LCOV - code coverage report
Current view: top level - synthesis/MeasurementEquations - Feather.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 591 0.0 %
Date: 2024-10-12 00:35:29 Functions: 0 29 0.0 %

          Line data    Source code
       1             : //# Feather.cc: Implementation of Feather.h
       2             : //# Copyright (C) 1997-2013
       3             : //# Associated Universities, Inc. Washington DC, USA.
       4             : //#
       5             : //# This program is free software; you can redistribute it and/or modify it
       6             : //# under the terms of the GNU General Public License as published by the Free
       7             : //# Software Foundation; either version 2 of the License, or (at your option)
       8             : //# any later version.
       9             : //#
      10             : //# This program is distributed in the hope that it will be useful, but WITHOUT
      11             : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      12             : //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
      13             : //# more details.
      14             : //#
      15             : //# You should have received a copy of the GNU General Public License along
      16             : //# with this program; if not, write to the Free Software Foundation, Inc.,
      17             : //# 675 Massachusetts Ave, Cambridge, MA 02139, USA.
      18             : //#
      19             : //# Correspondence concerning AIPS++ should be addressed as follows:
      20             : //#        Internet email: casa-feedback@nrao.edu.
      21             : //#        Postal address: AIPS++ Project Office
      22             : //#                        National Radio Astronomy Observatory
      23             : //#                        520 Edgemont Road
      24             : //#                        Charlottesville, VA 22903-2475 USA
      25             : //#
      26             : //# $kgolap$
      27             : #include <cmath>
      28             : #include <synthesis/MeasurementEquations/Feather.h>
      29             : #include <synthesis/MeasurementEquations/Imager.h>
      30             : #include <synthesis/TransformMachines/StokesImageUtil.h>
      31             : #include <casacore/casa/OS/HostInfo.h>
      32             : 
      33             : #include <casacore/casa/Arrays/Matrix.h>
      34             : #include <casacore/casa/Arrays/ArrayMath.h>
      35             : #include <casacore/casa/Arrays/ArrayLogical.h>
      36             : #include <casacore/casa/Arrays/IPosition.h>
      37             : #include <iostream>
      38             : #include <casacore/casa/Logging.h>
      39             : #include <casacore/casa/Logging/LogIO.h>
      40             : #include <casacore/casa/Logging/LogMessage.h>
      41             : #include <casacore/casa/Logging/LogSink.h>
      42             : #include <casacore/scimath/Mathematics/MathFunc.h>
      43             : #include <casacore/tables/TaQL/ExprNode.h>
      44             : #include <casacore/casa/Utilities/Assert.h>
      45             : #include <casacore/casa/Arrays/ArrayMath.h>
      46             : #include <casacore/casa/Arrays/Slice.h>
      47             : #include <casacore/images/Images/TempImage.h>
      48             : #include <casacore/images/Images/ImageInterface.h>
      49             : #include <casacore/images/Images/PagedImage.h>
      50             : #include <casacore/images/Images/ImageRegrid.h>
      51             : #include <casacore/images/Images/ImageUtilities.h>
      52             : #include <synthesis/TransformMachines/PBMath.h>
      53             : #include <casacore/lattices/LEL/LatticeExpr.h> 
      54             : #include <casacore/lattices/LatticeMath/LatticeFFT.h>
      55             : #include <casacore/coordinates/Coordinates/CoordinateSystem.h>
      56             : #include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
      57             : #include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
      58             : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
      59             : #include <casacore/coordinates/Coordinates/CoordinateUtil.h>
      60             : #include <casacore/coordinates/Coordinates/Projection.h>
      61             : #include <casacore/coordinates/Coordinates/ObsInfo.h>
      62             : #include <casacore/casa/Utilities/CountedPtr.h>
      63             : 
      64             : #include <components/ComponentModels/GaussianDeconvolver.h>
      65             : 
      66             : using namespace casacore;
      67             : namespace casa { //# NAMESPACE CASA - BEGIN
      68             : 
      69             : 
      70           0 :   Feather::Feather(): dishDiam_p(-1.0), cweightCalced_p(false), cweightApplied_p(false), sdScale_p(1.0){
      71           0 :     highIm_p=NULL;
      72           0 :     lowIm_p=NULL;
      73           0 :     lowImOrig_p=NULL;
      74           0 :     cwImage_p=NULL;
      75           0 :     cwHighIm_p=NULL;
      76           0 :   }
      77           0 :   Feather::Feather(const ImageInterface<Float>& SDImage, const ImageInterface<Float>& INTImage, Float sdscale) : dishDiam_p(-1.0), cweightCalced_p(false), cweightApplied_p(false), sdScale_p(sdscale){
      78             :     
      79           0 :     setINTImage(INTImage);
      80           0 :     lowImOrig_p=NULL;
      81           0 :     setSDImage(SDImage);
      82             :     
      83           0 :     cwImage_p=NULL;
      84           0 :     cwHighIm_p=NULL;
      85             :     
      86           0 :   }
      87           0 :   Feather::~Feather(){
      88           0 :     highIm_p=NULL;
      89           0 :     lowIm_p=NULL;
      90           0 :     cwImage_p=NULL;
      91           0 :   }
      92             :   
      93           0 :   void Feather::setSDImage(const ImageInterface<Float>& SDImage){
      94           0 :     LogIO os(LogOrigin("Feather", "setSDImage()", WHERE));
      95           0 :     if(highIm_p.null())
      96           0 :       throw(AipsError("High res image has to be defined before SD image"));
      97           0 :     ImageInfo lowInfo=SDImage.imageInfo();
      98           0 :     lBeam_p=lowInfo.restoringBeam();
      99           0 :     if(lBeam_p.isNull())
     100           0 :       throw(AipsError("No Single dish restoring beam info in image"));
     101           0 :     CoordinateSystem csyslow=SDImage.coordinates();
     102           0 :     CountedPtr<ImageInterface<Float> > sdcopy;
     103           0 :     sdcopy=new TempImage<Float>(SDImage.shape(), csyslow);
     104           0 :     (*sdcopy).copyData(SDImage);
     105           0 :     ImageUtilities::copyMiscellaneous(*sdcopy, SDImage);
     106           0 :     if(SDImage.getDefaultMask() != "")
     107           0 :       Imager::copyMask(*sdcopy, SDImage,  SDImage.getDefaultMask());
     108           0 :     std::unique_ptr<ImageInterface<Float> > copyPtr;
     109           0 :     std::unique_ptr<ImageInterface<Float> > copyPtr2;
     110             :     
     111             :       
     112           0 :     Vector<Stokes::StokesTypes> stokesvec;
     113           0 :     if(CoordinateUtil::findStokesAxis(stokesvec, csyslow) <0){
     114           0 :       CoordinateUtil::addIAxis(csyslow);
     115             :       
     116           0 :       ImageUtilities::addDegenerateAxes (os, copyPtr, *sdcopy, "",
     117             :                                          false, false,"I", false, false,
     118             :                                          true);
