite or prime).
     864             : 
     865             : INPUT PARAMETERS
     866             :     A   -   array[0..M-1] - convolved signal, A = conv(R, B)
     867             :     M   -   convolved signal length
     868             :     B   -   array[0..N-1] - response
     869             :     N   -   response length
     870             : 
     871             : OUTPUT PARAMETERS
     872             :     R   -   deconvolved signal. array[0..M-N].
     873             : 
     874             : NOTE:
     875             :     deconvolution is unstable process and may result in division  by  zero
     876             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
     877             : 
     878             : NOTE:
     879             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
     880             : negative T's, you can still use this subroutine - just  shift  its  result
     881             : correspondingly.
     882             : 
     883             :   -- ALGLIB --
     884             :      Copyright 21.07.2009 by Bochkanov Sergey
     885             : *************************************************************************/
     886           0 : void convr1dcircularinv(const real_1d_array &a, const ae_int_t m, const real_1d_array &b, const ae_int_t n, real_1d_array &r, const xparams _xparams)
     887             : {
     888             :     jmp_buf _break_jump;
     889             :     alglib_impl::ae_state _alglib_env_state;
     890           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     891           0 :     if( setjmp(_break_jump) )
     892             :     {
     893             : #if !defined(AE_NO_EXCEPTIONS)
     894           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     895             : #else
     896             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     897             :         return;
     898             : #endif
     899             :     }
     900           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     901           0 :     if( _xparams.flags!=0x0 )
     902           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     903           0 :     alglib_impl::convr1dcircularinv(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     904           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     905           0 :     return;
     906             : }
     907             : #endif
     908             : 
     909             : #if defined(AE_COMPILE_CORR) || !defined(AE_PARTIAL_BUILD)
     910             : /*************************************************************************
     911             : 1-dimensional complex cross-correlation.
     912             : 
     913             : For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
     914             : 
     915             : Correlation is calculated using reduction to  convolution.  Algorithm with
     916             : max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
     917             : about performance).
     918             : 
     919             : IMPORTANT:
     920             :     for  historical reasons subroutine accepts its parameters in  reversed
     921             :     order: CorrC1D(Signal, Pattern) = Pattern x Signal (using  traditional
     922             :     definition of cross-correlation, denoting cross-correlation as "x").
     923             : 
     924             : INPUT PARAMETERS
     925             :     Signal  -   array[0..N-1] - complex function to be transformed,
     926             :                 signal containing pattern
     927             :     N       -   problem size
     928             :     Pattern -   array[0..M-1] - complex function to be transformed,
     929             :                 pattern to search withing signal
     930             :     M       -   problem size
     931             : 
     932             : OUTPUT PARAMETERS
     933             :     R       -   cross-correlation, array[0..N+M-2]:
     934             :                 * positive lags are stored in R[0..N-1],
     935             :                   R[i] = sum(conj(pattern[j])*signal[i+j]
     936             :                 * negative lags are stored in R[N..N+M-2],
     937             :                   R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
     938             : 
     939             : NOTE:
     940             :     It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
     941             : on [-K..M-1],  you can still use this subroutine, just shift result by K.
     942             : 
     943             :   -- ALGLIB --
     944             :      Copyright 21.07.2009 by Bochkanov Sergey
     945             : *************************************************************************/
     946           0 : void corrc1d(const complex_1d_array &signal, const ae_int_t n, const complex_1d_array &pattern, const ae_int_t m, complex_1d_array &r, const xparams _xparams)
     947             : {
     948             :     jmp_buf _break_jump;
     949             :     alglib_impl::ae_state _alglib_env_state;
     950           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     951           0 :     if( setjmp(_break_jump) )
     952             :     {
     953             : #if !defined(AE_NO_EXCEPTIONS)
     954           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     955             : #else
     956             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     957             :         return;
     958             : #endif
     959             :     }
     960           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     961           0 :     if( _xparams.flags!=0x0 )
     962           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     963           0 :     alglib_impl::corrc1d(const_cast<alglib_impl::ae_vector*>(signal.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(pattern.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
     964           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     965           0 :     return;
     966             : }
     967             : 
     968             : /*************************************************************************
     969             : 1-dimensional circular complex cross-correlation.
     970             : 
     971             : For given Pattern/Signal returns corr(Pattern,Signal) (circular).
     972             : Algorithm has linearithmic complexity for any M/N.
     973             : 
     974             : IMPORTANT:
     975             :     for  historical reasons subroutine accepts its parameters in  reversed
     976             :     order:   CorrC1DCircular(Signal, Pattern) = Pattern x Signal    (using
     977             :     traditional definition of cross-correlation, denoting cross-correlation
     978             :     as "x").
     979             : 
     980             : INPUT PARAMETERS
     981             :     Signal  -   array[0..N-1] - complex function to be transformed,
     982             :                 periodic signal containing pattern
     983             :     N       -   problem size
     984             :     Pattern -   array[0..M-1] - complex function to be transformed,
     985             :                 non-periodic pattern to search withing signal
     986             :     M       -   problem size
     987             : 
     988             : OUTPUT PARAMETERS
     989             :     R   -   convolution: A*B. array[0..M-1].
     990             : 
     991             : 
     992             :   -- ALGLIB --
     993             :      Copyright 21.07.2009 by Bochkanov Sergey
     994             : *************************************************************************/
     995           0 : void corrc1dcircular(const complex_1d_array &signal, const ae_int_t m, const complex_1d_array &pattern, const ae_int_t n, complex_1d_array &c, const xparams _xparams)
     996             : {
     997             :     jmp_buf _break_jump;
     998             :     alglib_impl::ae_state _alglib_env_state;
     999           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1000           0 :     if( setjmp(_break_jump) )
    1001             :     {
    1002             : #if !defined(AE_NO_EXCEPTIONS)
    1003           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1004             : #else
    1005             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1006             :         return;
    1007             : #endif
    1008             :     }
    1009           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1010           0 :     if( _xparams.flags!=0x0 )
    1011           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1012           0 :     alglib_impl::corrc1dcircular(const_cast<alglib_impl::ae_vector*>(signal.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(pattern.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
    1013           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1014           0 :     return;
    1015             : }
    1016             : 
    1017             : /*************************************************************************
    1018             : 1-dimensional real cross-correlation.
    1019             : 
    1020             : For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
    1021             : 
    1022             : Correlation is calculated using reduction to  convolution.  Algorithm with
    1023             : max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
    1024             : about performance).
    1025             : 
    1026             : IMPORTANT:
    1027             :     for  historical reasons subroutine accepts its parameters in  reversed
    1028             :     order: CorrR1D(Signal, Pattern) = Pattern x Signal (using  traditional
    1029             :     definition of cross-correlation, denoting cross-correlation as "x").
    1030             : 
    1031             : INPUT PARAMETERS
    1032             :     Signal  -   array[0..N-1] - real function to be transformed,
    1033             :                 signal containing pattern
    1034             :     N       -   problem size
    1035             :     Pattern -   array[0..M-1] - real function to be transformed,
    1036             :                 pattern to search withing signal
    1037             :     M       -   problem size
    1038             : 
    1039             : OUTPUT PARAMETERS
    1040             :     R       -   cross-correlation, array[0..N+M-2]:
    1041             :                 * positive lags are stored in R[0..N-1],
    1042             :                   R[i] = sum(pattern[j]*signal[i+j]
    1043             :                 * negative lags are stored in R[N..N+M-2],
    1044             :                   R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
    1045             : 
    1046             : NOTE:
    1047             :     It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
    1048             : on [-K..M-1],  you can still use this subroutine, just shift result by K.
    1049             : 
    1050             :   -- ALGLIB --
    1051             :      Copyright 21.07.2009 by Bochkanov Sergey
    1052             : *************************************************************************/
    1053           0 : void corrr1d(const real_1d_array &signal, const ae_int_t n, const real_1d_array &pattern, const ae_int_t m, real_1d_array &r, const xparams _xparams)
    1054             : {
    1055             :     jmp_buf _break_jump;
    1056             :     alglib_impl::ae_state _alglib_env_state;
    1057           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1058           0 :     if( setjmp(_break_jump) )
    1059             :     {
    1060             : #if !defined(AE_NO_EXCEPTIONS)
    1061           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1062             : #else
    1063             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1064             :         return;
    1065             : #endif
    1066             :     }
    1067           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1068           0 :     if( _xparams.flags!=0x0 )
    1069           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1070           0 :     alglib_impl::corrr1d(const_cast<alglib_impl::ae_vector*>(signal.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(pattern.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(r.c_ptr()), &_alglib_env_state);
    1071           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1072           0 :     return;
    1073             : }
    1074             : 
    1075             : /*************************************************************************
    1076             : 1-dimensional circular real cross-correlation.
    1077             : 
    1078             : For given Pattern/Signal returns corr(Pattern,Signal) (circular).
    1079             : Algorithm has linearithmic complexity for any M/N.
    1080             : 
    1081             : IMPORTANT:
    1082             :     for  historical reasons subroutine accepts its parameters in  reversed
    1083             :     order:   CorrR1DCircular(Signal, Pattern) = Pattern x Signal    (using
    1084             :     traditional definition of cross-correlation, denoting cross-correlation
    1085             :     as "x").
    1086             : 
    1087             : INPUT PARAMETERS
    1088             :     Signal  -   array[0..N-1] - real function to be transformed,
    1089             :                 periodic signal containing pattern
    1090             :     N       -   problem size
    1091             :     Pattern -   array[0..M-1] - real function to be transformed,
    1092             :                 non-periodic pattern to search withing signal
    1093             :     M       -   problem size
    1094             : 
    1095             : OUTPUT PARAMETERS
    1096             :     R   -   convolution: A*B. array[0..M-1].
    1097             : 
    1098             : 
    1099             :   -- ALGLIB --
    1100             :      Copyright 21.07.2009 by Bochkanov Sergey
    1101             : *************************************************************************/
    1102           0 : void corrr1dcircular(const real_1d_array &signal, const ae_int_t m, const real_1d_array &pattern, const ae_int_t n, real_1d_array &c, const xparams _xparams)
    1103             : {
    1104             :     jmp_buf _break_jump;
    1105             :     alglib_impl::ae_state _alglib_env_state;
    1106           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1107           0 :     if( setjmp(_break_jump) )
    1108             :     {
    1109             : #if !defined(AE_NO_EXCEPTIONS)
    1110           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1111             : #else
    1112             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1113             :         return;
    1114             : #endif
    1115             :     }
    1116           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1117           0 :     if( _xparams.flags!=0x0 )
    1118           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1119           0 :     alglib_impl::corrr1dcircular(const_cast<alglib_impl::ae_vector*>(signal.c_ptr()), m, const_cast<alglib_impl::ae_vector*>(pattern.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
    1120           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1121           0 :     return;
    1122             : }
    1123             : #endif
    1124             : }
    1125             : 
    1126             : /////////////////////////////////////////////////////////////////////////
    1127             : //
    1128             : // THIS SECTION CONTAINS IMPLEMENTATION OF COMPUTATIONAL CORE
    1129             : //
    1130             : /////////////////////////////////////////////////////////////////////////
    1131             : namespace alglib_impl
    1132             : {
    1133             : #if defined(AE_COMPILE_FFT) || !defined(AE_PARTIAL_BUILD)
    1134             : 
    1135             : 
    1136             : #endif
    1137             : #if defined(AE_COMPILE_FHT) || !defined(AE_PARTIAL_BUILD)
    1138             : 
    1139             : 
    1140             : #endif
    1141             : #if defined(AE_COMPILE_CONV) || !defined(AE_PARTIAL_BUILD)
    1142             : 
    1143             : 
    1144             : #endif
    1145             : #if defined(AE_COMPILE_CORR) || !defined(AE_PARTIAL_BUILD)
    1146             : 
    1147             : 
    1148             : #endif
    1149             : 
    1150             : #if defined(AE_COMPILE_FFT) || !defined(AE_PARTIAL_BUILD)
    1151             : 
    1152             : 
    1153             : /*************************************************************************
    1154             : 1-dimensional complex FFT.
    1155             : 
    1156             : Array size N may be arbitrary number (composite or prime).  Composite  N's
    1157             : are handled with cache-oblivious variation of  a  Cooley-Tukey  algorithm.
    1158             : Small prime-factors are transformed using hard coded  codelets (similar to
    1159             : FFTW codelets, but without low-level  optimization),  large  prime-factors
    1160             : are handled with Bluestein's algorithm.
    1161             : 
    1162             : Fastests transforms are for smooth N's (prime factors are 2, 3,  5  only),
    1163             : most fast for powers of 2. When N have prime factors  larger  than  these,
    1164             : but orders of magnitude smaller than N, computations will be about 4 times
    1165             : slower than for nearby highly composite N's. When N itself is prime, speed
    1166             : will be 6 times lower.
    1167             : 
    1168             : Algorithm has O(N*logN) complexity for any N (composite or prime).
    1169             : 
    1170             : INPUT PARAMETERS
    1171             :     A   -   array[0..N-1] - complex function to be transformed
    1172             :     N   -   problem size
    1173             :     
    1174             : OUTPUT PARAMETERS
    1175             :     A   -   DFT of a input array, array[0..N-1]
    1176             :             A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
    1177             : 
    1178             : 
    1179             :   -- ALGLIB --
    1180             :      Copyright 29.05.2009 by Bochkanov Sergey
    1181             : *************************************************************************/
    1182           0 : void fftc1d(/* Complex */ ae_vector* a, ae_int_t n, ae_state *_state)
    1183             : {
    1184             :     ae_frame _frame_block;
    1185             :     fasttransformplan plan;
    1186             :     ae_int_t i;
    1187             :     ae_vector buf;
    1188             : 
    1189           0 :     ae_frame_make(_state, &_frame_block);
    1190           0 :     memset(&plan, 0, sizeof(plan));
    1191           0 :     memset(&buf, 0, sizeof(buf));
    1192           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    1193           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    1194             : 
    1195           0 :     ae_assert(n>0, "FFTC1D: incorrect N!", _state);
    1196           0 :     ae_assert(a->cnt>=n, "FFTC1D: Length(A)<N!", _state);
    1197           0 :     ae_assert(isfinitecvector(a, n, _state), "FFTC1D: A contains infinite or NAN values!", _state);
    1198             :     
    1199             :     /*
    1200             :      * Special case: N=1, FFT is just identity transform.
    1201             :      * After this block we assume that N is strictly greater than 1.
    1202             :      */
    1203           0 :     if( n==1 )
    1204             :     {
    1205           0 :         ae_frame_leave(_state);
    1206           0 :         return;
    1207             :     }
    1208             :     
    1209             :     /*
    1210             :      * convert input array to the more convinient format
    1211             :      */
    1212           0 :     ae_vector_set_length(&buf, 2*n, _state);
    1213           0 :     for(i=0; i<=n-1; i++)
    1214             :     {
    1215           0 :         buf.ptr.p_double[2*i+0] = a->ptr.p_complex[i].x;
    1216           0 :         buf.ptr.p_double[2*i+1] = a->ptr.p_complex[i].y;
    1217             :     }
    1218             :     
    1219             :     /*
    1220             :      * Generate plan and execute it.
    1221             :      *
    1222             :      * Plan is a combination of a successive factorizations of N and
    1223             :      * precomputed data. It is much like a FFTW plan, but is not stored
    1224             :      * between subroutine calls and is much simpler.
    1225             :      */
    1226           0 :     ftcomplexfftplan(n, 1, &plan, _state);
    1227           0 :     ftapplyplan(&plan, &buf, 0, 1, _state);
    1228             :     
    1229             :     /*
    1230             :      * result
    1231             :      */
    1232           0 :     for(i=0; i<=n-1; i++)
    1233             :     {
    1234           0 :         a->ptr.p_complex[i].x = buf.ptr.p_double[2*i+0];
    1235           0 :         a->ptr.p_complex[i].y = buf.ptr.p_double[2*i+1];
    1236             :     }
    1237           0 :     ae_frame_leave(_state);
    1238             : }
    1239             : 
    1240             : 
    1241             : /*************************************************************************
    1242             : 1-dimensional complex inverse FFT.
    1243             : 
    1244             : Array size N may be arbitrary number (composite or prime).  Algorithm  has
    1245             : O(N*logN) complexity for any N (composite or prime).
    1246             : 
    1247             : See FFTC1D() description for more information about algorithm performance.
    1248             : 
    1249             : INPUT PARAMETERS
    1250             :     A   -   array[0..N-1] - complex array to be transformed
    1251             :     N   -   problem size
    1252             : 
    1253             : OUTPUT PARAMETERS
    1254             :     A   -   inverse DFT of a input array, array[0..N-1]
    1255             :             A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
    1256             : 
    1257             : 
    1258             :   -- ALGLIB --
    1259             :      Copyright 29.05.2009 by Bochkanov Sergey
    1260             : *************************************************************************/
    1261           0 : void fftc1dinv(/* Complex */ ae_vector* a, ae_int_t n, ae_state *_state)
    1262             : {
    1263             :     ae_int_t i;
    1264             : 
    1265             : 
    1266           0 :     ae_assert(n>0, "FFTC1DInv: incorrect N!", _state);
    1267           0 :     ae_assert(a->cnt>=n, "FFTC1DInv: Length(A)<N!", _state);
    1268           0 :     ae_assert(isfinitecvector(a, n, _state), "FFTC1DInv: A contains infinite or NAN values!", _state);
    1269             :     
    1270             :     /*
    1271             :      * Inverse DFT can be expressed in terms of the DFT as
    1272             :      *
    1273             :      *     invfft(x) = fft(x')'/N
    1274             :      *
    1275             :      * here x' means conj(x).