     119           0 :       sdcopy=CountedPtr<ImageInterface<Float> >(copyPtr.get(), false);
     120             :       
     121             :     }
     122           0 :     if(CoordinateUtil::findSpectralAxis(csyslow) <0){
     123           0 :       CoordinateUtil::addFreqAxis(csyslow);
     124           0 :       ImageUtilities::addDegenerateAxes (os, copyPtr2, *sdcopy, "",
     125             :                                          false, true,
     126             :                                          "", false, false,
     127             :                                          true);
     128           0 :       sdcopy=CountedPtr<ImageInterface<Float> >(copyPtr2.get(), false);
     129             :     }
     130           0 :     lowIm_p=new TempImage<Float>(highIm_p->shape(), csysHigh_p);
     131             :     // regrid the single dish image
     132             :     {
     133           0 :       Vector<Int> dirAxes=CoordinateUtil::findDirectionAxes(csysHigh_p);
     134           0 :       IPosition axes(3,dirAxes(0),dirAxes(1),2);
     135           0 :       Int spectralAxisIndex=CoordinateUtil::findSpectralAxis(csysHigh_p);
     136           0 :       axes(2)=spectralAxisIndex;
     137           0 :       if(sdcopy->getDefaultMask() != "")
     138           0 :         lowIm_p->makeMask(sdcopy->getDefaultMask(), true, true, true, true);
     139             : 
     140           0 :       ImageRegrid<Float> ir;
     141           0 :       ir.regrid(*lowIm_p, Interpolate2D::LINEAR, axes,  *sdcopy);
     142           0 :     }
     143             :     /*if(sdcopy->getDefaultMask() != ""){
     144             :       //Imager::copyMask(*lowIm_p, *sdcopy, sdcopy->getDefaultMask());
     145             :       lowIm_p->makeMask(sdcopy->getDefaultMask(), true, true);
     146             :       ImageUtilities::copyMask(*lowIm_p, *sdcopy,sdcopy->getDefaultMask() , sdcopy->getDefaultMask(), AxesSpecifier());
     147             :       lowIm_p->setDefaultMask(sdcopy->getDefaultMask());
     148             : 
     149             :     }
     150             :     */
     151             :     
     152           0 :     if(lowImOrig_p.null()){
     153           0 :       lowImOrig_p=new TempImage<Float>(lowIm_p->shape(), lowIm_p->coordinates(),0);
     154           0 :       lowImOrig_p->copyData(*lowIm_p);
     155           0 :       lBeamOrig_p=lBeam_p;
     156             :     }   
     157           0 :     cweightCalced_p=false;
     158           0 :   }
     159             : 
     160           0 :   void Feather::convolveINT(const GaussianBeam& newHighBeam){
     161           0 :     GaussianBeam toBeUsed(Quantity(0.0, "arcsec"),Quantity(0.0, "arcsec"), Quantity(0.0, "deg")) ;
     162           0 :     Bool retval=true;
     163             :     try {
     164             :       //cerr << "highBeam " << hBeam_p.getMajor() << " " << hBeam_p.getMinor() << " " << hBeam_p.getPA() << endl; 
     165             :       retval=
     166           0 :       GaussianDeconvolver::deconvolve(toBeUsed, newHighBeam, hBeam_p);
     167             :       //cerr << "beam to be used " << toBeUsed.getMajor() << " " << toBeUsed.getMinor() << "  " << toBeUsed.getPA() << endl;
     168             :     }
     169           0 :     catch (const AipsError& x) {
     170           0 :       if(toBeUsed.getMajor("arcsec")==0.0)
     171           0 :         throw(AipsError("new Beam may be smaller than the beam of original Interferometer  image"));  
     172           0 :     }
     173             :     try{
     174           0 :       StokesImageUtil::Convolve(*highIm_p, toBeUsed, true);
     175             :     }
     176           0 :     catch(const AipsError& x){
     177           0 :       throw(AipsError("Could not convolve INT image for some reason; try a lower resolution may be"));
     178           0 :     }
     179           0 :     hBeam_p=newHighBeam; 
     180             : 
     181             :     //need to  redo feather  application
     182           0 :     cweightApplied_p=false;
     183             :     (void)retval; // avoid compiler warning
     184           0 :   }
     185             : 
     186           0 :   void Feather::setINTImage(const ImageInterface<Float>& INTImage){
     187           0 :     LogIO os(LogOrigin("Feather", "setINTImage()", WHERE));
     188           0 :     ImageInfo highInfo=INTImage.imageInfo();
     189           0 :     hBeam_p=highInfo.restoringBeam();
     190           0 :     if(hBeam_p.isNull())
     191           0 :       throw(AipsError("No high-resolution restoring beam info in image"));
     192           0 :     csysHigh_p=INTImage.coordinates();
     193           0 :     CountedPtr<ImageInterface<Float> > intcopy=new TempImage<Float>(INTImage.shape(), csysHigh_p);
     194           0 :     (*intcopy).copyData(INTImage);
     195           0 :     ImageUtilities::copyMiscellaneous(*intcopy, INTImage);
     196           0 :     if(INTImage.getDefaultMask() != "")
     197           0 :       Imager::copyMask(*intcopy, INTImage,  INTImage.getDefaultMask());
     198           0 :     std::unique_ptr<ImageInterface<Float> > copyPtr;
     199           0 :     std::unique_ptr<ImageInterface<Float> > copyPtr2;
     200             :     
     201             :       
     202           0 :     Vector<Stokes::StokesTypes> stokesvec;
     203           0 :     if(CoordinateUtil::findStokesAxis(stokesvec, csysHigh_p) <0){
     204           0 :       CoordinateUtil::addIAxis(csysHigh_p);
     205           0 :       ImageUtilities::addDegenerateAxes (os, copyPtr, *intcopy, "",
     206             :                                          false, false,"I", false, false,
     207             :                                          true);
     208           0 :       intcopy=CountedPtr<ImageInterface<Float> >(copyPtr.get(), false);
     209             :       
     210             :     }
     211           0 :     if(CoordinateUtil::findSpectralAxis(csysHigh_p) <0){
     212           0 :       CoordinateUtil::addFreqAxis(csysHigh_p);
     213           0 :       ImageUtilities::addDegenerateAxes (os, copyPtr2, *intcopy, "",
     214             :                                          false, true,
     215             :                                          "", false, false,
     216             :                                          true);
     217           0 :       intcopy=CountedPtr<ImageInterface<Float> >(copyPtr2.get(), false);
     218             :     }
     219             : 
     220             : 
     221           0 :     highIm_p=new TempImage<Float>(intcopy->shape(), csysHigh_p);
     222             :     
     223           0 :     highIm_p->copyData(*intcopy);
     224           0 :     ImageUtilities::copyMiscellaneous(*highIm_p, *intcopy);
     225           0 :     String maskname=intcopy->getDefaultMask();
     226           0 :     if(maskname != ""){
     227           0 :       Imager::copyMask(*highIm_p, *intcopy, maskname);
     228             : 
     229             :     }
     230           0 :     cweightCalced_p=false;
     231             : 
     232           0 :   }
     233             : 
     234           0 :   Bool Feather::setEffectiveDishDiam(const Float xdiam, const Float ydiam){
     235           0 :     dishDiam_p=ydiam >0 ? min(xdiam, ydiam) : xdiam;
     236             :     {//reset to the original SD image
     237           0 :       lowIm_p->copyData(*lowImOrig_p);
     238           0 :       lBeam_p=lBeamOrig_p;
     239             :     }
     240             :     //Change the beam of SD image