    1276             :      */
    1277           0 :     for(i=0; i<=n-1; i++)
    1278             :     {
    1279           0 :         a->ptr.p_complex[i].y = -a->ptr.p_complex[i].y;
    1280             :     }
    1281           0 :     fftc1d(a, n, _state);
    1282           0 :     for(i=0; i<=n-1; i++)
    1283             :     {
    1284           0 :         a->ptr.p_complex[i].x = a->ptr.p_complex[i].x/n;
    1285           0 :         a->ptr.p_complex[i].y = -a->ptr.p_complex[i].y/n;
    1286             :     }
    1287           0 : }
    1288             : 
    1289             : 
    1290             : /*************************************************************************
    1291             : 1-dimensional real FFT.
    1292             : 
    1293             : Algorithm has O(N*logN) complexity for any N (composite or prime).
    1294             : 
    1295             : INPUT PARAMETERS
    1296             :     A   -   array[0..N-1] - real function to be transformed
    1297             :     N   -   problem size
    1298             : 
    1299             : OUTPUT PARAMETERS
    1300             :     F   -   DFT of a input array, array[0..N-1]
    1301             :             F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1)
    1302             : 
    1303             : NOTE:
    1304             :     F[] satisfies symmetry property F[k] = conj(F[N-k]),  so just one half
    1305             : of  array  is  usually needed. But for convinience subroutine returns full
    1306             : complex array (with frequencies above N/2), so its result may be  used  by
    1307             : other FFT-related subroutines.
    1308             : 
    1309             : 
    1310             :   -- ALGLIB --
    1311             :      Copyright 01.06.2009 by Bochkanov Sergey
    1312             : *************************************************************************/
    1313           0 : void fftr1d(/* Real    */ ae_vector* a,
    1314             :      ae_int_t n,
    1315             :      /* Complex */ ae_vector* f,
    1316             :      ae_state *_state)
    1317             : {
    1318             :     ae_frame _frame_block;
    1319             :     ae_int_t i;
    1320             :     ae_int_t n2;
    1321             :     ae_int_t idx;
    1322             :     ae_complex hn;
    1323             :     ae_complex hmnc;
    1324             :     ae_complex v;
    1325             :     ae_vector buf;
    1326             :     fasttransformplan plan;
    1327             : 
    1328           0 :     ae_frame_make(_state, &_frame_block);
    1329           0 :     memset(&buf, 0, sizeof(buf));
    1330           0 :     memset(&plan, 0, sizeof(plan));
    1331           0 :     ae_vector_clear(f);
    1332           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    1333           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    1334             : 
    1335           0 :     ae_assert(n>0, "FFTR1D: incorrect N!", _state);
    1336           0 :     ae_assert(a->cnt>=n, "FFTR1D: Length(A)<N!", _state);
    1337           0 :     ae_assert(isfinitevector(a, n, _state), "FFTR1D: A contains infinite or NAN values!", _state);
    1338             :     
    1339             :     /*
    1340             :      * Special cases:
    1341             :      * * N=1, FFT is just identity transform.
    1342             :      * * N=2, FFT is simple too
    1343             :      *
    1344             :      * After this block we assume that N is strictly greater than 2
    1345             :      */
    1346           0 :     if( n==1 )
    1347             :     {
    1348           0 :         ae_vector_set_length(f, 1, _state);
    1349           0 :         f->ptr.p_complex[0] = ae_complex_from_d(a->ptr.p_double[0]);
    1350           0 :         ae_frame_leave(_state);
    1351           0 :         return;
    1352             :     }
    1353           0 :     if( n==2 )
    1354             :     {
    1355           0 :         ae_vector_set_length(f, 2, _state);
    1356           0 :         f->ptr.p_complex[0].x = a->ptr.p_double[0]+a->ptr.p_double[1];
    1357           0 :         f->ptr.p_complex[0].y = (double)(0);
    1358           0 :         f->ptr.p_complex[1].x = a->ptr.p_double[0]-a->ptr.p_double[1];
    1359           0 :         f->ptr.p_complex[1].y = (double)(0);
    1360           0 :         ae_frame_leave(_state);
    1361           0 :         return;
    1362             :     }
    1363             :     
    1364             :     /*
    1365             :      * Choose between odd-size and even-size FFTs
    1366             :      */
    1367           0 :     if( n%2==0 )
    1368             :     {
    1369             :         
    1370             :         /*
    1371             :          * even-size real FFT, use reduction to the complex task
    1372             :          */
    1373           0 :         n2 = n/2;
    1374           0 :         ae_vector_set_length(&buf, n, _state);
    1375           0 :         ae_v_move(&buf.ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,n-1));
    1376           0 :         ftcomplexfftplan(n2, 1, &plan, _state);
    1377           0 :         ftapplyplan(&plan, &buf, 0, 1, _state);
    1378           0 :         ae_vector_set_length(f, n, _state);
    1379           0 :         for(i=0; i<=n2; i++)
    1380             :         {
    1381           0 :             idx = 2*(i%n2);
    1382           0 :             hn.x = buf.ptr.p_double[idx+0];
    1383           0 :             hn.y = buf.ptr.p_double[idx+1];
    1384           0 :             idx = 2*((n2-i)%n2);
    1385           0 :             hmnc.x = buf.ptr.p_double[idx+0];
    1386           0 :             hmnc.y = -buf.ptr.p_double[idx+1];
    1387           0 :             v.x = -ae_sin(-2*ae_pi*i/n, _state);
    1388           0 :             v.y = ae_cos(-2*ae_pi*i/n, _state);
    1389           0 :             f->ptr.p_complex[i] = ae_c_sub(ae_c_add(hn,hmnc),ae_c_mul(v,ae_c_sub(hn,hmnc)));
    1390           0 :             f->ptr.p_complex[i].x = 0.5*f->ptr.p_complex[i].x;
    1391           0 :             f->ptr.p_complex[i].y = 0.5*f->ptr.p_complex[i].y;
    1392             :         }
    1393           0 :         for(i=n2+1; i<=n-1; i++)
    1394             :         {
    1395           0 :             f->ptr.p_complex[i] = ae_c_conj(f->ptr.p_complex[n-i], _state);
    1396             :         }
    1397             :     }
    1398             :     else
    1399             :     {
    1400             :         
    1401             :         /*
    1402             :          * use complex FFT
    1403             :          */
    1404           0 :         ae_vector_set_length(f, n, _state);
    1405           0 :         for(i=0; i<=n-1; i++)
    1406             :         {
    1407           0 :             f->ptr.p_complex[i] = ae_complex_from_d(a->ptr.p_double[i]);
    1408             :         }
    1409           0 :         fftc1d(f, n, _state);
    1410             :     }
    1411           0 :     ae_frame_leave(_state);
    1412             : }
    1413             : 
    1414             : 
    1415             : /*************************************************************************
    1416             : 1-dimensional real inverse FFT.
    1417             : 
    1418             : Algorithm has O(N*logN) complexity for any N (composite or prime).
    1419             : 
    1420             : INPUT PARAMETERS
    1421             :     F   -   array[0..floor(N/2)] - frequencies from forward real FFT
    1422             :     N   -   problem size
    1423             : 
    1424             : OUTPUT PARAMETERS
    1425             :     A   -   inverse DFT of a input array, array[0..N-1]
    1426             : 
    1427             : NOTE:
    1428             :     F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just  one
    1429             : half of frequencies array is needed - elements from 0 to floor(N/2).  F[0]
    1430             : is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd,  then
    1431             : F[floor(N/2)] has no special properties.
    1432             : 
    1433             : Relying on properties noted above, FFTR1DInv subroutine uses only elements
    1434             : from 0th to floor(N/2)-th. It ignores imaginary part of F[0],  and in case
    1435             : N is even it ignores imaginary part of F[floor(N/2)] too.
    1436             : 
    1437             : When you call this function using full arguments list - "FFTR1DInv(F,N,A)"
    1438             : - you can pass either either frequencies array with N elements or  reduced
    1439             : array with roughly N/2 elements - subroutine will  successfully  transform
    1440             : both.
    1441             : 
    1442             : If you call this function using reduced arguments list -  "FFTR1DInv(F,A)"
    1443             : - you must pass FULL array with N elements (although higher  N/2 are still
    1444             : not used) because array size is used to automatically determine FFT length
    1445             : 
    1446             : 
    1447             :   -- ALGLIB --
    1448             :      Copyright 01.06.2009 by Bochkanov Sergey
    1449             : *************************************************************************/
    1450           0 : void fftr1dinv(/* Complex */ ae_vector* f,
    1451             :      ae_int_t n,
    1452             :      /* Real    */ ae_vector* a,
    1453             :      ae_state *_state)
    1454             : {
    1455             :     ae_frame _frame_block;
    1456             :     ae_int_t i;
    1457             :     ae_vector h;
    1458             :     ae_vector fh;
    1459             : 
    1460           0 :     ae_frame_make(_state, &_frame_block);
    1461           0 :     memset(&h, 0, sizeof(h));
    1462           0 :     memset(&fh, 0, sizeof(fh));
    1463           0 :     ae_vector_clear(a);
    1464           0 :     ae_vector_init(&h, 0, DT_REAL, _state, ae_true);
    1465           0 :     ae_vector_init(&fh, 0, DT_COMPLEX, _state, ae_true);
    1466             : 
    1467           0 :     ae_assert(n>0, "FFTR1DInv: incorrect N!", _state);
    1468           0 :     ae_assert(f->cnt>=ae_ifloor((double)n/(double)2, _state)+1, "FFTR1DInv: Length(F)<Floor(N/2)+1!", _state);
    1469           0 :     ae_assert(ae_isfinite(f->ptr.p_complex[0].x, _state), "FFTR1DInv: F contains infinite or NAN values!", _state);
    1470           0 :     for(i=1; i<=ae_ifloor((double)n/(double)2, _state)-1; i++)
    1471             :     {
    1472           0 :         ae_assert(ae_isfinite(f->ptr.p_complex[i].x, _state)&&ae_isfinite(f->ptr.p_complex[i].y, _state), "FFTR1DInv: F contains infinite or NAN values!", _state);
    1473             :     }
    1474           0 :     ae_assert(ae_isfinite(f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].x, _state), "FFTR1DInv: F contains infinite or NAN values!", _state);
    1475           0 :     if( n%2!=0 )
    1476             :     {
    1477           0 :         ae_assert(ae_isfinite(f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].y, _state), "FFTR1DInv: F contains infinite or NAN values!", _state);
    1478             :     }
    1479             :     
    1480             :     /*
    1481             :      * Special case: N=1, FFT is just identity transform.
    1482             :      * After this block we assume that N is strictly greater than 1.
    1483             :      */
    1484           0 :     if( n==1 )
    1485             :     {
    1486           0 :         ae_vector_set_length(a, 1, _state);
    1487           0 :         a->ptr.p_double[0] = f->ptr.p_complex[0].x;
    1488           0 :         ae_frame_leave(_state);
    1489           0 :         return;
    1490             :     }
    1491             :     
    1492             :     /*
    1493             :      * inverse real FFT is reduced to the inverse real FHT,
    1494             :      * which is reduced to the forward real FHT,
    1495             :      * which is reduced to the forward real FFT.
    1496             :      *
    1497             :      * Don't worry, it is really compact and efficient reduction :)
    1498             :      */
    1499           0 :     ae_vector_set_length(&h, n, _state);
    1500           0 :     ae_vector_set_length(a, n, _state);
    1501           0 :     h.ptr.p_double[0] = f->ptr.p_complex[0].x;
    1502           0 :     for(i=1; i<=ae_ifloor((double)n/(double)2, _state)-1; i++)
    1503             :     {
    1504           0 :         h.ptr.p_double[i] = f->ptr.p_complex[i].x-f->ptr.p_complex[i].y;
    1505           0 :         h.ptr.p_double[n-i] = f->ptr.p_complex[i].x+f->ptr.p_complex[i].y;
    1506             :     }
    1507           0 :     if( n%2==0 )
    1508             :     {
    1509           0 :         h.ptr.p_double[ae_ifloor((double)n/(double)2, _state)] = f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].x;
    1510             :     }
    1511             :     else
    1512             :     {
    1513           0 :         h.ptr.p_double[ae_ifloor((double)n/(double)2, _state)] = f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].x-f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].y;
    1514           0 :         h.ptr.p_double[ae_ifloor((double)n/(double)2, _state)+1] = f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].x+f->ptr.p_complex[ae_ifloor((double)n/(double)2, _state)].y;
    1515             :     }
    1516           0 :     fftr1d(&h, n, &fh, _state);
    1517           0 :     for(i=0; i<=n-1; i++)
    1518             :     {
    1519           0 :         a->ptr.p_double[i] = (fh.ptr.p_complex[i].x-fh.ptr.p_complex[i].y)/n;
    1520             :     }
    1521           0 :     ae_frame_leave(_state);
    1522             : }
    1523             : 
    1524             : 
    1525             : /*************************************************************************
    1526             : Internal subroutine. Never call it directly!
    1527             : 
    1528             : 
    1529             :   -- ALGLIB --
    1530             :      Copyright 01.06.2009 by Bochkanov Sergey
    1531             : *************************************************************************/
    1532           0 : void fftr1dinternaleven(/* Real    */ ae_vector* a,
    1533             :      ae_int_t n,
    1534             :      /* Real    */ ae_vector* buf,
    1535             :      fasttransformplan* plan,
    1536             :      ae_state *_state)
    1537             : {
    1538             :     double x;
    1539             :     double y;
    1540             :     ae_int_t i;
    1541             :     ae_int_t n2;
    1542             :     ae_int_t idx;
    1543             :     ae_complex hn;
    1544             :     ae_complex hmnc;
    1545             :     ae_complex v;
    1546             : 
    1547             : 
    1548           0 :     ae_assert(n>0&&n%2==0, "FFTR1DEvenInplace: incorrect N!", _state);
    1549             :     
    1550             :     /*
    1551             :      * Special cases:
    1552             :      * * N=2
    1553             :      *
    1554             :      * After this block we assume that N is strictly greater than 2
    1555             :      */
    1556           0 :     if( n==2 )
    1557             :     {
    1558           0 :         x = a->ptr.p_double[0]+a->ptr.p_double[1];
    1559           0 :         y = a->ptr.p_double[0]-a->ptr.p_double[1];
    1560           0 :         a->ptr.p_double[0] = x;
    1561           0 :         a->ptr.p_double[1] = y;
    1562           0 :         return;
    1563             :     }
    1564             :     
    1565             :     /*
    1566             :      * even-size real FFT, use reduction to the complex task
    1567             :      */
    1568           0 :     n2 = n/2;
    1569           0 :     ae_v_move(&buf->ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,n-1));
    1570           0 :     ftapplyplan(plan, buf, 0, 1, _state);
    1571           0 :     a->ptr.p_double[0] = buf->ptr.p_double[0]+buf->ptr.p_double[1];
    1572           0 :     for(i=1; i<=n2-1; i++)
    1573             :     {
    1574           0 :         idx = 2*(i%n2);
    1575           0 :         hn.x = buf->ptr.p_double[idx+0];
    1576           0 :         hn.y = buf->ptr.p_double[idx+1];
    1577           0 :         idx = 2*(n2-i);
    1578           0 :         hmnc.x = buf->ptr.p_double[idx+0];
    1579           0 :         hmnc.y = -buf->ptr.p_double[idx+1];
    1580           0 :         v.x = -ae_sin(-2*ae_pi*i/n, _state);
    1581           0 :         v.y = ae_cos(-2*ae_pi*i/n, _state);
    1582           0 :         v = ae_c_sub(ae_c_add(hn,hmnc),ae_c_mul(v,ae_c_sub(hn,hmnc)));
    1583           0 :         a->ptr.p_double[2*i+0] = 0.5*v.x;
    1584           0 :         a->ptr.p_double[2*i+1] = 0.5*v.y;
    1585             :     }
    1586           0 :     a->ptr.p_double[1] = buf->ptr.p_double[0]-buf->ptr.p_double[1];
    1587             : }
    1588             : 
    1589             : 
    1590             : /*************************************************************************
    1591             : Internal subroutine. Never call it directly!