     241           0 :     Double freq  = worldFreq(lowIm_p->coordinates(), 0);
     242             :     //cerr << "Freq " << freq << endl;
     243           0 :     Quantity halfpb=Quantity(1.22*C::c/freq/dishDiam_p, "rad");
     244           0 :     GaussianBeam newBeam(halfpb, halfpb, Quantity(0.0, "deg"));
     245           0 :     GaussianBeam toBeUsed;
     246             :     try {
     247           0 :         GaussianDeconvolver::deconvolve(toBeUsed, newBeam, lBeam_p);
     248             :     }
     249           0 :     catch (const AipsError& x) {
     250           0 :       throw(AipsError("Beam due to new effective diameter may be smaller than the beam of original dish image"));
     251           0 :     }
     252             :     try{
     253             :       //cerr <<"To be used " << toBeUsed.getMajor() << "  " << toBeUsed.getMinor() <<
     254             :       //"  " << toBeUsed.getPA() << endl;
     255           0 :       StokesImageUtil::Convolve(*lowIm_p, toBeUsed, true);
     256             :     }
     257           0 :     catch(const AipsError& x){
     258           0 :       throw(AipsError("Could not convolve SD image for some reason; try a smaller effective diameter may be"));
     259           0 :     }
     260           0 :     lBeam_p=newBeam; 
     261             :     //reset cweight if it was calculated already
     262           0 :     cweightCalced_p=false;
     263           0 :     cweightApplied_p=false;
     264             : 
     265           0 :     return true;
     266           0 :   }
     267           0 :   void Feather::getEffectiveDishDiam(Float& xdiam, Float& ydiam){
     268           0 :     if(dishDiam_p <0){
     269           0 :       if(lBeam_p.isNull())
     270           0 :         throw(AipsError("No Single dish restoring beam info in image"));
     271           0 :       Double maj=lBeam_p.getMajor("rad");
     272           0 :       Double freq  = worldFreq(csysHigh_p, 0);
     273             :     //cerr << "Freq " << freq << endl;
     274           0 :       dishDiam_p=1.22*C::c/freq/maj;
     275             :     }
     276           0 :     xdiam=dishDiam_p;
     277           0 :     ydiam=dishDiam_p;
     278           0 :   }
     279           0 :   void Feather::setSDScale(Float sdscale){
     280           0 :     sdScale_p=sdscale;
     281           0 :   }
     282             :   
     283           0 :   void Feather::getFTCutSDImage(Vector<Float>& ux, Vector<Float>& xamp, Vector<Float>& uy, Vector<Float>& yamp, const Bool radial){
     284           0 :      if(radial){
     285           0 :       uy.resize();
     286           0 :       yamp.resize();
     287           0 :       return getRadialCut(ux, xamp, *lowIm_p);
     288             :     }
     289             :     
     290           0 :     TempImage<Complex> cimagelow(lowIm_p->shape(), lowIm_p->coordinates() );
     291           0 :     StokesImageUtil::From(cimagelow, *lowIm_p);
     292           0 :     LatticeFFT::cfft2d( cimagelow );
     293           0 :     getCutXY(ux, xamp, uy, yamp, cimagelow);
     294             :     
     295           0 :   }
     296           0 :   void Feather::getFTCutIntImage(Vector<Float>& ux, Vector<Float>& xamp, Vector<Float>& uy, Vector<Float>& yamp, const Bool radial){
     297           0 :     if(radial){
     298           0 :       uy.resize();
     299           0 :       yamp.resize();
     300           0 :       return getRadialCut(ux, xamp, *highIm_p);
     301             :     }
     302           0 :     TempImage<Complex> cimagehigh(highIm_p->shape(), highIm_p->coordinates() );
     303           0 :     StokesImageUtil::From(cimagehigh, *highIm_p);
     304           0 :     LatticeFFT::cfft2d( cimagehigh );
     305           0 :     getCutXY(ux, xamp, uy, yamp, cimagehigh);
     306             : 
     307           0 :   }
     308           0 :   void Feather::getFeatherINT(Vector<Float>& ux, Vector<Float>& xamp, Vector<Float>& uy, Vector<Float>& yamp, Bool radial){
     309             : 
     310           0 :     calcCWeightImage();
     311           0 :     if(radial){
     312           0 :       uy.resize();
     313           0 :       yamp.resize();
     314           0 :       getRadialCut(xamp, *cwImage_p);
     315           0 :       getRadialUVval(xamp.shape()[0], cwImage_p->shape(), cwImage_p->coordinates(), ux);
     316             :       
     317             :  
     318             :     }
     319             :     else{
     320           0 :       getCutXY(ux, xamp, uy, yamp, *cwImage_p);
     321             :     }
     322           0 :   }
     323           0 :   void Feather::getFeatherSD(Vector<Float>& ux, Vector<Float>& xamp, Vector<Float>& uy, Vector<Float>& yamp, Bool radial, Bool normalize){
     324           0 :     calcCWeightImage();
     325           0 :     Vector<Float> xampInt, yampInt;
     326           0 :     if(radial){
     327           0 :       uy.resize();
     328           0 :       yamp.resize();
     329           0 :       getRadialCut(xampInt, *cwImage_p);
     330           0 :       getRadialUVval(xampInt.shape()[0], cwImage_p->shape(), cwImage_p->coordinates(), ux);
     331             :         
     332             :     }
     333             :     else{
     334           0 :       getCutXY(ux, xampInt, uy, yampInt, *cwImage_p);
     335           0 :       yamp.resize();
     336           0 :       yamp=(Float(1.0) - yampInt);
     337           0 :       if(!normalize) 
     338           0 :         yamp=yamp*Float(sdScale_p*hBeam_p.getArea("arcsec2")/lBeam_p.getArea("arcsec2"));
     339             :     }
     340             : 
     341           0 :       xamp.resize();
     342           0 :       xamp=(Float(1.0) - xampInt);
     343           0 :       if(!normalize)
     344           0 :         xamp=xamp*Float(sdScale_p*hBeam_p.getArea("arcsec2")/lBeam_p.getArea("arcsec2"));
     345             :       
     346             : 
     347           0 :   }
     348           0 :   void Feather::getFeatheredCutSD(Vector<Float>& ux, Vector<Float>& xamp, Vector<Float>& uy, Vector<Float>& yamp, Bool radial){
     349             : 
     350           0 :     getFTCutSDImage(ux, xamp, uy,yamp, radial);
     351           0 :     xamp *=Float(sdScale_p*hBeam_p.getArea("arcsec2")/lBeam_p.getArea("arcsec2"));
     352             : 
     353           0 :     if(yamp.nelements() >0)
     354           0 :       yamp *=Float(sdScale_p*hBeam_p.getArea("arcsec2")/lBeam_p.getArea("arcsec2"));
     355           0 :   }
     356             :   
     357           0 :   void Feather::getFeatheredCutINT(Vector<Float>& ux, Vector<Float>& xamp, Vector<Float>& uy, Vector<Float>& yamp, Bool radial){
     358           0 :     applyFeather();
     359           0 :     if(radial){
     360           0 :       uy.resize();
     361           0 :       yamp.resize();
     362           0 :       getRadialCut(xamp, *cwHighIm_p);
     363           0 :       getRadialUVval(xamp.shape()[0], cwHighIm_p->shape(), cwHighIm_p->coordinates(), ux);
     364             :     }
     365             :     else
     366           0 :       getCutXY(ux, xamp, uy, yamp, *cwHighIm_p);
     367           0 :   }
     368             : 
     369           0 :   void Feather::clearWeightFlags(){
     370           0 :     cweightCalced_p=false;
     371           0 :     cweightApplied_p = false;
     372           0 :   }
     373             : 
     374           0 :   void Feather::applyFeather(){
     375           0 :     if(cweightApplied_p)
     376           0 :       return;
     377           0 :     calcCWeightImage();
     378           0 :     if(highIm_p.null())
     379           0 :       throw(AipsError("No high resolution image set"));
     380           0 :     cwHighIm_p=new TempImage<Complex>(highIm_p->shape(), highIm_p->coordinates() );
     381           0 :     StokesImageUtil::From(*cwHighIm_p, *highIm_p);
     382           0 :     LatticeFFT::cfft2d( *cwHighIm_p );
     383           0 :     Vector<Int> extraAxes(cwHighIm_p->shape().nelements()-2);
     384           0 :     if(extraAxes.nelements() > 0){
     385             :       
     386           0 :       if(extraAxes.nelements() ==2){
     387           0 :         Int n3=cwHighIm_p->shape()(2);
     388           0 :         Int n4=cwHighIm_p->shape()(3);
     389           0 :         IPosition blc(cwHighIm_p->shape());
     390           0 :         IPosition trc(cwHighIm_p->shape());
     391           0 :         blc(0)=0; blc(1)=0;
     392           0 :         trc(0)=cwHighIm_p->shape()(0)-1;
     393           0 :         trc(1)=cwHighIm_p->shape()(1)-1;
     394           0 :         for (Int j=0; j < n3; ++j){
     395           0 :           for (Int k=0; k < n4 ; ++k){
     396           0 :             blc(2)=j; trc(2)=j;
     397           0 :               blc(3)=k; trc(3)=k;
     398           0 :               Slicer sl(blc, trc, Slicer::endIsLast);
     399           0 :               SubImage<Complex> cimagehighSub(*cwHighIm_p, sl, true);
     400           0 :               cimagehighSub.copyData(  (LatticeExpr<Complex>)((cimagehighSub * (*cwImage_p))));
     401           0 :             }
     402             :           }
     403           0 :         }
     404             :       }
     405             :       else{
     406           0 :         cwHighIm_p->copyData(  
     407           0 :                              (LatticeExpr<Complex>)(((*cwHighIm_p) * (*cwImage_p) )));
     408             :       }
     409           0 :     cweightApplied_p=true;
     410             : 
     411           0 :   }
     412             : 
     413           0 :   void Feather::calcCWeightImage(){
     414           0 :     if(cweightCalced_p)
     415           0 :       return;
     416           0 :     if(highIm_p.null())
     417           0 :       throw(AipsError("No Interferometer image was defined"));
     418           0 :     IPosition myshap(highIm_p->shape());
     419           0 :     Vector<Int> dirAxes;
     420           0 :     dirAxes=CoordinateUtil::findDirectionAxes(highIm_p->coordinates());
     421           0 :     for( uInt k=0; k< myshap.nelements(); ++k){
     422           0 :       if( (Int(k) != dirAxes[0]) && (Int(k) != dirAxes[1]))
     423           0 :         myshap(k)=1;
     424             :     }
     425             :       
     426           0 :     cwImage_p=new TempImage<Complex>(myshap, highIm_p->coordinates());
     427             :     {
     428           0 :       TempImage<Float> lowpsf(myshap, cwImage_p->coordinates());
     429           0 :       lowpsf.set(0.0);
     430           0 :       IPosition center(4, Int((myshap(0)/4)*2), 
     431           0 :                        Int((myshap(1)/4)*2),0,0);
     432           0 :       lowpsf.putAt(1.0, center);
     433           0 :       StokesImageUtil::Convolve(lowpsf, lBeam_p, false);
     434           0 :       StokesImageUtil::From(*cwImage_p, lowpsf);
     435           0 :     }
     436           0 :     LatticeFFT::cfft2d( *cwImage_p );
     437           0 :     LatticeExprNode node = max( *cwImage_p );
     438           0 :     Float fmax = abs(node.getComplex());
     439           0 :     cwImage_p->copyData(  (LatticeExpr<Complex>)( 1.0f - (*cwImage_p)/fmax ) );
     440           0 :     cweightCalced_p=true;
     441           0 :     cweightApplied_p=false;
     442           0 :   }
     443             : 
     444           0 :   void Feather::getCutXY(Vector<Float>& ux, Vector<Float>& xamp, 
     445             :                          Vector<Float>& uy, Vector<Float>& yamp, 
     446             :                          const ImageInterface<Float>& image){
     447             : 
     448             :    
     449           0 :     TempImage<Complex> cimage(image.shape(), image.coordinates() );
     450           0 :     StokesImageUtil::From(cimage, image);
     451           0 :     if(image.getDefaultMask()!=""){
     452           0 :       ImageRegion elMask=image.getRegion(image.getDefaultMask(),
     453           0 :                                          RegionHandler::Masks); 
     454           0 :       LatticeRegion latReg=elMask.toLatticeRegion(image.coordinates(), image.shape());
     455           0 :       ArrayLattice<Bool> pixmask(latReg.get());
     456           0 :       LatticeExpr<Complex> myexpr(iif(pixmask, cimage, Complex(0.0)) );
     457           0 :       cimage.copyData(myexpr);
     458             :     
     459           0 :     } 
     460             :       
     461           0 :     LatticeFFT::cfft2d( cimage );
     462           0 :     getCutXY(ux, xamp, uy, yamp,  cimage);
     463             :     
     464             : 
     465           0 :   }
     466             : 
     467           0 :   void Feather::getRadialCut(Vector<Float>& radius, Vector<Float>& radialAmp, 
     468             :                              const ImageInterface<Float>& image){
     469             :     
     470           0 :     TempImage<Complex> cimage(image.shape(), image.coordinates() );
     471           0 :     StokesImageUtil::From(cimage, image);
     472           0 :     LatticeFFT::cfft2d( cimage );
     473           0 :     radialAmp.resize();
     474           0 :     getRadialCut(radialAmp, cimage);
     475             : 
     476           0 :     getRadialUVval(radialAmp.shape()[0], cimage.shape(), cimage.coordinates(), radius); 
     477             :     ////Get the radial value in uv- units.
     478             :     /* Double freq=worldFreq(image.coordinates(), 0);
     479             :     Int dirCoordIndex=image.coordinates().findCoordinate(Coordinate::DIRECTION);
     480             :     DirectionCoordinate dc=image.coordinates().directionCoordinate(dirCoordIndex);
     481             :     Vector<Bool> axes(2); axes(0)=true;axes(1)=true;
     482             :     Vector<Int> elshape(2); 
     483             :     Vector<Int> directionIndex=CoordinateUtil::findDirectionAxes(image.coordinates());
     484             :     elshape(0)=image.shape()[directionIndex(0)];
     485             :     elshape(1)=image.shape()[directionIndex(1)];
     486             :     Coordinate* ftdc=dc.makeFourierCoordinate(axes,elshape);    
     487             :     Vector<Double> xpix(radialAmp.nelements());
     488             :     indgen(xpix);
     489             :     xpix +=Double(image.shape()[directionIndex(0)])/2.0;
     490             :     Matrix<Double> pix(2, xpix.nelements());
     491             :     Matrix<Double> world(2, xpix.nelements());
     492             :     Vector<Bool> failures;
     493             :     pix.row(1)=elshape(1)/2;
     494             :     pix.row(0)=xpix;
     495             :     ftdc->toWorldMany(world, pix, failures);
     496             :     xpix=world.row(0);
     497             :     xpix=fabs(xpix)*(C::c)/freq;
     498             :     radius.resize(xpix.nelements());
     499             :     convertArray(radius, xpix);
     500             :     */
     501             : 
     502           0 :   }
     503           0 :   void Feather::getRadialUVval(const Int npix, const IPosition& imshape, const CoordinateSystem& csys, Vector<Float>& radius){
     504             :     
     505             : ////Get the radial value in uv- units.