    1592             : 
    1593             : 
    1594             :   -- ALGLIB --
    1595             :      Copyright 01.06.2009 by Bochkanov Sergey
    1596             : *************************************************************************/
    1597           0 : void fftr1dinvinternaleven(/* Real    */ ae_vector* a,
    1598             :      ae_int_t n,
    1599             :      /* Real    */ ae_vector* buf,
    1600             :      fasttransformplan* plan,
    1601             :      ae_state *_state)
    1602             : {
    1603             :     double x;
    1604             :     double y;
    1605             :     double t;
    1606             :     ae_int_t i;
    1607             :     ae_int_t n2;
    1608             : 
    1609             : 
    1610           0 :     ae_assert(n>0&&n%2==0, "FFTR1DInvInternalEven: incorrect N!", _state);
    1611             :     
    1612             :     /*
    1613             :      * Special cases:
    1614             :      * * N=2
    1615             :      *
    1616             :      * After this block we assume that N is strictly greater than 2
    1617             :      */
    1618           0 :     if( n==2 )
    1619             :     {
    1620           0 :         x = 0.5*(a->ptr.p_double[0]+a->ptr.p_double[1]);
    1621           0 :         y = 0.5*(a->ptr.p_double[0]-a->ptr.p_double[1]);
    1622           0 :         a->ptr.p_double[0] = x;
    1623           0 :         a->ptr.p_double[1] = y;
    1624           0 :         return;
    1625             :     }
    1626             :     
    1627             :     /*
    1628             :      * inverse real FFT is reduced to the inverse real FHT,
    1629             :      * which is reduced to the forward real FHT,
    1630             :      * which is reduced to the forward real FFT.
    1631             :      *
    1632             :      * Don't worry, it is really compact and efficient reduction :)
    1633             :      */
    1634           0 :     n2 = n/2;
    1635           0 :     buf->ptr.p_double[0] = a->ptr.p_double[0];
    1636           0 :     for(i=1; i<=n2-1; i++)
    1637             :     {
    1638           0 :         x = a->ptr.p_double[2*i+0];
    1639           0 :         y = a->ptr.p_double[2*i+1];
    1640           0 :         buf->ptr.p_double[i] = x-y;
    1641           0 :         buf->ptr.p_double[n-i] = x+y;
    1642             :     }
    1643           0 :     buf->ptr.p_double[n2] = a->ptr.p_double[1];
    1644           0 :     fftr1dinternaleven(buf, n, a, plan, _state);
    1645           0 :     a->ptr.p_double[0] = buf->ptr.p_double[0]/n;
    1646           0 :     t = (double)1/(double)n;
    1647           0 :     for(i=1; i<=n2-1; i++)
    1648             :     {
    1649           0 :         x = buf->ptr.p_double[2*i+0];
    1650           0 :         y = buf->ptr.p_double[2*i+1];
    1651           0 :         a->ptr.p_double[i] = t*(x-y);
    1652           0 :         a->ptr.p_double[n-i] = t*(x+y);
    1653             :     }
    1654           0 :     a->ptr.p_double[n2] = buf->ptr.p_double[1]/n;
    1655             : }
    1656             : 
    1657             : 
    1658             : #endif
    1659             : #if defined(AE_COMPILE_FHT) || !defined(AE_PARTIAL_BUILD)
    1660             : 
    1661             : 
    1662             : /*************************************************************************
    1663             : 1-dimensional Fast Hartley Transform.
    1664             : 
    1665             : Algorithm has O(N*logN) complexity for any N (composite or prime).
    1666             : 
    1667             : INPUT PARAMETERS
    1668             :     A   -   array[0..N-1] - real function to be transformed
    1669             :     N   -   problem size
    1670             :     
    1671             : OUTPUT PARAMETERS
    1672             :     A   -   FHT of a input array, array[0..N-1],
    1673             :             A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1)
    1674             : 
    1675             : 
    1676             :   -- ALGLIB --
    1677             :      Copyright 04.06.2009 by Bochkanov Sergey
    1678             : *************************************************************************/
    1679           0 : void fhtr1d(/* Real    */ ae_vector* a, ae_int_t n, ae_state *_state)
    1680             : {
    1681             :     ae_frame _frame_block;
    1682             :     ae_int_t i;
    1683             :     ae_vector fa;
    1684             : 
    1685           0 :     ae_frame_make(_state, &_frame_block);
    1686           0 :     memset(&fa, 0, sizeof(fa));
    1687           0 :     ae_vector_init(&fa, 0, DT_COMPLEX, _state, ae_true);
    1688             : 
    1689           0 :     ae_assert(n>0, "FHTR1D: incorrect N!", _state);
    1690             :     
    1691             :     /*
    1692             :      * Special case: N=1, FHT is just identity transform.
    1693             :      * After this block we assume that N is strictly greater than 1.
    1694             :      */
    1695           0 :     if( n==1 )
    1696             :     {
    1697           0 :         ae_frame_leave(_state);
    1698           0 :         return;
    1699             :     }
    1700             :     
    1701             :     /*
    1702             :      * Reduce FHt to real FFT
    1703             :      */
    1704           0 :     fftr1d(a, n, &fa, _state);
    1705           0 :     for(i=0; i<=n-1; i++)
    1706             :     {
    1707           0 :         a->ptr.p_double[i] = fa.ptr.p_complex[i].x-fa.ptr.p_complex[i].y;
    1708             :     }
    1709           0 :     ae_frame_leave(_state);
    1710             : }
    1711             : 
    1712             : 
    1713             : /*************************************************************************
    1714             : 1-dimensional inverse FHT.
    1715             : 
    1716             : Algorithm has O(N*logN) complexity for any N (composite or prime).
    1717             : 
    1718             : INPUT PARAMETERS
    1719             :     A   -   array[0..N-1] - complex array to be transformed
    1720             :     N   -   problem size
    1721             : 
    1722             : OUTPUT PARAMETERS
    1723             :     A   -   inverse FHT of a input array, array[0..N-1]
    1724             : 
    1725             : 
    1726             :   -- ALGLIB --
    1727             :      Copyright 29.05.2009 by Bochkanov Sergey
    1728             : *************************************************************************/
    1729           0 : void fhtr1dinv(/* Real    */ ae_vector* a, ae_int_t n, ae_state *_state)
    1730             : {
    1731             :     ae_int_t i;
    1732             : 
    1733             : 
    1734           0 :     ae_assert(n>0, "FHTR1DInv: incorrect N!", _state);
    1735             :     
    1736             :     /*
    1737             :      * Special case: N=1, iFHT is just identity transform.
    1738             :      * After this block we assume that N is strictly greater than 1.
    1739             :      */
    1740           0 :     if( n==1 )
    1741             :     {
    1742           0 :         return;
    1743             :     }
    1744             :     
    1745             :     /*
    1746             :      * Inverse FHT can be expressed in terms of the FHT as
    1747             :      *
    1748             :      *     invfht(x) = fht(x)/N
    1749             :      */
    1750           0 :     fhtr1d(a, n, _state);
    1751           0 :     for(i=0; i<=n-1; i++)
    1752             :     {
    1753           0 :         a->ptr.p_double[i] = a->ptr.p_double[i]/n;
    1754             :     }
    1755             : }
    1756             : 
    1757             : 
    1758             : #endif
    1759             : #if defined(AE_COMPILE_CONV) || !defined(AE_PARTIAL_BUILD)
    1760             : 
    1761             : 
    1762             : /*************************************************************************
    1763             : 1-dimensional complex convolution.
    1764             : 
    1765             : For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
    1766             : choose between three implementations: straightforward O(M*N)  formula  for
    1767             : very small N (or M), overlap-add algorithm for  cases  where  max(M,N)  is
    1768             : significantly larger than min(M,N), but O(M*N) algorithm is too slow,  and
    1769             : general FFT-based formula for cases where two previois algorithms are  too
    1770             : slow.
    1771             : 
    1772             : Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
    1773             : 
    1774             : INPUT PARAMETERS
    1775             :     A   -   array[0..M-1] - complex function to be transformed
    1776             :     M   -   problem size
    1777             :     B   -   array[0..N-1] - complex function to be transformed
    1778             :     N   -   problem size
    1779             : 
    1780             : OUTPUT PARAMETERS
    1781             :     R   -   convolution: A*B. array[0..N+M-2].
    1782             : 
    1783             : NOTE:
    1784             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
    1785             : functions have non-zero values at negative T's, you  can  still  use  this
    1786             : subroutine - just shift its result correspondingly.
    1787             : 
    1788             :   -- ALGLIB --
    1789             :      Copyright 21.07.2009 by Bochkanov Sergey
    1790             : *************************************************************************/
    1791           0 : void convc1d(/* Complex */ ae_vector* a,
    1792             :      ae_int_t m,
    1793             :      /* Complex */ ae_vector* b,
    1794             :      ae_int_t n,
    1795             :      /* Complex */ ae_vector* r,
    1796             :      ae_state *_state)
    1797             : {
    1798             : 
    1799           0 :     ae_vector_clear(r);
    1800             : 
    1801           0 :     ae_assert(n>0&&m>0, "ConvC1D: incorrect N or M!", _state);
    1802             :     
    1803             :     /*
    1804             :      * normalize task: make M>=N,
    1805             :      * so A will be longer that B.
    1806             :      */
    1807           0 :     if( m<n )
    1808             :     {
    1809           0 :         convc1d(b, n, a, m, r, _state);
    1810           0 :         return;
    1811             :     }
    1812           0 :     convc1dx(a, m, b, n, ae_false, -1, 0, r, _state);
    1813             : }
    1814             : 
    1815             : 
    1816             : /*************************************************************************
    1817             : 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
    1818             : 
    1819             : Algorithm has M*log(M)) complexity for any M (composite or prime).
    1820             : 
    1821             : INPUT PARAMETERS
    1822             :     A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    1823             :     M   -   convolved signal length
    1824             :     B   -   array[0..N-1] - response
    1825             :     N   -   response length, N<=M
    1826             : 
    1827             : OUTPUT PARAMETERS
    1828             :     R   -   deconvolved signal. array[0..M-N].
    1829             : 
    1830             : NOTE:
    1831             :     deconvolution is unstable process and may result in division  by  zero
    1832             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
    1833             : 
    1834             : NOTE:
    1835             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
    1836             : functions have non-zero values at negative T's, you  can  still  use  this
    1837             : subroutine - just shift its result correspondingly.
    1838             : 
    1839             :   -- ALGLIB --
    1840             :      Copyright 21.07.2009 by Bochkanov Sergey
    1841             : *************************************************************************/
    1842           0 : void convc1dinv(/* Complex */ ae_vector* a,
    1843             :      ae_int_t m,
    1844             :      /* Complex */ ae_vector* b,
    1845             :      ae_int_t n,
    1846             :      /* Complex */ ae_vector* r,
    1847             :      ae_state *_state)
    1848             : {
    1849             :     ae_frame _frame_block;
    1850             :     ae_int_t i;
    1851             :     ae_int_t p;
    1852             :     ae_vector buf;
    1853             :     ae_vector buf2;
    1854             :     fasttransformplan plan;
    1855             :     ae_complex c1;
    1856             :     ae_complex c2;
    1857             :     ae_complex c3;
    1858             :     double t;
    1859             : 
    1860           0 :     ae_frame_make(_state, &_frame_block);
    1861           0 :     memset(&buf, 0, sizeof(buf));
    1862           0 :     memset(&buf2, 0, sizeof(buf2));
    1863           0 :     memset(&plan, 0, sizeof(plan));
    1864           0 :     ae_vector_clear(r);
    1865           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    1866           0 :     ae_vector_init(&buf2, 0, DT_REAL, _state, ae_true);
    1867           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    1868             : 
    1869           0 :     ae_assert((n>0&&m>0)&&n<=m, "ConvC1DInv: incorrect N or M!", _state);
    1870           0 :     p = ftbasefindsmooth(m, _state);
    1871           0 :     ftcomplexfftplan(p, 1, &plan, _state);
    1872           0 :     ae_vector_set_length(&buf, 2*p, _state);
    1873           0 :     for(i=0; i<=m-1; i++)
    1874             :     {
    1875           0 :         buf.ptr.p_double[2*i+0] = a->ptr.p_complex[i].x;
    1876           0 :         buf.ptr.p_double[2*i+1] = a->ptr.p_complex[i].y;
    1877             :     }
    1878           0 :     for(i=m; i<=p-1; i++)
    1879             :     {
    1880           0 :         buf.ptr.p_double[2*i+0] = (double)(0);
    1881           0 :         buf.ptr.p_double[2*i+1] = (double)(0);
    1882             :     }
    1883           0 :     ae_vector_set_length(&buf2, 2*p, _state);
    1884           0 :     for(i=0; i<=n-1; i++)
    1885             :     {
    1886           0 :         buf2.ptr.p_double[2*i+0] = b->ptr.p_complex[i].x;
    1887           0 :         buf2.ptr.p_double[2*i+1] = b->ptr.p_complex[i].y;
    1888             :     }
    1889           0 :     for(i=n; i<=p-1; i++)
    1890             :     {
    1891           0 :         buf2.ptr.p_double[2*i+0] = (double)(0);
    1892           0 :         buf2.ptr.p_double[2*i+1] = (double)(0);
    1893             :     }
    1894           0 :     ftapplyplan(&plan, &buf, 0, 1, _state);
    1895           0 :     ftapplyplan(&plan, &buf2, 0, 1, _state);
    1896           0 :     for(i=0; i<=p-1; i++)
    1897             :     {
    1898           0 :         c1.x = buf.ptr.p_double[2*i+0];
    1899           0 :         c1.y = buf.ptr.p_double[2*i+1];
    1900           0 :         c2.x = buf2.ptr.p_double[2*i+0];
    1901           0 :         c2.y = buf2.ptr.p_double[2*i+1];
    1902           0 :         c3 = ae_c_div(c1,c2);
    1903           0 :         buf.ptr.p_double[2*i+0] = c3.x;
    1904           0 :         buf.ptr.p_double[2*i+1] = -c3.y;
    1905             :     }
    1906           0 :     ftapplyplan(&plan, &buf, 0, 1, _state);
    1907           0 :     t = (double)1/(double)p;
    1908           0 :     ae_vector_set_length(r, m-n+1, _state);
    1909           0 :     for(i=0; i<=m-n; i++)
    1910             :     {
    1911           0 :         r->ptr.p_complex[i].x = t*buf.ptr.p_double[2*i+0];
    1912           0 :         r->ptr.p_complex[i].y = -t*buf.ptr.p_double[2*i+1];
    1913             :     }
    1914           0 :     ae_frame_leave(_state);
    1915           0 : }
    1916             : 
    1917             : 
    1918             : /*************************************************************************
    1919             : 1-dimensional circular complex convolution.
    1920             : 
    1921             : For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
    1922             : complexity for any M/N.
    1923             : 
    1924             : IMPORTANT:  normal convolution is commutative,  i.e.   it  is symmetric  -
    1925             : conv(A,B)=conv(B,A).  Cyclic convolution IS NOT.  One function - S - is  a
    1926             : signal,  periodic function, and another - R - is a response,  non-periodic
    1927             : function with limited length.
    1928             : 
    1929             : INPUT PARAMETERS
    1930             :     S   -   array[0..M-1] - complex periodic signal
    1931             :     M   -   problem size
    1932             :     B   -   array[0..N-1] - complex non-periodic response
    1933             :     N   -   problem size
    1934             : 
    1935             : OUTPUT PARAMETERS
    1936             :     R   -   convolution: A*B. array[0..M-1].
    1937             : 
    1938             : NOTE:
    1939             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
    1940             : negative T's, you can still use this subroutine - just  shift  its  result
    1941             : correspondingly.
    1942             : 
    1943             :   -- ALGLIB --
    1944             :      Copyright 21.07.2009 by Bochkanov Sergey
    1945             : *************************************************************************/
    1946           0 : void convc1dcircular(/* Complex */ ae_vector* s,
    1947             :      ae_int_t m,
    1948             :      /* Complex */ ae_vector* r,
    1949             :      ae_int_t n,
    1950             :      /* Complex */ ae_vector* c,
    1951             :      ae_state *_state)
    1952             : {
    1953             :     ae_frame _frame_block;
    1954             :     ae_vector buf;
    1955             :     ae_int_t i1;
    1956             :     ae_int_t i2;
    1957             :     ae_int_t j2;
    1958             : 
    1959           0 :     ae_frame_make(_state, &_frame_block);
    1960           0 :     memset(&buf, 0, sizeof(buf));
    1961           0 :     ae_vector_clear(c);
    1962           0 :     ae_vector_init(&buf, 0, DT_COMPLEX, _state, ae_true);
    1963             : 
    1964           0 :     ae_assert(n>0&&m>0, "ConvC1DCircular: incorrect N or M!", _state);
    1965             :     
    1966             :     /*
    1967             :      * normalize task: make M>=N,
    1968             :      * so A will be longer (at least - not shorter) that B.