     506           0 :     Double freq=worldFreq(csys, 0);
     507           0 :     Int dirCoordIndex=csys.findCoordinate(Coordinate::DIRECTION);
     508           0 :     DirectionCoordinate dc=csys.directionCoordinate(dirCoordIndex);
     509           0 :     Vector<Bool> axes(2); axes(0)=true;axes(1)=true;
     510           0 :     Vector<Int> elshape(2); 
     511           0 :     Vector<Int> directionIndex=CoordinateUtil::findDirectionAxes(csys);
     512           0 :     elshape(0)=imshape[directionIndex(0)];
     513           0 :     elshape(1)=imshape[directionIndex(1)];
     514           0 :     Coordinate* ftdc=dc.makeFourierCoordinate(axes,elshape);    
     515           0 :     Vector<Double> xpix(npix);
     516           0 :     indgen(xpix);
     517           0 :     xpix +=Double(imshape[directionIndex(0)])/2.0;
     518           0 :     Matrix<Double> pix(2, npix);
     519           0 :     Matrix<Double> world(2, npix);
     520           0 :     Vector<Bool> failures;
     521           0 :     pix.row(1)=elshape(1)/2;
     522           0 :     pix.row(0)=xpix;
     523           0 :     ftdc->toWorldMany(world, pix, failures);
     524           0 :     xpix=world.row(0);
     525           0 :     xpix=fabs(xpix)*(C::c)/freq;
     526           0 :     radius.resize(xpix.nelements());
     527           0 :     convertArray(radius, xpix);
     528             : 
     529           0 :   } 
     530           0 :   void Feather::getRadialCut(Vector<Float>& radialAmp, ImageInterface<Complex>& ftimage) {
     531           0 :     CoordinateSystem ftCoords(ftimage.coordinates());
     532             :     //////////////////////
     533             :     /*{
     534             :       PagedImage<Float> thisScreen(ftimage.shape(), ftCoords, "FFTimage");
     535             :       LatticeExpr<Float> le(abs(ftimage));
     536             :       thisScreen.copyData(le);
     537             :       }*/
     538             :    /////////////////////
     539           0 :     Vector<Int> directionIndex=CoordinateUtil::findDirectionAxes(ftCoords);
     540           0 :     Int spectralIndex=CoordinateUtil::findSpectralAxis(ftCoords);
     541           0 :     IPosition start=ftimage.shape();
     542           0 :     IPosition shape=ftimage.shape();
     543           0 :     Int centreX=shape[directionIndex(0)]/2;
     544           0 :     Int centreY=shape[directionIndex(1)]/2;
     545           0 :     Int arrLen=min(centreX, centreY);
     546             :     
     547           0 :     radialAmp.resize(arrLen);
     548           0 :     radialAmp.set(0.0);
     549           0 :     Array<Complex> tmpval;
     550             :      
     551           0 :      for(uInt k=0; k < shape.nelements(); ++k){
     552           0 :        start[k]=0;
     553             :        ///value for a single pixel in x, y, and pol
     554           0 :        if((k != uInt(spectralIndex)))
     555           0 :          shape[k]=1;
     556             :      }
     557             :      Int counter;
     558             :      Float sumval;
     559           0 :      for (Int pix =0 ; pix < arrLen; ++pix){
     560           0 :        sumval=0;
     561           0 :        counter=0;
     562           0 :        for (Int xval=0; xval <= pix; ++xval){
     563           0 :          Int yval=std::lround(sqrt(Double(pix*pix-xval*xval)));
     564           0 :          start[directionIndex[0]]=xval+centreX;
     565           0 :          start[directionIndex[1]]=yval+centreY;
     566           0 :          tmpval.resize();
     567           0 :          ftimage.getSlice(tmpval, start, shape, true); 
     568           0 :          sumval+=fabs(mean(tmpval));
     569           0 :          counter+=1;
     570             :        }
     571           0 :        radialAmp[pix]=sumval/float(counter); 
     572             :      }
     573             :      
     574             : 
     575           0 :   }
     576             : 
     577           0 :   void Feather::getCutXY(Vector<Float>& ux, Vector<Float>& xamp, 
     578             :                          Vector<Float>& uy, Vector<Float>& yamp, ImageInterface<Complex>& ftimage){
     579             : 
     580           0 :     CoordinateSystem ftCoords(ftimage.coordinates());
     581           0 :     Double freq=worldFreq(ftCoords, 0);
     582             :         ////
     583           0 :     Vector<Int> directionIndex=CoordinateUtil::findDirectionAxes(ftCoords);
     584           0 :     Int spectralIndex=CoordinateUtil::findSpectralAxis(ftCoords);
     585           0 :     Array<Complex> tmpval;
     586           0 :     Vector<Complex> meanval;
     587           0 :     IPosition start=ftimage.shape();
     588           0 :     IPosition shape=ftimage.shape();
     589           0 :     shape[directionIndex(0)]=shape[directionIndex(0)]/2;
     590           0 :     shape[directionIndex(1)]=shape[directionIndex(1)]/2;
     591           0 :     for(uInt k=0; k < shape.nelements(); ++k){
     592           0 :       start[k]=0;
     593           0 :       if((k != uInt(directionIndex(1))) && (k != uInt(spectralIndex)))
     594           0 :         shape[k]=1;
     595             :     }
     596           0 :     start[directionIndex(1)]=ftimage.shape()[directionIndex(1)]/2;
     597           0 :     start[directionIndex(0)]=ftimage.shape()[directionIndex(0)]/2;
     598           0 :     ftimage.getSlice(tmpval, start, shape, true);
     599           0 :     if(shape[spectralIndex] >1){
     600           0 :       meanval.resize(shape[directionIndex(1)]);
     601           0 :       Matrix<Complex> retmpval(tmpval);
     602           0 :       Bool colOrRow=spectralIndex > directionIndex(1);
     603           0 :       for (uInt k=0; k < meanval.nelements(); ++k){
     604           0 :         meanval[k]=colOrRow ? mean(retmpval.row(k)) : mean(retmpval.column(k));
     605             :       }
     606           0 :     }
     607             :     else{
     608           0 :       meanval=tmpval;
     609             :     }
     610           0 :     xamp.resize();
     611           0 :     xamp=amplitude(meanval);
     612           0 :     tmpval.resize();
     613           0 :     shape=ftimage.shape();
     614           0 :     shape[directionIndex(0)]=shape[directionIndex(0)]/2;
     615           0 :     shape[directionIndex(1)]=shape[directionIndex(1)]/2;
     616           0 :     for(uInt k=0; k < shape.nelements(); ++k){
     617           0 :       start[k]=0;
     618           0 :       if((k != uInt(directionIndex(0))) && (k != uInt(spectralIndex)))
     619           0 :         shape[k]=1;
     620             :     }
     621           0 :     start[directionIndex(1)]=ftimage.shape()[directionIndex(1)]/2;
     622           0 :     start[directionIndex(0)]=ftimage.shape()[directionIndex(0)]/2;
     623           0 :     ftimage.getSlice(tmpval, start, shape, true);
     624           0 :     if(shape[spectralIndex] >1){
     625           0 :       meanval.resize(shape[directionIndex(0)]);
     626           0 :       Bool colOrRow=spectralIndex > directionIndex(0);
     627           0 :       Matrix<Complex> retmpval(tmpval);
     628           0 :       for (uInt k=0; k < meanval.nelements(); ++k){
     629           0 :         meanval[k]=colOrRow ? mean(retmpval.row(k)) : mean(retmpval.column(k));
     630             :       }
     631           0 :     }
     632             :     else{
     633           0 :         meanval.resize( tmpval.size());
     634           0 :       meanval=tmpval;
     635             :     }
     636           0 :     yamp.resize();
     637           0 :     yamp=amplitude(meanval); 
     638           0 :     Int dirCoordIndex=ftCoords.findCoordinate(Coordinate::DIRECTION);
     639           0 :     DirectionCoordinate dc=ftCoords.directionCoordinate(dirCoordIndex);
     640           0 :     Vector<Bool> axes(2); axes(0)=true;axes(1)=true;
     641           0 :     Vector<Int> elshape(2); 
     642           0 :     elshape(0)=ftimage.shape()[directionIndex(0)];
     643           0 :     elshape(1)=ftimage.shape()[directionIndex(1)];
     644           0 :     Coordinate* ftdc=dc.makeFourierCoordinate(axes,elshape);    
     645           0 :     Vector<Double> xpix(xamp.nelements());
     646           0 :     indgen(xpix);
     647           0 :     xpix +=Double(ftimage.shape()[directionIndex(0)])/2.0;
     648           0 :     Matrix<Double> pix(2, xpix.nelements());
     649           0 :     Matrix<Double> world(2, xpix.nelements());
     650           0 :     Vector<Bool> failures;
     651           0 :     pix.row(1)=elshape(0)/2;
     652           0 :     pix.row(0)=xpix;
     653           0 :     ftdc->toWorldMany(world, pix, failures);
     654           0 :     xpix=world.row(0);
     655             :         //cerr << "xpix " << xpix << endl;
     656           0 :     xpix=fabs(xpix)*(C::c)/freq;
     657           0 :     Vector<Double> ypix(yamp.nelements());
     658           0 :     indgen(ypix);
     659           0 :     ypix +=Double(ftimage.shape()[directionIndex(1)])/2.0;
     660           0 :     pix.resize(2, ypix.nelements());
     661           0 :     world.resize();
     662           0 :     pix.row(1)=ypix;
     663           0 :     pix.row(0)=elshape(1)/2;
     664           0 :     ftdc->toWorldMany(world, pix, failures);
     665           0 :     ypix=world.row(1);
     666           0 :     ypix=fabs(ypix)*(C::c/freq);
     667           0 :     ux.resize(xpix.nelements());
     668           0 :     uy.resize(ypix.nelements());
     669           0 :     convertArray(ux, xpix);
     670           0 :     convertArray(uy, ypix);
     671             :     
     672             : 
     673           0 :   } 
     674             :   
     675             :         
     676             : 
     677           0 :   Bool Feather::saveFeatheredImage(const String& imagename){
     678           0 :     applyFeather();
     679             :     Int stokesAxis, spectralAxis;
     680           0 :     spectralAxis=CoordinateUtil::findSpectralAxis(csysHigh_p);
     681           0 :     Vector<Stokes::StokesTypes> stokesvec;
     682           0 :     stokesAxis=CoordinateUtil::findStokesAxis(stokesvec, csysHigh_p);
     683           0 :     Vector<Int> dirAxes=CoordinateUtil::findDirectionAxes(csysHigh_p);
     684           0 :     Int n3=highIm_p->shape()(stokesAxis);
     685           0 :     Int n4=highIm_p->shape()(spectralAxis);
     686           0 :     IPosition blc(highIm_p->shape());
     687           0 :     IPosition trc(highIm_p->shape());
     688           0 :     blc(dirAxes(0))=0; blc(dirAxes(1))=0;
     689           0 :     trc(dirAxes(0))=highIm_p->shape()(dirAxes(0))-1;
     690           0 :     trc(dirAxes(1))=highIm_p->shape()(dirAxes(1))-1;
     691           0 :     TempImage<Complex>cimagelow(lowIm_p->shape(), lowIm_p->coordinates());
     692           0 :     StokesImageUtil::From(cimagelow, *lowIm_p);
     693           0 :     LatticeFFT::cfft2d( cimagelow);
     694           0 :     Float sdScaling  = sdScale_p*hBeam_p.getArea("arcsec2")/lBeam_p.getArea("arcsec2");
     695           0 :     for (Int j=0; j < n3; ++j){
     696           0 :       for (Int k=0; k < n4 ; ++k){
     697           0 :         blc(stokesAxis)=j; trc(stokesAxis)=j;
     698           0 :         blc(spectralAxis)=k; trc(spectralAxis)=k;
     699           0 :         Slicer sl(blc, trc, Slicer::endIsLast);
     700           0 :         SubImage<Complex> cimagehighSub(*cwHighIm_p, sl, true);
     701           0 :         SubImage<Complex> cimagelowSub(cimagelow, sl, true);
     702           0 :         cimagelowSub.copyData(  (LatticeExpr<Complex>)((cimagehighSub + cimagelowSub * sdScaling)));
     703           0 :       }
     704             :     }
     705             :     // FT back to image plane
     706           0 :     LatticeFFT::cfft2d( cimagelow, false);
     707             :     
     708             :     // write to output image
     709           0 :     PagedImage<Float> featherImage(highIm_p->shape(), highIm_p->coordinates(), imagename );
     710           0 :     StokesImageUtil::To(featherImage, cimagelow);
     711           0 :     ImageUtilities::copyMiscellaneous(featherImage, *highIm_p);
     712           0 :     String maskofHigh=highIm_p->getDefaultMask();
     713           0 :     String maskofLow=lowIm_p->getDefaultMask();
     714           0 :     if(maskofHigh != String("")){
     715             :       //ImageUtilities::copyMask(featherImage, *highIm_p, "mask0", maskofHigh, AxesSpecifier());
     716             :       //featherImage.setDefaultMask("mask0");
     717           0 :       Imager::copyMask(featherImage, *highIm_p, maskofHigh);
     718           0 :       if(maskofLow != String("")){
     719           0 :         featherImage.pixelMask().copyData(LatticeExpr<Bool> (featherImage.pixelMask() && (lowIm_p->pixelMask())));
     720             :         
     721             :       }
     722             :     }
     723           0 :     else if(maskofLow != String("")){
     724             :       //ImageUtilities::copyMask(featherImage, *lowIm_p, "mask0", maskofLow, AxesSpecifier());
     725           0 :      Imager::copyMask(featherImage, *lowIm_p, maskofLow); 
     726             :     }
     727             :     
     728           0 :     return true;
     729           0 :   }
     730             : 
     731           0 :   void Feather::applyDishDiam(ImageInterface<Complex>& image, GaussianBeam& beam, Float effDiam, ImageInterface<Float>& fftim, Vector<Quantity>& extraconv){
     732             :     /*
     733             :     MathFunc<Float> dd(SPHEROIDAL);
     734             :     Vector<Float> valsph(31);
     735             :     for(Int k=0; k <31; ++k){
     736             :       valsph(k)=dd.value((Float)(k)/10.0);
     737             :     }
     738             :     Quantity fulrad((52.3/2.0*3.0/1.1117),"arcsec");
     739             :     Quantity lefreq(224.0/effDiam*9.0, "GHz");
     740             :     
     741             :     PBMath1DNumeric elpb(valsph, fulrad, lefreq);*/
     742             :     ////////////////////////
     743             :     /*{
     744             :       PagedImage<Float> thisScreen(image.shape(), image.coordinates(), "Before_apply.image");
     745             :       LatticeExpr<Float> le(abs(image));
     746             :       thisScreen.copyData(le);
     747             :       }*/
     748             :     //////////////////////
     749             :     
     750           0 :     Double freq  = worldFreq(image.coordinates(), 0);
     751             :     //cerr << "Freq " << freq << endl;
     752           0 :     Quantity halfpb=Quantity(1.22*C::c/freq/effDiam, "rad");
     753             :     //PBMath1DAiry elpb( Quantity(effDiam,"m"), Quantity(0.01,"m"),
     754             :     //                                 Quantity(0.8564,"deg"), Quantity(1.0,"GHz"));
     755           0 :     GaussianBeam newBeam(halfpb, halfpb, Quantity(0.0, "deg"));
     756             :     try {
     757             :       
     758           0 :       GaussianBeam toBeUsed;
     759             :       //cerr << "beam " << beam.toVector() << endl;
     760             :       //cerr << "newBeam " << newBeam.toVector() << endl;