    1969             :      */
    1970           0 :     if( m<n )
    1971             :     {
    1972           0 :         ae_vector_set_length(&buf, m, _state);
    1973           0 :         for(i1=0; i1<=m-1; i1++)
    1974             :         {
    1975           0 :             buf.ptr.p_complex[i1] = ae_complex_from_i(0);
    1976             :         }
    1977           0 :         i1 = 0;
    1978           0 :         while(i1<n)
    1979             :         {
    1980           0 :             i2 = ae_minint(i1+m-1, n-1, _state);
    1981           0 :             j2 = i2-i1;
    1982           0 :             ae_v_cadd(&buf.ptr.p_complex[0], 1, &r->ptr.p_complex[i1], 1, "N", ae_v_len(0,j2));
    1983           0 :             i1 = i1+m;
    1984             :         }
    1985           0 :         convc1dcircular(s, m, &buf, m, c, _state);
    1986           0 :         ae_frame_leave(_state);
    1987           0 :         return;
    1988             :     }
    1989           0 :     convc1dx(s, m, r, n, ae_true, -1, 0, c, _state);
    1990           0 :     ae_frame_leave(_state);
    1991             : }
    1992             : 
    1993             : 
    1994             : /*************************************************************************
    1995             : 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
    1996             : 
    1997             : Algorithm has M*log(M)) complexity for any M (composite or prime).
    1998             : 
    1999             : INPUT PARAMETERS
    2000             :     A   -   array[0..M-1] - convolved periodic signal, A = conv(R, B)
    2001             :     M   -   convolved signal length
    2002             :     B   -   array[0..N-1] - non-periodic response
    2003             :     N   -   response length
    2004             : 
    2005             : OUTPUT PARAMETERS
    2006             :     R   -   deconvolved signal. array[0..M-1].
    2007             : 
    2008             : NOTE:
    2009             :     deconvolution is unstable process and may result in division  by  zero
    2010             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
    2011             : 
    2012             : NOTE:
    2013             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
    2014             : negative T's, you can still use this subroutine - just  shift  its  result
    2015             : correspondingly.
    2016             : 
    2017             :   -- ALGLIB --
    2018             :      Copyright 21.07.2009 by Bochkanov Sergey
    2019             : *************************************************************************/
    2020           0 : void convc1dcircularinv(/* Complex */ ae_vector* a,
    2021             :      ae_int_t m,
    2022             :      /* Complex */ ae_vector* b,
    2023             :      ae_int_t n,
    2024             :      /* Complex */ ae_vector* r,
    2025             :      ae_state *_state)
    2026             : {
    2027             :     ae_frame _frame_block;
    2028             :     ae_int_t i;
    2029             :     ae_int_t i1;
    2030             :     ae_int_t i2;
    2031             :     ae_int_t j2;
    2032             :     ae_vector buf;
    2033             :     ae_vector buf2;
    2034             :     ae_vector cbuf;
    2035             :     fasttransformplan plan;
    2036             :     ae_complex c1;
    2037             :     ae_complex c2;
    2038             :     ae_complex c3;
    2039             :     double t;
    2040             : 
    2041           0 :     ae_frame_make(_state, &_frame_block);
    2042           0 :     memset(&buf, 0, sizeof(buf));
    2043           0 :     memset(&buf2, 0, sizeof(buf2));
    2044           0 :     memset(&cbuf, 0, sizeof(cbuf));
    2045           0 :     memset(&plan, 0, sizeof(plan));
    2046           0 :     ae_vector_clear(r);
    2047           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    2048           0 :     ae_vector_init(&buf2, 0, DT_REAL, _state, ae_true);
    2049           0 :     ae_vector_init(&cbuf, 0, DT_COMPLEX, _state, ae_true);
    2050           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    2051             : 
    2052           0 :     ae_assert(n>0&&m>0, "ConvC1DCircularInv: incorrect N or M!", _state);
    2053             :     
    2054             :     /*
    2055             :      * normalize task: make M>=N,
    2056             :      * so A will be longer (at least - not shorter) that B.
    2057             :      */
    2058           0 :     if( m<n )
    2059             :     {
    2060           0 :         ae_vector_set_length(&cbuf, m, _state);
    2061           0 :         for(i=0; i<=m-1; i++)
    2062             :         {
    2063           0 :             cbuf.ptr.p_complex[i] = ae_complex_from_i(0);
    2064             :         }
    2065           0 :         i1 = 0;
    2066           0 :         while(i1<n)
    2067             :         {
    2068           0 :             i2 = ae_minint(i1+m-1, n-1, _state);
    2069           0 :             j2 = i2-i1;
    2070           0 :             ae_v_cadd(&cbuf.ptr.p_complex[0], 1, &b->ptr.p_complex[i1], 1, "N", ae_v_len(0,j2));
    2071           0 :             i1 = i1+m;
    2072             :         }
    2073           0 :         convc1dcircularinv(a, m, &cbuf, m, r, _state);
    2074           0 :         ae_frame_leave(_state);
    2075           0 :         return;
    2076             :     }
    2077             :     
    2078             :     /*
    2079             :      * Task is normalized
    2080             :      */
    2081           0 :     ftcomplexfftplan(m, 1, &plan, _state);
    2082           0 :     ae_vector_set_length(&buf, 2*m, _state);
    2083           0 :     for(i=0; i<=m-1; i++)
    2084             :     {
    2085           0 :         buf.ptr.p_double[2*i+0] = a->ptr.p_complex[i].x;
    2086           0 :         buf.ptr.p_double[2*i+1] = a->ptr.p_complex[i].y;
    2087             :     }
    2088           0 :     ae_vector_set_length(&buf2, 2*m, _state);
    2089           0 :     for(i=0; i<=n-1; i++)
    2090             :     {
    2091           0 :         buf2.ptr.p_double[2*i+0] = b->ptr.p_complex[i].x;
    2092           0 :         buf2.ptr.p_double[2*i+1] = b->ptr.p_complex[i].y;
    2093             :     }
    2094           0 :     for(i=n; i<=m-1; i++)
    2095             :     {
    2096           0 :         buf2.ptr.p_double[2*i+0] = (double)(0);
    2097           0 :         buf2.ptr.p_double[2*i+1] = (double)(0);
    2098             :     }
    2099           0 :     ftapplyplan(&plan, &buf, 0, 1, _state);
    2100           0 :     ftapplyplan(&plan, &buf2, 0, 1, _state);
    2101           0 :     for(i=0; i<=m-1; i++)
    2102             :     {
    2103           0 :         c1.x = buf.ptr.p_double[2*i+0];
    2104           0 :         c1.y = buf.ptr.p_double[2*i+1];
    2105           0 :         c2.x = buf2.ptr.p_double[2*i+0];
    2106           0 :         c2.y = buf2.ptr.p_double[2*i+1];
    2107           0 :         c3 = ae_c_div(c1,c2);
    2108           0 :         buf.ptr.p_double[2*i+0] = c3.x;
    2109           0 :         buf.ptr.p_double[2*i+1] = -c3.y;
    2110             :     }
    2111           0 :     ftapplyplan(&plan, &buf, 0, 1, _state);
    2112           0 :     t = (double)1/(double)m;
    2113           0 :     ae_vector_set_length(r, m, _state);
    2114           0 :     for(i=0; i<=m-1; i++)
    2115             :     {
    2116           0 :         r->ptr.p_complex[i].x = t*buf.ptr.p_double[2*i+0];
    2117           0 :         r->ptr.p_complex[i].y = -t*buf.ptr.p_double[2*i+1];
    2118             :     }
    2119           0 :     ae_frame_leave(_state);
    2120             : }
    2121             : 
    2122             : 
    2123             : /*************************************************************************
    2124             : 1-dimensional real convolution.
    2125             : 
    2126             : Analogous to ConvC1D(), see ConvC1D() comments for more details.
    2127             : 
    2128             : INPUT PARAMETERS
    2129             :     A   -   array[0..M-1] - real function to be transformed
    2130             :     M   -   problem size
    2131             :     B   -   array[0..N-1] - real function to be transformed
    2132             :     N   -   problem size
    2133             : 
    2134             : OUTPUT PARAMETERS
    2135             :     R   -   convolution: A*B. array[0..N+M-2].
    2136             : 
    2137             : NOTE:
    2138             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
    2139             : functions have non-zero values at negative T's, you  can  still  use  this
    2140             : subroutine - just shift its result correspondingly.
    2141             : 
    2142             :   -- ALGLIB --
    2143             :      Copyright 21.07.2009 by Bochkanov Sergey
    2144             : *************************************************************************/
    2145           0 : void convr1d(/* Real    */ ae_vector* a,
    2146             :      ae_int_t m,
    2147             :      /* Real    */ ae_vector* b,
    2148             :      ae_int_t n,
    2149             :      /* Real    */ ae_vector* r,
    2150             :      ae_state *_state)
    2151             : {
    2152             : 
    2153           0 :     ae_vector_clear(r);
    2154             : 
    2155           0 :     ae_assert(n>0&&m>0, "ConvR1D: incorrect N or M!", _state);
    2156             :     
    2157             :     /*
    2158             :      * normalize task: make M>=N,
    2159             :      * so A will be longer that B.
    2160             :      */
    2161           0 :     if( m<n )
    2162             :     {
    2163           0 :         convr1d(b, n, a, m, r, _state);
    2164           0 :         return;
    2165             :     }
    2166           0 :     convr1dx(a, m, b, n, ae_false, -1, 0, r, _state);
    2167             : }
    2168             : 
    2169             : 
    2170             : /*************************************************************************
    2171             : 1-dimensional real deconvolution (inverse of ConvC1D()).
    2172             : 
    2173             : Algorithm has M*log(M)) complexity for any M (composite or prime).
    2174             : 
    2175             : INPUT PARAMETERS
    2176             :     A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    2177             :     M   -   convolved signal length
    2178             :     B   -   array[0..N-1] - response
    2179             :     N   -   response length, N<=M
    2180             : 
    2181             : OUTPUT PARAMETERS
    2182             :     R   -   deconvolved signal. array[0..M-N].
    2183             : 
    2184             : NOTE:
    2185             :     deconvolution is unstable process and may result in division  by  zero
    2186             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
    2187             : 
    2188             : NOTE:
    2189             :     It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
    2190             : functions have non-zero values at negative T's, you  can  still  use  this
    2191             : subroutine - just shift its result correspondingly.
    2192             : 
    2193             :   -- ALGLIB --
    2194             :      Copyright 21.07.2009 by Bochkanov Sergey
    2195             : *************************************************************************/
    2196           0 : void convr1dinv(/* Real    */ ae_vector* a,
    2197             :      ae_int_t m,
    2198             :      /* Real    */ ae_vector* b,
    2199             :      ae_int_t n,
    2200             :      /* Real    */ ae_vector* r,
    2201             :      ae_state *_state)
    2202             : {
    2203             :     ae_frame _frame_block;
    2204             :     ae_int_t i;
    2205             :     ae_int_t p;
    2206             :     ae_vector buf;
    2207             :     ae_vector buf2;
    2208             :     ae_vector buf3;
    2209             :     fasttransformplan plan;
    2210             :     ae_complex c1;
    2211             :     ae_complex c2;
    2212             :     ae_complex c3;
    2213             : 
    2214           0 :     ae_frame_make(_state, &_frame_block);
    2215           0 :     memset(&buf, 0, sizeof(buf));
    2216           0 :     memset(&buf2, 0, sizeof(buf2));
    2217           0 :     memset(&buf3, 0, sizeof(buf3));
    2218           0 :     memset(&plan, 0, sizeof(plan));
    2219           0 :     ae_vector_clear(r);
    2220           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    2221           0 :     ae_vector_init(&buf2, 0, DT_REAL, _state, ae_true);
    2222           0 :     ae_vector_init(&buf3, 0, DT_REAL, _state, ae_true);
    2223           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    2224             : 
    2225           0 :     ae_assert((n>0&&m>0)&&n<=m, "ConvR1DInv: incorrect N or M!", _state);
    2226           0 :     p = ftbasefindsmootheven(m, _state);
    2227           0 :     ae_vector_set_length(&buf, p, _state);
    2228           0 :     ae_v_move(&buf.ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,m-1));
    2229           0 :     for(i=m; i<=p-1; i++)
    2230             :     {
    2231           0 :         buf.ptr.p_double[i] = (double)(0);
    2232             :     }
    2233           0 :     ae_vector_set_length(&buf2, p, _state);
    2234           0 :     ae_v_move(&buf2.ptr.p_double[0], 1, &b->ptr.p_double[0], 1, ae_v_len(0,n-1));
    2235           0 :     for(i=n; i<=p-1; i++)
    2236             :     {
    2237           0 :         buf2.ptr.p_double[i] = (double)(0);
    2238             :     }
    2239           0 :     ae_vector_set_length(&buf3, p, _state);
    2240           0 :     ftcomplexfftplan(p/2, 1, &plan, _state);
    2241           0 :     fftr1dinternaleven(&buf, p, &buf3, &plan, _state);
    2242           0 :     fftr1dinternaleven(&buf2, p, &buf3, &plan, _state);
    2243           0 :     buf.ptr.p_double[0] = buf.ptr.p_double[0]/buf2.ptr.p_double[0];
    2244           0 :     buf.ptr.p_double[1] = buf.ptr.p_double[1]/buf2.ptr.p_double[1];
    2245           0 :     for(i=1; i<=p/2-1; i++)
    2246             :     {
    2247           0 :         c1.x = buf.ptr.p_double[2*i+0];
    2248           0 :         c1.y = buf.ptr.p_double[2*i+1];
    2249           0 :         c2.x = buf2.ptr.p_double[2*i+0];
    2250           0 :         c2.y = buf2.ptr.p_double[2*i+1];
    2251           0 :         c3 = ae_c_div(c1,c2);
    2252           0 :         buf.ptr.p_double[2*i+0] = c3.x;
    2253           0 :         buf.ptr.p_double[2*i+1] = c3.y;
    2254             :     }
    2255           0 :     fftr1dinvinternaleven(&buf, p, &buf3, &plan, _state);
    2256           0 :     ae_vector_set_length(r, m-n+1, _state);
    2257           0 :     ae_v_move(&r->ptr.p_double[0], 1, &buf.ptr.p_double[0], 1, ae_v_len(0,m-n));
    2258           0 :     ae_frame_leave(_state);
    2259           0 : }
    2260             : 
    2261             : 
    2262             : /*************************************************************************
    2263             : 1-dimensional circular real convolution.
    2264             : 
    2265             : Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
    2266             : 
    2267             : INPUT PARAMETERS
    2268             :     S   -   array[0..M-1] - real signal
    2269             :     M   -   problem size
    2270             :     B   -   array[0..N-1] - real response
    2271             :     N   -   problem size
    2272             : 
    2273             : OUTPUT PARAMETERS
    2274             :     R   -   convolution: A*B. array[0..M-1].
    2275             : 
    2276             : NOTE:
    2277             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
    2278             : negative T's, you can still use this subroutine - just  shift  its  result
    2279             : correspondingly.
    2280             : 
    2281             :   -- ALGLIB --
    2282             :      Copyright 21.07.2009 by Bochkanov Sergey
    2283             : *************************************************************************/
    2284           0 : void convr1dcircular(/* Real    */ ae_vector* s,
    2285             :      ae_int_t m,
    2286             :      /* Real    */ ae_vector* r,
    2287             :      ae_int_t n,
    2288             :      /* Real    */ ae_vector* c,
    2289             :      ae_state *_state)
    2290             : {
    2291             :     ae_frame _frame_block;
    2292             :     ae_vector buf;
    2293             :     ae_int_t i1;
    2294             :     ae_int_t i2;
    2295             :     ae_int_t j2;
    2296             : 
    2297           0 :     ae_frame_make(_state, &_frame_block);
    2298           0 :     memset(&buf, 0, sizeof(buf));
    2299           0 :     ae_vector_clear(c);
    2300           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    2301             : 
    2302           0 :     ae_assert(n>0&&m>0, "ConvC1DCircular: incorrect N or M!", _state);
    2303             :     
    2304             :     /*
    2305             :      * normalize task: make M>=N,
    2306             :      * so A will be longer (at least - not shorter) that B.
    2307             :      */
    2308           0 :     if( m<n )
    2309             :     {
    2310           0 :         ae_vector_set_length(&buf, m, _state);
    2311           0 :         for(i1=0; i1<=m-1; i1++)
    2312             :         {
    2313           0 :             buf.ptr.p_double[i1] = (double)(0);
    2314             :         }
    2315           0 :         i1 = 0;
    2316           0 :         while(i1<n)
    2317             :         {
    2318           0 :             i2 = ae_minint(i1+m-1, n-1, _state);
    2319           0 :             j2 = i2-i1;
    2320           0 :             ae_v_add(&buf.ptr.p_double[0], 1, &r->ptr.p_double[i1], 1, ae_v_len(0,j2));
    2321           0 :             i1 = i1+m;
    2322             :         }
    2323           0 :         convr1dcircular(s, m, &buf, m, c, _state);
    2324           0 :         ae_frame_leave(_state);
    2325           0 :         return;
    2326             :     }
    2327             :     
    2328             :     /*
    2329             :      * reduce to usual convolution
    2330             :      */
    2331           0 :     convr1dx(s, m, r, n, ae_true, -1, 0, c, _state);
    2332           0 :     ae_frame_leave(_state);
    2333             : }
    2334             : 
    2335             : 
    2336             : /*************************************************************************
    2337             : 1-dimensional complex deconvolution (inverse of ConvC1D()).
    2338             : 
    2339             : Algorithm has M*log(M)) complexity for any M (composite or prime).
    2340             : 
    2341             : INPUT PARAMETERS
    2342             :     A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    2343             :     M   -   convolved signal length
    2344             :     B   -   array[0..N-1] - response
    2345             :     N   -   response length
    2346             : 
    2347             : OUTPUT PARAMETERS
    2348             :     R   -   deconvolved signal. array[0..M-N].
    2349             : 
    2350             : NOTE:
    2351             :     deconvolution is unstable process and may result in division  by  zero
    2352             : (if your response function is degenerate, i.e. has zero Fourier coefficient).
    2353             : 
    2354             : NOTE:
    2355             :     It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
    2356             : negative T's, you can still use this subroutine - just  shift  its  result
    2357             : correspondingly.
    2358             : 
    2359             :   -- ALGLIB --
    2360             :      Copyright 21.07.2009 by Bochkanov Sergey
    2361             : *************************************************************************/
    2362           0 : void convr1dcircularinv(/* Real    */ ae_vector* a,
    2363             :      ae_int_t m,
    2364             :      /* Real    */ ae_vector* b,
    2365             :      ae_int_t n,
    2366             :      /* Real    */ ae_vector* r,
    2367             :      ae_state *_state)
    2368             : {
    2369             :     ae_frame _frame_block;
    2370             :     ae_int_t i;
    2371             :     ae_int_t i1;
    2372             :     ae_int_t i2;
    2373             :     ae_int_t j2;
    2374             :     ae_vector buf;
    2375             :     ae_vector buf2;
    2376             :     ae_vector buf3;
    2377             :     ae_vector cbuf;
    2378             :     ae_vector cbuf2;
    2379             :     fasttransformplan plan;
    2380             :     ae_complex c1;
    2381             :     ae_complex c2;
    2382             :     ae_complex c3;
    2383             : 
    2384           0 :     ae_frame_make(_state, &_frame_block);
    2385           0 :     memset(&buf, 0, sizeof(buf));
    2386           0 :     memset(&buf2, 0, sizeof(buf2));
    2387           0 :     memset(&buf3, 0, sizeof(buf3));
    2388           0 :     memset(&cbuf, 0, sizeof(cbuf));
    2389           0 :     memset(&cbuf2, 0, sizeof(cbuf2));
    2390           0 :     memset(&plan, 0, sizeof(plan));
    2391           0 :     ae_vector_clear(r);
    2392           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    2393           0 :     ae_vector_init(&buf2, 0, DT_REAL, _state, ae_true);
    2394           0 :     ae_vector_init(&buf3, 0, DT_REAL, _state, ae_true);
    2395           0 :     ae_vector_init(&cbuf, 0, DT_COMPLEX, _state, ae_true);
    2396           0 :     ae_vector_init(&cbuf2, 0, DT_COMPLEX, _state, ae_true);
    2397           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    2398             : 
    2399           0 :     ae_assert(n>0&&m>0, "ConvR1DCircularInv: incorrect N or M!", _state);
    2400             :     
    2401             :     /*
    2402             :      * normalize task: make M>=N,
    2403             :      * so A will be longer (at least - not shorter) that B.
    2404             :      */
    2405           0 :     if( m<n )
    2406             :     {
    2407           0 :         ae_vector_set_length(&buf, m, _state);
    2408           0 :         for(i=0; i<=m-1; i++)
    2409             :         {
    2410           0 :             buf.ptr.p_double[i] = (double)(0);
    2411             :         }
    2412           0 :         i1 = 0;
    2413           0 :         while(i1<n)
    2414             :         {
    2415           0 :             i2 = ae_minint(i1+m-1, n-1, _state);
    2416           0 :             j2 = i2-i1;
    2417           0 :             ae_v_add(&buf.ptr.p_double[0], 1, &b->ptr.p_double[i1], 1, ae_v_len(0,j2));
    2418           0 :             i1 = i1+m;
    2419             :         }
    2420           0 :         convr1dcircularinv(a, m, &buf, m, r, _state);
    2421           0 :         ae_frame_leave(_state);
    2422           0 :         return;
    2423             :     }
    2424             :     
    2425             :     /*
    2426             :      * Task is normalized
    2427             :      */
    2428           0 :     if( m%2==0 )
    2429             :     {
    2430             :         
    2431             :         /*
    2432             :          * size is even, use fast even-size FFT
    2433             :          */
    2434           0 :         ae_vector_set_length(&buf, m, _state);
    2435           0 :         ae_v_move(&buf.ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,m-1));
    2436           0 :         ae_vector_set_length(&buf2, m, _state);
    2437           0 :         ae_v_move(&buf2.ptr.p_double[0], 1, &b->ptr.p_double[0], 1, ae_v_len(0,n-1));
    2438           0 :         for(i=n; i<=m-1; i++)
    2439             :         {
    2440           0 :             buf2.ptr.p_double[i] = (double)(0);
    2441             :         }
    2442           0 :         ae_vector_set_length(&buf3, m, _state);
    2443           0 :         ftcomplexfftplan(m/2, 1, &plan, _state);
    2444           0 :         fftr1dinternaleven(&buf, m, &buf3, &plan, _state);
    2445           0 :         fftr1dinternaleven(&buf2, m, &buf3, &plan, _state);
    2446           0 :         buf.ptr.p_double[0] = buf.ptr.p_double[0]/buf2.ptr.p_double[0];
    2447           0 :         buf.ptr.p_double[1] = buf.ptr.p_double[1]/buf2.ptr.p_double[1];
    2448           0 :         for(i=1; i<=m/2-1; i++)
    2449             :         {
    2450           0 :             c1.x = buf.ptr.p_double[2*i+0];
    2451           0 :             c1.y = buf.ptr.p_double[2*i+1];
    2452           0 :             c2.x = buf2.ptr.p_double[2*i+0];
    2453           0 :             c2.y = buf2.ptr.p_double[2*i+1];
    2454           0 :             c3 = ae_c_div(c1,c2);
    2455           0 :             buf.ptr.p_double[2*i+0] = c3.x;
    2456           0 :             buf.ptr.p_double[2*i+1] = c3.y;
    2457             :         }
    2458           0 :         fftr1dinvinternaleven(&buf, m, &buf3, &plan, _state);
    2459           0 :         ae_vector_set_length(r, m, _state);
    2460           0 :         ae_v_move(&r->ptr.p_double[0], 1, &buf.ptr.p_double[0], 1, ae_v_len(0,m-1));
    2461             :     }
    2462             :     else
    2463             :     {
    2464             :         
    2465             :         /*
    2466             :          * odd-size, use general real FFT
    2467             :          */
    2468           0 :         fftr1d(a, m, &cbuf, _state);
    2469           0 :         ae_vector_set_length(&buf2, m, _state);
    2470           0 :         ae_v_move(&buf2.ptr.p_double[0], 1, &b->ptr.p_double[0], 1, ae_v_len(0,n-1));
    2471           0 :         for(i=n; i<=m-1; i++)
    2472             :         {
    2473           0 :             buf2.ptr.p_double[i] = (double)(0);
    2474             :         }
    2475           0 :         fftr1d(&buf2, m, &cbuf2, _state);
    2476           0 :         for(i=0; i<=ae_ifloor((double)m/(double)2, _state); i++)
    2477             :         {
    2478           0 :             cbuf.ptr.p_complex[i] = ae_c_div(cbuf.ptr.p_complex[i],cbuf2.ptr.p_complex[i]);
    2479             :         }
    2480           0 :         fftr1dinv(&cbuf, m, r, _state);
    2481             :     }
    2482           0 :     ae_frame_leave(_state);
    2483             : }
    2484             : 
    2485             : 
    2486             : /*************************************************************************
    2487             : 1-dimensional complex convolution.
    2488             : 
    2489             : Extended subroutine which allows to choose convolution algorithm.
    2490             : Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular().
    2491             : 
    2492             : INPUT PARAMETERS
    2493             :     A   -   array[0..M-1] - complex function to be transformed
    2494             :     M   -   problem size
    2495             :     B   -   array[0..N-1] - complex function to be transformed
    2496             :     N   -   problem size, N<=M
    2497             :     Alg -   algorithm type:
    2498             :             *-2     auto-select Q for overlap-add
    2499             :             *-1     auto-select algorithm and parameters
    2500             :             * 0     straightforward formula for small N's
    2501             :             * 1     general FFT-based code
    2502             :             * 2     overlap-add with length Q
    2503             :     Q   -   length for overlap-add
    2504             : 
    2505             : OUTPUT PARAMETERS
    2506             :     R   -   convolution: A*B. array[0..N+M-1].
    2507             : 
    2508             :   -- ALGLIB --
    2509             :      Copyright 21.07.2009 by Bochkanov Sergey
    2510             : *************************************************************************/
    2511           0 : void convc1dx(/* Complex */ ae_vector* a,
    2512             :      ae_int_t m,
    2513             :      /* Complex */ ae_vector* b,
    2514             :      ae_int_t n,
    2515             :      ae_bool circular,
    2516             :      ae_int_t alg,
    2517             :      ae_int_t q,
    2518             :      /* Complex */ ae_vector* r,
    2519             :      ae_state *_state)
    2520             : {
    2521             :     ae_frame _frame_block;
    2522             :     ae_int_t i;
    2523             :     ae_int_t j;
    2524             :     ae_int_t p;
    2525             :     ae_int_t ptotal;
    2526             :     ae_int_t i1;
    2527             :     ae_int_t i2;
    2528             :     ae_int_t j1;
    2529             :     ae_int_t j2;
    2530             :     ae_vector bbuf;
    2531             :     ae_complex v;
    2532             :     double ax;
    2533             :     double ay;
    2534             :     double bx;
    2535             :     double by;
    2536             :     double t;
    2537             :     double tx;
    2538             :     double ty;
    2539             :     double flopcand;
    2540             :     double flopbest;
    2541             :     ae_int_t algbest;
    2542             :     fasttransformplan plan;
    2543             :     ae_vector buf;
    2544             :     ae_vector buf2;
    2545             : 
    2546           0 :     ae_frame_make(_state, &_frame_block);
    2547           0 :     memset(&bbuf, 0, sizeof(bbuf));
    2548           0 :     memset(&plan, 0, sizeof(plan));
    2549           0 :     memset(&buf, 0, sizeof(buf));
    2550           0 :     memset(&buf2, 0, sizeof(buf2));
    2551           0 :     ae_vector_clear(r);
    2552           0 :     ae_vector_init(&bbuf, 0, DT_COMPLEX, _state, ae_true);
    2553           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    2554           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    2555           0 :     ae_vector_init(&buf2, 0, DT_REAL, _state, ae_true);
    2556             : 
    2557           0 :     ae_assert(n>0&&m>0, "ConvC1DX: incorrect N or M!", _state);
    2558           0 :     ae_assert(n<=m, "ConvC1DX: N<M assumption is false!", _state);
    2559             :     
    2560             :     /*
    2561             :      * Auto-select
    2562             :      */
    2563           0 :     if( alg==-1||alg==-2 )
    2564             :     {
    2565             :         
    2566             :         /*
    2567             :          * Initial candidate: straightforward implementation.
    2568             :          *
    2569             :          * If we want to use auto-fitted overlap-add,
    2570             :          * flop count is initialized by large real number - to force
    2571             :          * another algorithm selection
    2572             :          */
    2573           0 :         algbest = 0;
    2574           0 :         if( alg==-1 )
    2575             :         {
    2576           0 :             flopbest = (double)(2*m*n);
    2577             :         }
    2578             :         else
    2579             :         {
    2580           0 :             flopbest = ae_maxrealnumber;
    2581             :         }
    2582             :         
    2583             :         /*
    2584             :          * Another candidate - generic FFT code
    2585             :          */
    2586           0 :         if( alg==-1 )
    2587             :         {
    2588           0 :             if( circular&&ftbaseissmooth(m, _state) )
    2589             :             {
    2590             :                 
    2591             :                 /*
    2592             :                  * special code for circular convolution of a sequence with a smooth length
    2593             :                  */
    2594           0 :                 flopcand = 3*ftbasegetflopestimate(m, _state)+6*m;
    2595           0 :                 if( ae_fp_less(flopcand,flopbest) )
    2596             :                 {
    2597           0 :                     algbest = 1;
    2598           0 :                     flopbest = flopcand;
    2599             :                 }
    2600             :             }
    2601             :             else
    2602             :             {
    2603             :                 
    2604             :                 /*
    2605             :                  * general cyclic/non-cyclic convolution
    2606             :                  */
    2607           0 :                 p = ftbasefindsmooth(m+n-1, _state);
    2608           0 :                 flopcand = 3*ftbasegetflopestimate(p, _state)+6*p;
    2609           0 :                 if( ae_fp_less(flopcand,flopbest) )
    2610             :                 {
    2611           0 :                     algbest = 1;
    2612           0 :                     flopbest = flopcand;
    2613             :                 }
    2614             :             }
    2615             :         }
    2616             :         
    2617             :         /*
    2618             :          * Another candidate - overlap-add
    2619             :          */
    2620           0 :         q = 1;
    2621           0 :         ptotal = 1;
    2622           0 :         while(ptotal<n)
    2623             :         {
    2624           0 :             ptotal = ptotal*2;
    2625             :         }
    2626           0 :         while(ptotal<=m+n-1)
    2627             :         {
    2628           0 :             p = ptotal-n+1;
    2629           0 :             flopcand = ae_iceil((double)m/(double)p, _state)*(2*ftbasegetflopestimate(ptotal, _state)+8*ptotal);
    2630           0 :             if( ae_fp_less(flopcand,flopbest) )
    2631             :             {
    2632           0 :                 flopbest = flopcand;
    2633           0 :                 algbest = 2;
    2634           0 :                 q = p;
    2635             :             }
    2636           0 :             ptotal = ptotal*2;
    2637             :         }
    2638           0 :         alg = algbest;
    2639           0 :         convc1dx(a, m, b, n, circular, alg, q, r, _state);
    2640           0 :         ae_frame_leave(_state);
    2641           0 :         return;
    2642             :     }
    2643             :     
    2644             :     /*
    2645             :      * straightforward formula for
    2646             :      * circular and non-circular convolutions.
    2647             :      *
    2648             :      * Very simple code, no further comments needed.
    2649             :      */
    2650           0 :     if( alg==0 )
    2651             :     {
    2652             :         
    2653             :         /*
    2654             :          * Special case: N=1
    2655             :          */
    2656           0 :         if( n==1 )
    2657             :         {
    2658           0 :             ae_vector_set_length(r, m, _state);
    2659           0 :             v = b->ptr.p_complex[0];
    2660           0 :             ae_v_cmovec(&r->ptr.p_complex[0], 1, &a->ptr.p_complex[0], 1, "N", ae_v_len(0,m-1), v);
    2661           0 :             ae_frame_leave(_state);
    2662           0 :             return;
    2663             :         }
    2664             :         
    2665             :         /*
    2666             :          * use straightforward formula
    2667             :          */
    2668           0 :         if( circular )
    2669             :         {
    2670             :             
    2671             :             /*
    2672             :              * circular convolution
    2673             :              */
    2674           0 :             ae_vector_set_length(r, m, _state);
    2675           0 :             v = b->ptr.p_complex[0];
    2676           0 :             ae_v_cmovec(&r->ptr.p_complex[0], 1, &a->ptr.p_complex[0], 1, "N", ae_v_len(0,m-1), v);
    2677           0 :             for(i=1; i<=n-1; i++)
    2678             :             {
    2679           0 :                 v = b->ptr.p_complex[i];
    2680           0 :                 i1 = 0;
    2681           0 :                 i2 = i-1;
    2682           0 :                 j1 = m-i;
    2683           0 :                 j2 = m-1;
    2684           0 :                 ae_v_caddc(&r->ptr.p_complex[i1], 1, &a->ptr.p_complex[j1], 1, "N", ae_v_len(i1,i2), v);
    2685           0 :                 i1 = i;
    2686           0 :                 i2 = m-1;
    2687           0 :                 j1 = 0;
    2688           0 :                 j2 = m-i-1;
    2689           0 :                 ae_v_caddc(&r->ptr.p_complex[i1], 1, &a->ptr.p_complex[j1], 1, "N", ae_v_len(i1,i2), v);
    2690             :             }
    2691             :         }
    2692             :         else
    2693             :         {
    2694             :             
    2695             :             /*
    2696             :              * non-circular convolution
    2697             :              */
    2698           0 :             ae_vector_set_length(r, m+n-1, _state);
    2699           0 :             for(i=0; i<=m+n-2; i++)
    2700             :             {
    2701           0 :                 r->ptr.p_complex[i] = ae_complex_from_i(0);
    2702             :             }
    2703           0 :             for(i=0; i<=n-1; i++)
    2704             :             {
    2705           0 :                 v = b->ptr.p_complex[i];
    2706           0 :                 ae_v_caddc(&r->ptr.p_complex[i], 1, &a->ptr.p_complex[0], 1, "N", ae_v_len(i,i+m-1), v);
    2707             :             }
    2708             :         }
    2709           0 :         ae_frame_leave(_state);
    2710           0 :         return;
    2711             :     }
    2712             :     
    2713             :     /*
    2714             :      * general FFT-based code for
    2715             :      * circular and non-circular convolutions.