     761           0 :       GaussianDeconvolver::deconvolve(toBeUsed, newBeam, beam);
     762           0 :       extraconv.resize(3);
     763             :       // use the Major difference
     764           0 :       extraconv(0) = toBeUsed.getMajor();
     765           0 :       extraconv(1) = toBeUsed.getMinor();
     766           0 :       extraconv(2) = toBeUsed.getPA();
     767             : 
     768           0 :     }
     769           0 :     catch (const AipsError& x) {
     770           0 :       throw(AipsError("Beam due to new effective diameter may be smaller than the beam of original dish image"));
     771           0 :     }
     772             :     //////////////////////
     773             :     //1 GHz equivalent   
     774             :     //    halfpb=Quantity(1.22*C::c/1.0e9/effDiam, "rad");
     775             :     //cerr << "halfpb " << halfpb << endl;
     776             :     //PBMath1DGauss elpb(halfpb, Quantity(0.8564,"deg"), Quantity(1.0,"GHz"), true);
     777             :     
     778           0 :     fftim.set(0.0);
     779             :    
     780           0 :     IPosition center(4, Int((fftim.shape()(0)/4)*2), 
     781           0 :                      Int((fftim.shape()(1)/4)*2),0,0);
     782           0 :     fftim.putAt(1.0, center);
     783           0 :     StokesImageUtil::Convolve(fftim, newBeam, false);
     784           0 :     StokesImageUtil::From(image, fftim);
     785             :     /*
     786             :     TempImage<Complex> elbeamo(image.shape(), image.coordinates());
     787             :     elbeamo.set(1.0);
     788             :     MDirection wcenter;  
     789             :     {
     790             :       Int directionIndex=
     791             :         image.coordinates().findCoordinate(Coordinate::DIRECTION);
     792             :       DirectionCoordinate
     793             :         directionCoord=image.coordinates().directionCoordinate(directionIndex);
     794             :       Vector<Double> pcenter(2);
     795             :       pcenter(0) = image.shape()(directionIndex)/2;
     796             :       pcenter(1) = image.shape()(directionIndex+1)/2;    
     797             :       directionCoord.toWorld( wcenter, pcenter );
     798             :     }
     799             :     elpb.applyPB(elbeamo, elbeamo, wcenter, Quantity(0.0, "deg"), 
     800             :                            BeamSquint::NONE);
     801             :     
     802             :    
     803             :     StokesImageUtil::To(fftim, elbeamo);
     804             :     */
     805             :     ///////////////////
     806             :     //StokesImageUtil::FitGaussianPSF(fftim, 
     807             :     //                             beam);
     808             :      //cerr << "To be convolved beam 2 " << beam.toVector() << endl;
     809             :      ////////////////
     810             : 
     811           0 :     LatticeFFT::cfft2d(image);
     812             :     //image.copyData((LatticeExpr<Complex>)(elbeamo) );
     813             :     //elbeamo.copyData(image);
     814             :     // LatticeFFT::cfft2d(elbeamo, false);
     815             :     //StokesImageUtil::To(fftim, elbeamo);
     816             :     //StokesImageUtil::FitGaussianPSF(fftim, 
     817             :     //                              beam);
     818             :     /////////
     819             :     /*{
     820             :       PagedImage<Float> thisScreen(image.shape(), image.coordinates(), "After_apply.image");
     821             :       //LatticeExpr<Float> le(abs(image));
     822             :       thisScreen.copyData(fftim);
     823             :       }*/ 
     824             :     ////////
     825           0 :   }
     826             : 
     827             : 
     828             :   /*
     829             :   void Feather::feather(const String& image, const ImageInterface<Float>& high, const ImageInterface<Float>& low0, const Float& sdScale, const String& lowPSF, const Bool useDefaultPB, const String& vpTableStr, Float effDiam, const Bool doPlot){
     830             : 
     831             :     LogIO os(LogOrigin("Feather", "feather()", WHERE));
     832             :    try {
     833             : 
     834             :    
     835             :       GaussianBeam hBeam , lBeam;
     836             :       Vector<Quantity> extraconv;
     837             :       ImageInfo highInfo=high.imageInfo();
     838             :       hBeam=highInfo.restoringBeam();
     839             :       ImageInfo lowInfo=low0.imageInfo();
     840             :       lBeam=lowInfo.restoringBeam();
     841             :       if(hBeam.isNull()) {
     842             :         os << LogIO::WARN 
     843             :            << "High resolution image does not have any resolution information - will be unable to scale correctly.\n" 
     844             :            << LogIO::POST;
     845             :       }
     846             :       
     847             :       PBMath * myPBp = 0;
     848             :       if((lowPSF=="") && lBeam.isNull()) {
     849             :         // create the low res's PBMath object, needed to apply PB 
     850             :         // to make high res Fourier weight image
     851             :         if (useDefaultPB) {
     852             :           // look up the telescope in ObsInfo
     853             :           ObsInfo oi = low0.coordinates().obsInfo();
     854             :           String myTelescope = oi.telescope();
     855             :           if (myTelescope == "") {
     856             :             os << LogIO::SEVERE << "No telescope imbedded in low res image" 
     857             :                << LogIO::POST;
     858             :             os << LogIO::SEVERE << "Create a PB description with the vpmanager"
     859             :                << LogIO::EXCEPTION;
     860             :           }
     861             :           Quantity qFreq;
     862             :           {
     863             :             Double freq  = worldFreq(low0.coordinates(), 0);
     864             :             qFreq = Quantity( freq, "Hz" );
     865             :           }
     866             :           String band;
     867             :           PBMath::CommonPB whichPB;
     868             :           String pbName;
     869             :           // get freq from coordinates
     870             :           PBMath::whichCommonPBtoUse (myTelescope, qFreq, band, whichPB, 
     871             :                                       pbName);
     872             :           if (whichPB  == PBMath::UNKNOWN) {
     873             :             os << LogIO::SEVERE << "Unknown telescope for PB type: " 
     874             :                << myTelescope << LogIO::EXCEPTION;
     875             :           }
     876             :           myPBp = new PBMath(whichPB);
     877             :         } else {
     878             :           // get the PB from the vpTable
     879             :           Table vpTable( vpTableStr );
     880             :           ScalarColumn<TableRecord> recCol(vpTable, (String)"pbdescription");
     881             :           myPBp = new PBMath(recCol(0));
     882             :         }
     883             :         AlwaysAssert((myPBp != 0), AipsError);
     884             :       }
     885             : 
     886             :       // regrid the single dish image
     887             :       TempImage<Float> low(high.shape(), high.coordinates());
     888             :       {
     889             :         IPosition axes(2,0,1);
     890             :         if(high.shape().nelements() >2){
     891             :           Int spectralAxisIndex=high.coordinates().