    2716             :      *
    2717             :      * First, if convolution is circular, we test whether M is smooth or not.
    2718             :      * If it is smooth, we just use M-length FFT to calculate convolution.
    2719             :      * If it is not, we calculate non-circular convolution and wrap it arount.
    2720             :      *
    2721             :      * IF convolution is non-circular, we use zero-padding + FFT.
    2722             :      */
    2723           0 :     if( alg==1 )
    2724             :     {
    2725           0 :         if( circular&&ftbaseissmooth(m, _state) )
    2726             :         {
    2727             :             
    2728             :             /*
    2729             :              * special code for circular convolution with smooth M
    2730             :              */
    2731           0 :             ftcomplexfftplan(m, 1, &plan, _state);
    2732           0 :             ae_vector_set_length(&buf, 2*m, _state);
    2733           0 :             for(i=0; i<=m-1; i++)
    2734             :             {
    2735           0 :                 buf.ptr.p_double[2*i+0] = a->ptr.p_complex[i].x;
    2736           0 :                 buf.ptr.p_double[2*i+1] = a->ptr.p_complex[i].y;
    2737             :             }
    2738           0 :             ae_vector_set_length(&buf2, 2*m, _state);
    2739           0 :             for(i=0; i<=n-1; i++)
    2740             :             {
    2741           0 :                 buf2.ptr.p_double[2*i+0] = b->ptr.p_complex[i].x;
    2742           0 :                 buf2.ptr.p_double[2*i+1] = b->ptr.p_complex[i].y;
    2743             :             }
    2744           0 :             for(i=n; i<=m-1; i++)
    2745             :             {
    2746           0 :                 buf2.ptr.p_double[2*i+0] = (double)(0);
    2747           0 :                 buf2.ptr.p_double[2*i+1] = (double)(0);
    2748             :             }
    2749           0 :             ftapplyplan(&plan, &buf, 0, 1, _state);
    2750           0 :             ftapplyplan(&plan, &buf2, 0, 1, _state);
    2751           0 :             for(i=0; i<=m-1; i++)
    2752             :             {
    2753           0 :                 ax = buf.ptr.p_double[2*i+0];
    2754           0 :                 ay = buf.ptr.p_double[2*i+1];
    2755           0 :                 bx = buf2.ptr.p_double[2*i+0];
    2756           0 :                 by = buf2.ptr.p_double[2*i+1];
    2757           0 :                 tx = ax*bx-ay*by;
    2758           0 :                 ty = ax*by+ay*bx;
    2759           0 :                 buf.ptr.p_double[2*i+0] = tx;
    2760           0 :                 buf.ptr.p_double[2*i+1] = -ty;
    2761             :             }
    2762           0 :             ftapplyplan(&plan, &buf, 0, 1, _state);
    2763           0 :             t = (double)1/(double)m;
    2764           0 :             ae_vector_set_length(r, m, _state);
    2765           0 :             for(i=0; i<=m-1; i++)
    2766             :             {
    2767           0 :                 r->ptr.p_complex[i].x = t*buf.ptr.p_double[2*i+0];
    2768           0 :                 r->ptr.p_complex[i].y = -t*buf.ptr.p_double[2*i+1];
    2769             :             }
    2770             :         }
    2771             :         else
    2772             :         {
    2773             :             
    2774             :             /*
    2775             :              * M is non-smooth, general code (circular/non-circular):
    2776             :              * * first part is the same for circular and non-circular
    2777             :              *   convolutions. zero padding, FFTs, inverse FFTs
    2778             :              * * second part differs:
    2779             :              *   * for non-circular convolution we just copy array
    2780             :              *   * for circular convolution we add array tail to its head
    2781             :              */
    2782           0 :             p = ftbasefindsmooth(m+n-1, _state);
    2783           0 :             ftcomplexfftplan(p, 1, &plan, _state);
    2784           0 :             ae_vector_set_length(&buf, 2*p, _state);
    2785           0 :             for(i=0; i<=m-1; i++)
    2786             :             {
    2787           0 :                 buf.ptr.p_double[2*i+0] = a->ptr.p_complex[i].x;
    2788           0 :                 buf.ptr.p_double[2*i+1] = a->ptr.p_complex[i].y;
    2789             :             }
    2790           0 :             for(i=m; i<=p-1; i++)
    2791             :             {
    2792           0 :                 buf.ptr.p_double[2*i+0] = (double)(0);
    2793           0 :                 buf.ptr.p_double[2*i+1] = (double)(0);
    2794             :             }
    2795           0 :             ae_vector_set_length(&buf2, 2*p, _state);
    2796           0 :             for(i=0; i<=n-1; i++)
    2797             :             {
    2798           0 :                 buf2.ptr.p_double[2*i+0] = b->ptr.p_complex[i].x;
    2799           0 :                 buf2.ptr.p_double[2*i+1] = b->ptr.p_complex[i].y;
    2800             :             }
    2801           0 :             for(i=n; i<=p-1; i++)
    2802             :             {
    2803           0 :                 buf2.ptr.p_double[2*i+0] = (double)(0);
    2804           0 :                 buf2.ptr.p_double[2*i+1] = (double)(0);
    2805             :             }
    2806           0 :             ftapplyplan(&plan, &buf, 0, 1, _state);
    2807           0 :             ftapplyplan(&plan, &buf2, 0, 1, _state);
    2808           0 :             for(i=0; i<=p-1; i++)
    2809             :             {
    2810           0 :                 ax = buf.ptr.p_double[2*i+0];
    2811           0 :                 ay = buf.ptr.p_double[2*i+1];
    2812           0 :                 bx = buf2.ptr.p_double[2*i+0];
    2813           0 :                 by = buf2.ptr.p_double[2*i+1];
    2814           0 :                 tx = ax*bx-ay*by;
    2815           0 :                 ty = ax*by+ay*bx;
    2816           0 :                 buf.ptr.p_double[2*i+0] = tx;
    2817           0 :                 buf.ptr.p_double[2*i+1] = -ty;
    2818             :             }
    2819           0 :             ftapplyplan(&plan, &buf, 0, 1, _state);
    2820           0 :             t = (double)1/(double)p;
    2821           0 :             if( circular )
    2822             :             {
    2823             :                 
    2824             :                 /*
    2825             :                  * circular, add tail to head
    2826             :                  */
    2827           0 :                 ae_vector_set_length(r, m, _state);
    2828           0 :                 for(i=0; i<=m-1; i++)
    2829             :                 {
    2830           0 :                     r->ptr.p_complex[i].x = t*buf.ptr.p_double[2*i+0];
    2831           0 :                     r->ptr.p_complex[i].y = -t*buf.ptr.p_double[2*i+1];
    2832             :                 }
    2833           0 :                 for(i=m; i<=m+n-2; i++)
    2834             :                 {
    2835           0 :                     r->ptr.p_complex[i-m].x = r->ptr.p_complex[i-m].x+t*buf.ptr.p_double[2*i+0];
    2836           0 :                     r->ptr.p_complex[i-m].y = r->ptr.p_complex[i-m].y-t*buf.ptr.p_double[2*i+1];
    2837             :                 }
    2838             :             }
    2839             :             else
    2840             :             {
    2841             :                 
    2842             :                 /*
    2843             :                  * non-circular, just copy
    2844             :                  */
    2845           0 :                 ae_vector_set_length(r, m+n-1, _state);
    2846           0 :                 for(i=0; i<=m+n-2; i++)
    2847             :                 {
    2848           0 :                     r->ptr.p_complex[i].x = t*buf.ptr.p_double[2*i+0];
    2849           0 :                     r->ptr.p_complex[i].y = -t*buf.ptr.p_double[2*i+1];
    2850             :                 }
    2851             :             }
    2852             :         }
    2853           0 :         ae_frame_leave(_state);
    2854           0 :         return;
    2855             :     }
    2856             :     
    2857             :     /*
    2858             :      * overlap-add method for
    2859             :      * circular and non-circular convolutions.
    2860             :      *
    2861             :      * First part of code (separate FFTs of input blocks) is the same
    2862             :      * for all types of convolution. Second part (overlapping outputs)
    2863             :      * differs for different types of convolution. We just copy output
    2864             :      * when convolution is non-circular. We wrap it around, if it is
    2865             :      * circular.
    2866             :      */
    2867           0 :     if( alg==2 )
    2868             :     {
    2869           0 :         ae_vector_set_length(&buf, 2*(q+n-1), _state);
    2870             :         
    2871             :         /*
    2872             :          * prepare R
    2873             :          */
    2874           0 :         if( circular )
    2875             :         {
    2876           0 :             ae_vector_set_length(r, m, _state);
    2877           0 :             for(i=0; i<=m-1; i++)
    2878             :             {
    2879           0 :                 r->ptr.p_complex[i] = ae_complex_from_i(0);
    2880             :             }
    2881             :         }
    2882             :         else
    2883             :         {
    2884           0 :             ae_vector_set_length(r, m+n-1, _state);
    2885           0 :             for(i=0; i<=m+n-2; i++)
    2886             :             {
    2887           0 :                 r->ptr.p_complex[i] = ae_complex_from_i(0);
    2888             :             }
    2889             :         }
    2890             :         
    2891             :         /*
    2892             :          * pre-calculated FFT(B)
    2893             :          */
    2894           0 :         ae_vector_set_length(&bbuf, q+n-1, _state);
    2895           0 :         ae_v_cmove(&bbuf.ptr.p_complex[0], 1, &b->ptr.p_complex[0], 1, "N", ae_v_len(0,n-1));
    2896           0 :         for(j=n; j<=q+n-2; j++)
    2897             :         {
    2898           0 :             bbuf.ptr.p_complex[j] = ae_complex_from_i(0);
    2899             :         }
    2900           0 :         fftc1d(&bbuf, q+n-1, _state);
    2901             :         
    2902             :         /*
    2903             :          * prepare FFT plan for chunks of A
    2904             :          */
    2905           0 :         ftcomplexfftplan(q+n-1, 1, &plan, _state);
    2906             :         
    2907             :         /*
    2908             :          * main overlap-add cycle
    2909             :          */
    2910           0 :         i = 0;
    2911           0 :         while(i<=m-1)
    2912             :         {
    2913           0 :             p = ae_minint(q, m-i, _state);
    2914           0 :             for(j=0; j<=p-1; j++)
    2915             :             {
    2916           0 :                 buf.ptr.p_double[2*j+0] = a->ptr.p_complex[i+j].x;
    2917           0 :                 buf.ptr.p_double[2*j+1] = a->ptr.p_complex[i+j].y;
    2918             :             }
    2919           0 :             for(j=p; j<=q+n-2; j++)
    2920             :             {
    2921           0 :                 buf.ptr.p_double[2*j+0] = (double)(0);
    2922           0 :                 buf.ptr.p_double[2*j+1] = (double)(0);
    2923             :             }
    2924           0 :             ftapplyplan(&plan, &buf, 0, 1, _state);
    2925           0 :             for(j=0; j<=q+n-2; j++)
    2926             :             {
    2927           0 :                 ax = buf.ptr.p_double[2*j+0];
    2928           0 :                 ay = buf.ptr.p_double[2*j+1];
    2929           0 :                 bx = bbuf.ptr.p_complex[j].x;
    2930           0 :                 by = bbuf.ptr.p_complex[j].y;
    2931           0 :                 tx = ax*bx-ay*by;
    2932           0 :                 ty = ax*by+ay*bx;
    2933           0 :                 buf.ptr.p_double[2*j+0] = tx;
    2934           0 :                 buf.ptr.p_double[2*j+1] = -ty;
    2935             :             }
    2936           0 :             ftapplyplan(&plan, &buf, 0, 1, _state);
    2937           0 :             t = (double)1/(double)(q+n-1);
    2938           0 :             if( circular )
    2939             :             {
    2940           0 :                 j1 = ae_minint(i+p+n-2, m-1, _state)-i;
    2941           0 :                 j2 = j1+1;
    2942             :             }
    2943             :             else
    2944             :             {
    2945           0 :                 j1 = p+n-2;
    2946           0 :                 j2 = j1+1;
    2947             :             }
    2948           0 :             for(j=0; j<=j1; j++)
    2949             :             {
    2950           0 :                 r->ptr.p_complex[i+j].x = r->ptr.p_complex[i+j].x+buf.ptr.p_double[2*j+0]*t;
    2951           0 :                 r->ptr.p_complex[i+j].y = r->ptr.p_complex[i+j].y-buf.ptr.p_double[2*j+1]*t;
    2952             :             }
    2953           0 :             for(j=j2; j<=p+n-2; j++)
    2954             :             {
    2955           0 :                 r->ptr.p_complex[j-j2].x = r->ptr.p_complex[j-j2].x+buf.ptr.p_double[2*j+0]*t;
    2956           0 :                 r->ptr.p_complex[j-j2].y = r->ptr.p_complex[j-j2].y-buf.ptr.p_double[2*j+1]*t;
    2957             :             }
    2958           0 :             i = i+p;
    2959             :         }
    2960           0 :         ae_frame_leave(_state);
    2961           0 :         return;
    2962             :     }
    2963           0 :     ae_frame_leave(_state);
    2964             : }
    2965             : 
    2966             : 
    2967             : /*************************************************************************
    2968             : 1-dimensional real convolution.
    2969             : 
    2970             : Extended subroutine which allows to choose convolution algorithm.
    2971             : Intended for internal use, ALGLIB users should call ConvR1D().
    2972             : 
    2973             : INPUT PARAMETERS
    2974             :     A   -   array[0..M-1] - complex function to be transformed
    2975             :     M   -   problem size
    2976             :     B   -   array[0..N-1] - complex function to be transformed
    2977             :     N   -   problem size, N<=M
    2978             :     Alg -   algorithm type:
    2979             :             *-2     auto-select Q for overlap-add
    2980             :             *-1     auto-select algorithm and parameters
    2981             :             * 0     straightforward formula for small N's
    2982             :             * 1     general FFT-based code
    2983             :             * 2     overlap-add with length Q
    2984             :     Q   -   length for overlap-add
    2985             : 
    2986             : OUTPUT PARAMETERS
    2987             :     R   -   convolution: A*B. array[0..N+M-1].
    2988             : 
    2989             :   -- ALGLIB --
    2990             :      Copyright 21.07.2009 by Bochkanov Sergey
    2991             : *************************************************************************/
    2992           0 : void convr1dx(/* Real    */ ae_vector* a,
    2993             :      ae_int_t m,
    2994             :      /* Real    */ ae_vector* b,
    2995             :      ae_int_t n,
    2996             :      ae_bool circular,
    2997             :      ae_int_t alg,
    2998             :      ae_int_t q,
    2999             :      /* Real    */ ae_vector* r,
    3000             :      ae_state *_state)
    3001             : {
    3002             :     ae_frame _frame_block;
    3003             :     double v;
    3004             :     ae_int_t i;
    3005             :     ae_int_t j;
    3006             :     ae_int_t p;
    3007             :     ae_int_t ptotal;
    3008             :     ae_int_t i1;
    3009             :     ae_int_t i2;
    3010             :     ae_int_t j1;
    3011             :     ae_int_t j2;
    3012             :     double ax;
    3013             :     double ay;
    3014             :     double bx;
    3015             :     double by;
    3016             :     double tx;
    3017             :     double ty;
    3018             :     double flopcand;
    3019             :     double flopbest;
    3020             :     ae_int_t algbest;
    3021             :     fasttransformplan plan;
    3022             :     ae_vector buf;
    3023             :     ae_vector buf2;
    3024             :     ae_vector buf3;
    3025             : 
    3026           0 :     ae_frame_make(_state, &_frame_block);
    3027           0 :     memset(&plan, 0, sizeof(plan));
    3028           0 :     memset(&buf, 0, sizeof(buf));
    3029           0 :     memset(&buf2, 0, sizeof(buf2));
    3030           0 :     memset(&buf3, 0, sizeof(buf3));
    3031           0 :     ae_vector_clear(r);
    3032           0 :     _fasttransformplan_init(&plan, _state, ae_true);
    3033           0 :     ae_vector_init(&buf, 0, DT_REAL, _state, ae_true);
    3034           0 :     ae_vector_init(&buf2, 0, DT_REAL, _state, ae_true);
    3035           0 :     ae_vector_init(&buf3, 0, DT_REAL, _state, ae_true);
    3036             : 
    3037           0 :     ae_assert(n>0&&m>0, "ConvC1DX: incorrect N or M!", _state);
    3038           0 :     ae_assert(n<=m, "ConvC1DX: N<M assumption is false!", _state);
    3039             :     
    3040             :     /*
    3041             :      * handle special cases
    3042             :      */
    3043           0 :     if( ae_minint(m, n, _state)<=2 )
    3044             :     {
    3045           0 :         alg = 0;
    3046             :     }
    3047             :     
    3048             :     /*
    3049             :      * Auto-select
    3050             :      */
    3051           0 :     if( alg<0 )
    3052             :     {
    3053             :         
    3054             :         /*
    3055             :          * Initial candidate: straightforward implementation.
    3056             :          *
    3057             :          * If we want to use auto-fitted overlap-add,
    3058             :          * flop count is initialized by large real number - to force
    3059             :          * another algorithm selection
    3060             :          */
    3061           0 :         algbest = 0;
    3062           0 :         if( alg==-1 )
    3063             :         {
    3064           0 :             flopbest = 0.15*m*n;
    3065             :         }
    3066             :         else
    3067             :         {
    3068           0 :             flopbest = ae_maxrealnumber;
    3069             :         }
    3070             :         
    3071             :         /*
    3072             :          * Another candidate - generic FFT code
    3073             :          */
    3074           0 :         if( alg==-1 )
    3075             :         {
    3076           0 :             if( (circular&&ftbaseissmooth(m, _state))&&m%2==0 )
    3077             :             {
    3078             :                 
    3079             :                 /*
    3080             :                  * special code for circular convolution of a sequence with a smooth length
    3081             :                  */
    3082           0 :                 flopcand = 3*ftbasegetflopestimate(m/2, _state)+(double)(6*m)/(double)2;
    3083           0 :                 if( ae_fp_less(flopcand,flopbest) )
    3084             :                 {
    3085           0 :                     algbest = 1;
    3086           0 :                     flopbest = flopcand;
    3087             :                 }
    3088             :             }
    3089             :             else
    3090             :             {
    3091             :                 
    3092             :                 /*
    3093             :                  * general cyclic/non-cyclic convolution
    3094             :                  */
    3095           0 :                 p = ftbasefindsmootheven(m+n-1, _state);
    3096           0 :                 flopcand = 3*ftbasegetflopestimate(p/2, _state)+(double)(6*p)/(double)2;
    3097           0 :                 if( ae_fp_less(flopcand,flopbest) )
    3098             :                 {
    3099           0 :                     algbest = 1;
    3100           0 :                     flopbest = flopcand;
    3101             :                 }
    3102             :             }
    3103             :         }
    3104             :         
    3105             :         /*
    3106             :          * Another candidate - overlap-add
    3107             :          */
    3108           0 :         q = 1;
    3109           0 :         ptotal = 1;
    3110           0 :         while(ptotal<n)
    3111             :         {
    3112           0 :             ptotal = ptotal*2;
    3113             :         }
    3114           0 :         while(ptotal<=m+n-1)
    3115             :         {
    3116           0 :             p = ptotal-n+1;
    3117           0 :             flopcand = ae_iceil((double)m/(double)p, _state)*(2*ftbasegetflopestimate(ptotal/2, _state)+1*(ptotal/2));
    3118           0 :             if( ae_fp_less(flopcand,flopbest) )
    3119             :             {
    3120           0 :                 flopbest = flopcand;
    3121           0 :                 algbest = 2;
    3122           0 :                 q = p;
    3123             :             }
    3124           0 :             ptotal = ptotal*2;
    3125             :         }
    3126           0 :         alg = algbest;
    3127           0 :         convr1dx(a, m, b, n, circular, alg, q, r, _state);
    3128           0 :         ae_frame_leave(_state);
    3129           0 :         return;
    3130             :     }
    3131             :     
    3132             :     /*
    3133             :      * straightforward formula for
    3134             :      * circular and non-circular convolutions.
    3135             :      *
    3136             :      * Very simple code, no further comments needed.
    3137             :      */
    3138           0 :     if( alg==0 )
    3139             :     {
    3140             :         
    3141             :         /*
    3142             :          * Special case: N=1
    3143             :          */
    3144           0 :         if( n==1 )
    3145             :         {
    3146           0 :             ae_vector_set_length(r, m, _state);
    3147           0 :             v = b->ptr.p_double[0];
    3148           0 :             ae_v_moved(&r->ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,m-1), v);
    3149           0 :             ae_frame_leave(_state);
    3150           0 :             return;
    3151             :         }
    3152             :         
    3153             :         /*
    3154             :          * use straightforward formula
    3155             :          */
    3156           0 :         if( circular )
    3157             :         {
    3158             :             
    3159             :             /*
    3160             :              * circular convolution
    3161             :              */
    3162           0 :             ae_vector_set_length(r, m, _state);
    3163           0 :             v = b->ptr.p_double[0];
    3164           0 :             ae_v_moved(&r->ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,m-1), v);
    3165           0 :             for(i=1; i<=n-1; i++)
    3166             :             {
    3167           0 :                 v = b->ptr.p_double[i];
    3168           0 :                 i1 = 0;
    3169           0 :                 i2 = i-1;
    3170           0 :                 j1 = m-i;
    3171           0 :                 j2 = m-1;
    3172           0 :                 ae_v_addd(&r->ptr.p_double[i1], 1, &a->ptr.p_double[j1], 1, ae_v_len(i1,i2), v);
    3173           0 :                 i1 = i;
    3174           0 :                 i2 = m-1;
    3175           0 :                 j1 = 0;
    3176           0 :                 j2 = m-i-1;
    3177           0 :                 ae_v_addd(&r->ptr.p_double[i1], 1, &a->ptr.p_double[j1], 1, ae_v_len(i1,i2), v);
    3178             :             }
    3179             :         }
    3180             :         else
    3181             :         {
    3182             :             
    3183             :             /*
    3184             :              * non-circular convolution
    3185             :              */
    3186           0 :             ae_vector_set_length(r, m+n-1, _state);
    3187           0 :             for(i=0; i<=m+n-2; i++)
    3188             :             {
    3189           0 :                 r->ptr.p_double[i] = (double)(0);
    3190             :             }
    3191           0 :             for(i=0; i<=n-1; i++)
    3192             :             {
    3193           0 :                 v = b->ptr.p_double[i];
    3194           0 :                 ae_v_addd(&r->ptr.p_double[i], 1, &a->ptr.p_double[0], 1, ae_v_len(i,i+m-1), v);
    3195             :             }
    3196             :         }
    3197           0 :         ae_frame_leave(_state);
    3198           0 :         return;
    3199             :     }
    3200             :     
    3201             :     /*
    3202             :      * general FFT-based code for
    3203             :      * circular and non-circular convolutions.
    3204             :      *
    3205             :      * First, if convolution is circular, we test whether M is smooth or not.
    3206             :      * If it is smooth, we just use M-length FFT to calculate convolution.
    3207             :      * If it is not, we calculate non-circular convolution and wrap it arount.
    3208             :      *
    3209             :      * If convolution is non-circular, we use zero-padding + FFT.
    3210             :      *
    3211             :      * We assume that M+N-1>2 - we should call small case code otherwise
    3212             :      */
    3213           0 :     if( alg==1 )
    3214             :     {
    3215           0 :         ae_assert(m+n-1>2, "ConvR1DX: internal error!", _state);
    3216           0 :         if( (circular&&ftbaseissmooth(m, _state))&&m%2==0 )
    3217             :         {
    3218             :             
    3219             :             /*
    3220             :              * special code for circular convolution with smooth even M
    3221             :              */
    3222           0 :             ae_vector_set_length(&buf, m, _state);
    3223           0 :             ae_v_move(&buf.ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,m-1));
    3224           0 :             ae_vector_set_length(&buf2, m, _state);
    3225           0 :             ae_v_move(&buf2.ptr.p_double[0], 1, &b->ptr.p_double[0], 1, ae_v_len(0,n-1));
    3226           0 :             for(i=n; i<=m-1; i++)
    3227             :             {
    3228           0 :                 buf2.ptr.p_double[i] = (double)(0);
    3229             :             }
    3230           0 :             ae_vector_set_length(&buf3, m, _state);
    3231           0 :             ftcomplexfftplan(m/2, 1, &plan, _state);
    3232           0 :             fftr1dinternaleven(&buf, m, &buf3, &plan, _state);
    3233           0 :             fftr1dinternaleven(&buf2, m, &buf3, &plan, _state);
    3234           0 :             buf.ptr.p_double[0] = buf.ptr.p_double[0]*buf2.ptr.p_double[0];
    3235           0 :             buf.ptr.p_double[1] = buf.ptr.p_double[1]*buf2.ptr.p_double[1];
    3236           0 :             for(i=1; i<=m/2-1; i++)
    3237             :             {
    3238           0 :                 ax = buf.ptr.p_double[2*i+0];
    3239           0 :                 ay = buf.ptr.p_double[2*i+1];
    3240           0 :                 bx = buf2.ptr.p_double[2*i+0];
    3241           0 :                 by = buf2.ptr.p_double[2*i+1];
    3242           0 :                 tx = ax*bx-ay*by;
    3243           0 :                 ty = ax*by+ay*bx;
    3244           0 :                 buf.ptr.p_double[2*i+0] = tx;
    3245           0 :                 buf.ptr.p_double[2*i+1] = ty;
    3246             :             }
    3247           0 :             fftr1dinvinternaleven(&buf, m, &buf3, &plan, _state);
    3248           0 :             ae_vector_set_length(r, m, _state);
    3249           0 :             ae_v_move(&r->ptr.p_double[0], 1, &buf.ptr.p_double[0], 1, ae_v_len(0,m-1));
    3250             :         }
    3251             :         else
    3252             :         {
    3253             :             
    3254             :             /*
    3255             :              * M is non-smooth or non-even, general code (circular/non-circular):
    3256             :              * * first part is the same for circular and non-circular
    3257             :              *   convolutions. zero padding, FFTs, inverse FFTs
    3258             :              * * second part differs:
    3259             :              *   * for non-circular convolution we just copy array
    3260             :              *   * for circular convolution we add array tail to its head
    3261             :              */
    3262           0 :             p = ftbasefindsmootheven(m+n-1, _state);
    3263           0 :             ae_vector_set_length(&buf, p, _state);
    3264           0 :             ae_v_move(&buf.ptr.p_double[0], 1, &a->ptr.p_double[0], 1, ae_v_len(0,m-1));
    3265           0 :             for(i=m; i<=p-1; i++)
    3266             :             {
    3267           0 :                 buf.ptr.p_double[i] = (double)(0);
    3268             :             }
    3269           0 :             ae_vector_set_length(&buf2, p, _state);
    3270           0 :             ae_v_move(&buf2.ptr.p_double[0], 1, &b->ptr.p_double[0], 1, ae_v_len(0,n-1));
    3271           0 :             for(i=n; i<=p-1; i++)
    3272             :             {
    3273           0 :                 buf2.ptr.p_double[i] = (double)(0);
    3274             :             }
    3275           0 :             ae_vector_set_length(&buf3, p, _state);
    3276           0 :             ftcomplexfftplan(p/2, 1, &plan, _state);
    3277           0 :             fftr1dinternaleven(&buf, p, &buf3, &plan, _state);
    3278           0 :             fftr1dinternaleven(&buf2, p, &buf3, &plan, _state);
    3279           0 :             buf.ptr.p_double[0] = buf.ptr.p_double[0]*buf2.ptr.p_double[0];
    3280           0 :             buf.ptr.p_double[1] = buf.ptr.p_double[1]*buf2.ptr.p_double[1];
    3281           0 :             for(i=1; i<=p/2-1; i++)
    3282             :             {
    3283           0 :                 ax = buf.ptr.p_double[2*i+0];
    3284           0 :                 ay = buf.ptr.p_double[2*i+1];
    3285           0 :                 bx = buf2.ptr.p_double[2*i+0];
    3286           0 :                 by = buf2.ptr.p_double[2*i+1];
    3287           0 :                 tx = ax*bx-ay*by;
    3288           0 :                 ty = ax*by+ay*bx;
    3289           0 :                 buf.ptr.p_double[2*i+0] = tx;
    3290           0 :                 buf.ptr.p_double[2*i+1] = ty;
    3291             :             }
    3292           0 :             fftr1dinvinternaleven(&buf, p, &buf3, &plan, _state);
    3293           0 :             if( circular )
    3294             :             {
    3295             :                 
    3296             :                 /*
    3297             :                  * circular, add tail to head
    3298             :                  */
    3299           0 :                 ae_vector_set_length(r, m, _state);
    3300           0 :                 ae_v_move(&r->ptr.p_double[0], 1, &buf.ptr.p_double[0], 1, ae_v_len(0,m-1));
    3301           0 :                 if( n>=2 )
    3302             :                 {
    3303           0 :                     ae_v_add(&r->ptr.p_double[0], 1, &buf.ptr.p_double[m], 1, ae_v_len(0,n-2));
    3304             :                 }
    3305             :             }
    3306             :             else
    3307             :             {
    3308             :                 
    3309             :                 /*
    3310             :                  * non-circular, just copy
    3311             :                  */
    3312           0 :                 ae_vector_set_length(r, m+n-1, _state);
    3313           0 :                 ae_v_move(&r->ptr.p_double[0], 1, &buf.ptr.p_double[0], 1, ae_v_len(0,m+n-2));
    3314             :             }
    3315             :         }
    3316           0 :         ae_frame_leave(_state);
    3317           0 :         return;
    3318             :     }
    3319             :     
    3320             :     /*
    3321             :      * overlap-add method
    3322             :      */
    3323           0 :     if( alg==2 )
    3324             :     {
    3325           0 :         ae_assert((q+n-1)%2==0, "ConvR1DX: internal error!", _state);
    3326           0 :         ae_vector_set_length(&buf, q+n-1, _state);
    3327           0 :         ae_vector_set_length(&buf2, q+n-1, _state);
    3328           0 :         ae_vector_set_length(&buf3, q+n-1, _state);
    3329           0 :         ftcomplexfftplan((q+n-1)/2, 1, &plan, _state);
    3330             :         
    3331             :         /*
    3332             :          * prepare R
    3333             :          */
    3334           0 :         if( circular )
    3335             :         {
    3336           0 :             ae_vector_set_length(r, m, _state);
    3337           0 :             for(i=0; i<=m-1; i++)
    3338             :             {
    3339           0 :                 r->ptr.p_double[i] = (double)(0);
    3340             :             }
    3341             :         }
    3342             :         else
    3343             :         {
    3344           0 :             ae_vector_set_length(r, m+n-1, _state);
    3345           0 :             for(i=0; i<=m+n-2; i++)
    3346             :             {
    3347           0 :                 r->ptr.p_double[i] = (double)(0);
    3348             :             }
    3349             :         }
    3350             :         
    3351             :         /*
    3352             :          * pre-calculated FFT(B)
    3353             :          */
    3354           0 :         ae_v_move(&buf2.ptr.p_double[0], 1, &b->ptr.p_double[0], 1, ae_v_len(0,n-1));
    3355           0 :         for(j=n; j<=q+n-2; j++)
    3356             :         {
    3357           0 :             buf2.ptr.p_double[j] = (double)(0);
    3358             :         }
    3359           0 :         fftr1dinternaleven(&buf2, q+n-1, &buf3, &plan, _state);
    3360             :         
    3361             :         /*
    3362             :          * main overlap-add cycle
    3363             :          */
    3364           0 :         i = 0;
    3365           0 :         while(i<=m-1)
    3366             :         {
    3367           0 :             p = ae_minint(q, m-i, _state);
    3368           0 :             ae_v_move(&buf.ptr.p_double[0], 1, &a->ptr.p_double[i], 1, ae_v_len(0,p-1));
    3369           0 :             for(j=p; j<=q+n-2; j++)
    3370             :             {
    3371           0 :                 buf.ptr.p_double[j] = (double)(0);
    3372             :             }
    3373           0 :             fftr1dinternaleven(&buf, q+n-1, &buf3, &plan, _state);
    3374           0 :             buf.ptr.p_double[0] = buf.ptr.p_double[0]*buf2.ptr.p_double[0];
    3375           0 :             buf.ptr.p_double[1] = buf.ptr.p_double[1]*buf2.ptr.p_double[1];
    3376           0 :             for(j=1; j<=(q+n-1)/2-1; j++)
    3377             :             {
    3378           0 :                 ax = buf.ptr.p_double[2*j+0];
    3379           0 :                 ay = buf.ptr.p_double[2*j+1];
    3380           0 :                 bx = buf2.ptr.p_double[2*j+0];
    3381           0 :                 by = buf2.ptr.p_double[2*j+1];
    3382           0 :                 tx = ax*bx-ay*by;
    3383           0 :                 ty = ax*by+ay*bx;
    3384           0 :                 buf.ptr.p_double[2*j+0] = tx;
    3385           0 :                 buf.ptr.p_double[2*j+1] = ty;
    3386             :             }
    3387           0 :             fftr1dinvinternaleven(&buf, q+n-1, &buf3, &plan, _state);
    3388           0 :             if( circular )
    3389             :             {
    3390           0 :                 j1 = ae_minint(i+p+n-2, m-1, _state)-i;
    3391           0 :                 j2 = j1+1;
    3392             :             }
    3393             :             else
    3394             :             {
    3395           0 :                 j1 = p+n-2;
    3396           0 :                 j2 = j1+1;
    3397             :             }
    3398           0 :             ae_v_add(&r->ptr.p_double[i], 1, &buf.ptr.p_double[0], 1, ae_v_len(i,i+j1));
    3399           0 :             if( p+n-2>=j2 )
    3400             :             {
    3401           0 :                 ae_v_add(&r->ptr.p_double[0], 1, &buf.ptr.p_double[j2], 1, ae_v_len(0,p+n-2-j2));
    3402             :             }
    3403           0 :             i = i+p;
    3404             :         }
    3405           0 :         ae_frame_leave(_state);
    3406           0 :         return;
    3407             :     }
    3408           0 :     ae_frame_leave(_state);
    3409             : }
    3410             : 
    3411             : 
    3412             : #endif
    3413             : #if defined(AE_COMPILE_CORR) || !defined(AE_PARTIAL_BUILD)
    3414             : 
    3415             : 
    3416             : /*************************************************************************
    3417             : 1-dimensional complex cross-correlation.
    3418             : 
    3419             : For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
    3420             : 
    3421             : Correlation is calculated using reduction to  convolution.  Algorithm with
    3422             : max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
    3423             : about performance).
    3424             : 
    3425             : IMPORTANT:
    3426             :     for  historical reasons subroutine accepts its parameters in  reversed
    3427             :     order: CorrC1D(Signal, Pattern) = Pattern x Signal (using  traditional
    3428             :     definition of cross-correlation, denoting cross-correlation as "x").
    3429             : 
    3430             : INPUT PARAMETERS
    3431             :     Signal  -   array[0..N-1] - complex function to be transformed,
    3432             :                 signal containing pattern
    3433             :     N       -   problem size
    3434             :     Pattern -   array[0..M-1] - complex function to be transformed,
    3435             :                 pattern to search withing signal
    3436             :     M       -   problem size
    3437             : 
    3438             : OUTPUT PARAMETERS
    3439             :     R       -   cross-correlation, array[0..N+M-2]:
    3440             :                 * positive lags are stored in R[0..N-1],
    3441             :                   R[i] = sum(conj(pattern[j])*signal[i+j]
    3442             :                 * negative lags are stored in R[N..N+M-2],
    3443             :                   R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
    3444             : 
    3445             : NOTE:
    3446             :     It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
    3447             : on [-K..M-1],  you can still use this subroutine, just shift result by K.
    3448             : 
    3449             :   -- ALGLIB --
    3450             :      Copyright 21.07.2009 by Bochkanov Sergey
    3451             : *************************************************************************/
    3452           0 : void corrc1d(/* Complex */ ae_vector* signal,
    3453             :      ae_int_t n,
    3454             :      /* Complex */ ae_vector* pattern,
    3455             :      ae_int_t m,
    3456             :      /* Complex */ ae_vector* r,
    3457             :      ae_state *_state)
    3458             : {
    3459             :     ae_frame _frame_block;
    3460             :     ae_vector p;
    3461             :     ae_vector b;
    3462             :     ae_int_t i;
    3463             : 
    3464           0 :     ae_frame_make(_state, &_frame_block);
    3465           0 :     memset(&p, 0, sizeof(p));
    3466           0 :     memset(&b, 0, sizeof(b));
    3467           0 :     ae_vector_clear(r);
    3468           0 :     ae_vector_init(&p, 0, DT_COMPLEX, _state, ae_true);
    3469           0 :     ae_vector_init(&b, 0, DT_COMPLEX, _state, ae_true);
    3470             : 
    3471           0 :     ae_assert(n>0&&m>0, "CorrC1D: incorrect N or M!", _state);
    3472           0 :     ae_vector_set_length(&p, m, _state);
    3473           0 :     for(i=0; i<=m-1; i++)
    3474             :     {
    3475           0 :         p.ptr.p_complex[m-1-i] = ae_c_conj(pattern->ptr.p_complex[i], _state);
    3476             :     }
    3477           0 :     convc1d(&p, m, signal, n, &b, _state);
    3478           0 :     ae_vector_set_length(r, m+n-1, _state);
    3479           0 :     ae_v_cmove(&r->ptr.p_complex[0], 1, &b.ptr.p_complex[m-1], 1, "N", ae_v_len(0,n-1));
    3480           0 :     if( m+n-2>=n )
    3481             :     {
    3482           0 :         ae_v_cmove(&r->ptr.p_complex[n], 1, &b.ptr.p_complex[0], 1, "N", ae_v_len(n,m+n-2));
    3483             :     }
    3484           0 :     ae_frame_leave(_state);
    3485           0 : }
    3486             : 
    3487             : 
    3488             : /*************************************************************************
    3489             : 1-dimensional circular complex cross-correlation.
    3490             : 
    3491             : For given Pattern/Signal returns corr(Pattern,Signal) (circular).
    3492             : Algorithm has linearithmic complexity for any M/N.
    3493             : 
    3494             : IMPORTANT:
    3495             :     for  historical reasons subroutine accepts its parameters in  reversed
    3496             :     order:   CorrC1DCircular(Signal, Pattern) = Pattern x Signal    (using
    3497             :     traditional definition of cross-correlation, denoting cross-correlation
    3498             :     as "x").
    3499             : 
    3500             : INPUT PARAMETERS
    3501             :     Signal  -   array[0..N-1] - complex function to be transformed,
    3502             :                 periodic signal containing pattern
    3503             :     N       -   problem size
    3504             :     Pattern -   array[0..M-1] - complex function to be transformed,
    3505             :                 non-periodic pattern to search withing signal
    3506             :     M       -   problem size
    3507             : 
    3508             : OUTPUT PARAMETERS
    3509             :     R   -   convolution: A*B. array[0..M-1].
    3510             : 
    3511             : 
    3512             :   -- ALGLIB --
    3513             :      Copyright 21.07.2009 by Bochkanov Sergey
    3514             : *************************************************************************/
    3515           0 : void corrc1dcircular(/* Complex */ ae_vector* signal,
    3516             :      ae_int_t m,
    3517             :      /* Complex */ ae_vector* pattern,
    3518             :      ae_int_t n,
    3519             :      /* Complex */ ae_vector* c,
    3520             :      ae_state *_state)
    3521             : {
    3522             :     ae_frame _frame_block;
    3523             :     ae_vector p;
    3524             :     ae_vector b;
    3525             :     ae_int_t i1;
    3526             :     ae_int_t i2;
    3527             :     ae_int_t i;
    3528             :     ae_int_t j2;
    3529             : 
    3530           0 :     ae_frame_make(_state, &_frame_block);
    3531           0 :     memset(&p, 0, sizeof(p));
    3532           0 :     memset(&b, 0, sizeof(b));
    3533           0 :     ae_vector_clear(c);
    3534           0 :     ae_vector_init(&p, 0, DT_COMPLEX, _state, ae_true);
    3535           0 :     ae_vector_init(&b, 0, DT_COMPLEX, _state, ae_true);
    3536             : 
    3537           0 :     ae_assert(n>0&&m>0, "ConvC1DCircular: incorrect N or M!", _state);
    3538             :     
    3539             :     /*
    3540             :      * normalize task: make M>=N,
    3541             :      * so A will be longer (at least - not shorter) that B.
    3542             :      */
    3543           0 :     if( m<n )
    3544             :     {
    3545           0 :         ae_vector_set_length(&b, m, _state);
    3546           0 :         for(i1=0; i1<=m-1; i1++)
    3547             :         {
    3548           0 :             b.ptr.p_complex[i1] = ae_complex_from_i(0);
    3549             :         }
    3550           0 :         i1 = 0;
    3551           0 :         while(i1<n)
    3552             :         {
    3553           0 :             i2 = ae_minint(i1+m-1, n-1, _state);
    3554           0 :             j2 = i2-i1;
    3555           0 :             ae_v_cadd(&b.ptr.p_complex[0], 1, &pattern->ptr.p_complex[i1], 1, "N", ae_v_len(0,j2));
    3556           0 :             i1 = i1+m;
    3557             :         }
    3558           0 :         corrc1dcircular(signal, m, &b, m, c, _state);
    3559           0 :         ae_frame_leave(_state);
    3560           0 :         return;
    3561             :     }
    3562             :     
    3563             :     /*
    3564             :      * Task is normalized
    3565             :      */
    3566           0 :     ae_vector_set_length(&p, n, _state);
    3567           0 :     for(i=0; i<=n-1; i++)
    3568             :     {
    3569           0 :         p.ptr.p_complex[n-1-i] = ae_c_conj(pattern->ptr.p_complex[i], _state);
    3570             :     }
    3571           0 :     convc1dcircular(signal, m, &p, n, &b, _state);
    3572           0 :     ae_vector_set_length(c, m, _state);
    3573           0 :     ae_v_cmove(&c->ptr.p_complex[0], 1, &b.ptr.p_complex[n-1], 1, "N", ae_v_len(0,m-n));
    3574           0 :     if( m-n+1<=m-1 )
    3575             :     {
    3576           0 :         ae_v_cmove(&c->ptr.p_complex[m-n+1], 1, &b.ptr.p_complex[0], 1, "N", ae_v_len(m-n+1,m-1));
    3577             :     }
    3578           0 :     ae_frame_leave(_state);
    3579             : }
    3580             : 
    3581             : 
    3582             : /*************************************************************************
    3583             : 1-dimensional real cross-correlation.
    3584             : 
    3585             : For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
    3586             : 
    3587             : Correlation is calculated using reduction to  convolution.  Algorithm with
    3588             : max(N,N)*log(max(N,N)) complexity is used (see  ConvC1D()  for  more  info
    3589             : about performance).
    3590             : 
    3591             : IMPORTANT:
    3592             :     for  historical reasons subroutine accepts its parameters in  reversed
    3593             :     order: CorrR1D(Signal, Pattern) = Pattern x Signal (using  traditional
    3594             :     definition of cross-correlation, denoting cross-correlation as "x").
    3595             : 
    3596             : INPUT PARAMETERS
    3597             :     Signal  -   array[0..N-1] - real function to be transformed,
    3598             :                 signal containing pattern
    3599             :     N       -   problem size
    3600             :     Pattern -   array[0..M-1] - real function to be transformed,
    3601             :                 pattern to search withing signal
    3602             :     M       -   problem size
    3603             : 
    3604             : OUTPUT PARAMETERS
    3605             :     R       -   cross-correlation, array[0..N+M-2]:
    3606             :                 * positive lags are stored in R[0..N-1],
    3607             :                   R[i] = sum(pattern[j]*signal[i+j]
    3608             :                 * negative lags are stored in R[N..N+M-2],
    3609             :                   R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
    3610             : 
    3611             : NOTE:
    3612             :     It is assumed that pattern domain is [0..M-1].  If Pattern is non-zero
    3613             : on [-K..M-1],  you can still use this subroutine, just shift result by K.
    3614             : 
    3615             :   -- ALGLIB --
    3616             :      Copyright 21.07.2009 by Bochkanov Sergey
    3617             : *************************************************************************/
    3618           0 : void corrr1d(/* Real    */ ae_vector* signal,
    3619             :      ae_int_t n,
    3620             :      /* Real    */ ae_vector* pattern,
    3621             :      ae_int_t m,
    3622             :      /* Real    */ ae_vector* r,
    3623             :      ae_state *_state)
    3624             : {
    3625             :     ae_frame _frame_block;
    3626             :     ae_vector p;
    3627             :     ae_vector b;
    3628             :     ae_int_t i;
    3629             : 
    3630           0 :     ae_frame_make(_state, &_frame_block);
    3631           0 :     memset(&p, 0, sizeof(p));
    3632           0 :     memset(&b, 0, sizeof(b));
    3633           0 :     ae_vector_clear(r);
    3634           0 :     ae_vector_init(&p, 0, DT_REAL, _state, ae_true);
    3635           0 :     ae_vector_init(&b, 0, DT_REAL, _state, ae_true);
    3636             : 
    3637           0 :     ae_assert(n>0&&m>0, "CorrR1D: incorrect N or M!", _state);
    3638           0 :     ae_vector_set_length(&p, m, _state);
    3639           0 :     for(i=0; i<=m-1; i++)
    3640             :     {
    3641           0 :         p.ptr.p_double[m-1-i] = pattern->ptr.p_double[i];
    3642             :     }
    3643           0 :     convr1d(&p, m, signal, n, &b, _state);
    3644           0 :     ae_vector_set_length(r, m+n-1, _state);
    3645           0 :     ae_v_move(&r->ptr.p_double[0], 1, &b.ptr.p_double[m-1], 1, ae_v_len(0,n-1));
    3646           0 :     if( m+n-2>=n )
    3647             :     {
    3648           0 :         ae_v_move(&r->ptr.p_double[n], 1, &b.ptr.p_double[0], 1, ae_v_len(n,m+n-2));
    3649             :     }
    3650           0 :     ae_frame_leave(_state);
    3651           0 : }
    3652             : 
    3653             : 
    3654             : /*************************************************************************
    3655             : 1-dimensional circular real cross-correlation.
    3656             : 
    3657             : For given Pattern/Signal returns corr(Pattern,Signal) (circular).
    3658             : Algorithm has linearithmic complexity for any M/N.
    3659             : 
    3660             : IMPORTANT:
    3661             :     for  historical reasons subroutine accepts its parameters in  reversed
    3662             :     order:   CorrR1DCircular(Signal, Pattern) = Pattern x Signal    (using
    3663             :     traditional definition of cross-correlation, denoting cross-correlation
    3664             :     as "x").
    3665             : 
    3666             : INPUT PARAMETERS
    3667             :     Signal  -   array[0..N-1] - real function to be transformed,
    3668             :                 periodic signal containing pattern
    3669             :     N       -   problem size
    3670             :     Pattern -   array[0..M-1] - real function to be transformed,
    3671             :                 non-periodic pattern to search withing signal
    3672             :     M       -   problem size
    3673             : 
    3674             : OUTPUT PARAMETERS
    3675             :     R   -   convolution: A*B. array[0..M-1].
    3676             : 
    3677             : 
    3678             :   -- ALGLIB --
    3679             :      Copyright 21.07.2009 by Bochkanov Sergey
    3680             : *************************************************************************/
    3681           0 : void corrr1dcircular(/* Real    */ ae_vector* signal,
    3682             :      ae_int_t m,
    3683             :      /* Real    */ ae_vector* pattern,
    3684             :      ae_int_t n,
    3685             :      /* Real    */ ae_vector* c,
    3686             :      ae_state *_state)
    3687             : {
    3688             :     ae_frame _frame_block;
    3689             :     ae_vector p;
    3690             :     ae_vector b;
    3691             :     ae_int_t i1;
    3692             :     ae_int_t i2;
    3693             :     ae_int_t i;
    3694             :     ae_int_t j2;
    3695             : 
    3696           0 :     ae_frame_make(_state, &_frame_block);
    3697           0 :     memset(&p, 0, sizeof(p));
    3698           0 :     memset(&b, 0, sizeof(b));
    3699           0 :     ae_vector_clear(c);
    3700           0 :     ae_vector_init(&p, 0, DT_REAL, _state, ae_true);
    3701           0 :     ae_vector_init(&b, 0, DT_REAL, _state, ae_true);
    3702             : 
    3703           0 :     ae_assert(n>0&&m>0, "ConvC1DCircular: incorrect N or M!", _state);
    3704             :     
    3705             :     /*
    3706             :      * normalize task: make M>=N,
    3707             :      * so A will be longer (at least - not shorter) that B.
    3708             :      */
    3709           0 :     if( m<n )
    3710             :     {
    3711           0 :         ae_vector_set_length(&b, m, _state);
    3712           0 :         for(i1=0; i1<=m-1; i1++)
    3713             :         {
    3714           0 :             b.ptr.p_double[i1] = (double)(0);
    3715             :         }
    3716           0 :         i1 = 0;
    3717           0 :         while(i1<n)
    3718             :         {
    3719           0 :             i2 = ae_minint(i1+m-1, n-1, _state);
    3720           0 :             j2 = i2-i1;
    3721           0 :             ae_v_add(&b.ptr.p_double[0], 1, &pattern->ptr.p_double[i1], 1, ae_v_len(0,j2));
    3722           0 :             i1 = i1+m;
    3723             :         }
    3724           0 :         corrr1dcircular(signal, m, &b, m, c, _state);
    3725           0 :         ae_frame_leave(_state);
    3726           0 :         return;
    3727             :     }
    3728             :     
    3729             :     /*
    3730             :      * Task is normalized
    3731             :      */
    3732           0 :     ae_vector_set_length(&p, n, _state);
    3733           0 :     for(i=0; i<=n-1; i++)
    3734             :     {
    3735           0 :         p.ptr.p_double[n-1-i] = pattern->ptr.p_double[i];
    3736             :     }
    3737           0 :     convr1dcircular(signal, m, &p, n, &b, _state);
    3738           0 :     ae_vector_set_length(c, m, _state);
    3739           0 :     ae_v_move(&c->ptr.p_double[0], 1, &b.ptr.p_double[n-1], 1, ae_v_len(0,m-n));
    3740           0 :     if( m-n+1<=m-1 )
    3741             :     {
    3742           0 :         ae_v_move(&c->ptr.p_double[m-n+1], 1, &b.ptr.p_double[0], 1, ae_v_len(m-n+1,m-1));
    3743             :     }
    3744           0 :     ae_frame_leave(_state);
    3745             : }
    3746             : 
    3747             : 
    3748             : #endif
    3749             : 
    3750             : }
    3751             : 

Generated by: LCOV version 1.16