     892             :             findCoordinate(Coordinate::SPECTRAL);
     893             :           if(spectralAxisIndex > -1){
     894             :             axes.resize(3);
     895             :             axes(0)=0;
     896             :             axes(1)=1;
     897             :             axes(2)=spectralAxisIndex+1;
     898             :           }
     899             :         }
     900             :         ImageRegrid<Float> ir;
     901             :         ir.regrid(low, Interpolate2D::LINEAR, axes, low0);
     902             :       }
     903             :     
     904             :       // get image center direction (needed for SD PB, which is needed for
     905             :       // the high res Fourier weight image
     906             :       MDirection wcenter;  
     907             :       {
     908             :         Int directionIndex=
     909             :           high.coordinates().findCoordinate(Coordinate::DIRECTION);
     910             :         AlwaysAssert(directionIndex>=0, AipsError);
     911             :         DirectionCoordinate
     912             :           directionCoord=high.coordinates().directionCoordinate(directionIndex);
     913             :         Vector<Double> pcenter(2);
     914             :         pcenter(0) = high.shape()(0)/2;
     915             :         pcenter(1) = high.shape()(1)/2;    
     916             :         directionCoord.toWorld( wcenter, pcenter );
     917             :       }
     918             :       
     919             :       // make the weight image for high res Fourier plane:  1 - normalized(FT(sd_PB))
     920             :       IPosition myshap(high.shape());
     921             :       for( uInt k=2; k< myshap.nelements(); ++k){
     922             :         myshap(k)=1;
     923             :       }
     924             :       
     925             :       TempImage<Float> lowpsf0;
     926             :       TempImage<Complex> cweight(myshap, high.coordinates());
     927             :       if(lowPSF=="") {
     928             :         os << LogIO::NORMAL // Loglevel INFO
     929             :            << "Using primary beam to determine weighting.\n" << LogIO::POST;
     930             :         if(lBeam.isNull()) {
     931             :           cweight.set(1.0);
     932             :           if (myPBp != 0) {
     933             :             myPBp->applyPB(cweight, cweight, wcenter, Quantity(0.0, "deg"), 
     934             :                            BeamSquint::NONE);
     935             :           
     936             :             lowpsf0=TempImage<Float>(cweight.shape(), cweight.coordinates());
     937             :             
     938             :             os << LogIO::NORMAL // Loglevel INFO
     939             :                << "Determining scaling from SD Primary Beam.\n"
     940             :                << LogIO::POST;
     941             :             StokesImageUtil::To(lowpsf0, cweight);
     942             :             StokesImageUtil::FitGaussianPSF(lowpsf0, 
     943             :                                             lBeam);
     944             :           }
     945             :           delete myPBp;
     946             :         }
     947             :         else{
     948             :           os << LogIO::NORMAL // Loglevel INFO
     949             :              << "Determining scaling from SD restoring beam.\n"
     950             :              << LogIO::POST;
     951             :           lowpsf0=TempImage<Float>(cweight.shape(), cweight.coordinates());
     952             :           lowpsf0.set(0.0);
     953             :           IPosition center(4, Int((cweight.shape()(0)/4)*2), 
     954             :                            Int((cweight.shape()(1)/4)*2),0,0);
     955             :           lowpsf0.putAt(1.0, center);
     956             :           StokesImageUtil::Convolve(lowpsf0, lBeam, false);
     957             :           StokesImageUtil::From(cweight, lowpsf0);
     958             : 
     959             :         }
     960             :       }
     961             :       else {
     962             :         os << LogIO::NORMAL // Loglevel INFO
     963             :            << "Using specified low resolution PSF to determine weighting.\n" 
     964             :            << LogIO::POST;
     965             :         // regrid the single dish psf
     966             :         PagedImage<Float> lowpsfDisk(lowPSF);
     967             :         IPosition lshape(lowpsfDisk.shape());
     968             :         lshape.resize(4);
     969             :         lshape(2)=1; lshape(3)=1;
     970             :         TempImage<Float>lowpsf(lshape,lowpsfDisk.coordinates());
     971             :         IPosition blc(lowpsfDisk.shape());
     972             :         IPosition trc(lowpsfDisk.shape());
     973             :         blc(0)=0; blc(1)=0;
     974             :         trc(0)=lowpsfDisk.shape()(0)-1;
     975             :         trc(1)=lowpsfDisk.shape()(1)-1;
     976             :         for( uInt k=2; k < lowpsfDisk.shape().nelements(); ++k){
     977             :           blc(k)=0; trc(k)=0;             
     978             :         }// taking first plane
     979             :         Slicer sl(blc, trc, Slicer::endIsLast);
     980             :         lowpsf.copyData(SubImage<Float>(lowpsfDisk, sl, false));
     981             :         lowpsf0=TempImage<Float> (myshap, high.coordinates());
     982             :         {
     983             :           ImageRegrid<Float> ir;
     984             :           IPosition axes(2,0,1);   // if its a cube, regrid the spectral too
     985             :           ir.regrid(lowpsf0, Interpolate2D::LINEAR, axes, lowpsf);
     986             :         }
     987             :         if(lBeam.isNull()) {
     988             :           os << LogIO::NORMAL // Loglevel INFO
     989             :              << "Determining scaling from low resolution PSF.\n" << LogIO::POST;
     990             :           StokesImageUtil::FitGaussianPSF(lowpsf, lBeam);
     991             :         }
     992             :         StokesImageUtil::From(cweight, lowpsf0);
     993             :       }
     994             :  
     995             :       LatticeFFT::cfft2d( cweight );
     996             :       if(effDiam >0.0){
     997             :         //cerr << "in effdiam" << effDiam << endl;
     998             :         applyDishDiam(cweight, lBeam, effDiam, lowpsf0, extraconv);
     999             :         lowpsf0.copyData((LatticeExpr<Float>)(lowpsf0/max(lowpsf0)));
    1000             :         StokesImageUtil::FitGaussianPSF(lowpsf0, lBeam);
    1001             :         
    1002             :         Int directionIndex=
    1003             :           cweight.coordinates().findCoordinate(Coordinate::DIRECTION);
    1004             :         Image2DConvolver<Float>::convolve(
    1005             :                     os, low, low, VectorKernel::toKernelType("gauss"), IPosition(2, directionIndex, directionIndex+1),
    1006             :                     extraconv, true, 1.0, true
    1007             :                     );
    1008             : 
    1009             :       }
    1010             :       LatticeExprNode node = max( cweight );
    1011             :       Float fmax = abs(node.getComplex());
    1012             :       cweight.copyData(  (LatticeExpr<Complex>)( 1.0f - cweight/fmax ) );
    1013             :       //Plotting part
    1014             :       if(doPlot){
    1015             :         CoordinateSystem ftCoords(cweight.coordinates());
    1016             :         Double freq=worldFreq(ftCoords, 0);
    1017             :         ////
    1018             :         Int directionIndex=ftCoords.findCoordinate(Coordinate::DIRECTION);
    1019             :         Array<Complex> tmpval;
    1020             :         IPosition start=cweight.shape();
    1021             :         IPosition shape=cweight.shape()/2;
    1022             :         for(uInt k=0; k < shape.nelements(); ++k){
    1023             :           start[k]=0;
    1024             :           if(k != uInt(directionIndex+1))
    1025             :             shape[k]=1;
    1026             :         }
    1027             :         start[directionIndex+1]=cweight.shape()[directionIndex+1]/2;
    1028             :         start[directionIndex]=cweight.shape()[directionIndex]/2;
    1029             :         cweight.getSlice(tmpval, start, shape, true);
    1030             :         Vector<Float> x=amplitude(tmpval);
    1031             :         Vector<Float> xdish=(Float(1.0) - x)*Float(sdScale);
    1032             :         tmpval.resize();
    1033             :         shape=cweight.shape()/2;
    1034             :         for(uInt k=0; k < shape.nelements(); ++k){
    1035             :           start[k]=0;
    1036             :           if(k != uInt(directionIndex))
    1037             :             shape[k]=1;
    1038             :         }
    1039             :         start[directionIndex+1]=cweight.shape()[directionIndex+1]/2;
    1040             :         start[directionIndex]=cweight.shape()[directionIndex]/2;
    1041             :         cweight.getSlice(tmpval, start, shape, true);
    1042             :         Vector<Float> y=amplitude(tmpval);
    1043             :         Vector<Float> ydish=(Float(1.0)-y)*Float(sdScale);
    1044             :         DirectionCoordinate dc=ftCoords.directionCoordinate(directionIndex);
    1045             :         Vector<Bool> axes(2); axes(0)=true;axes(1)=true;
    1046             :         Vector<Int> elshape(2); 
    1047             :         elshape(0)=cweight.shape()[directionIndex];
    1048             :         elshape(1)=cweight.shape()[directionIndex+1];
    1049             :         Coordinate* ftdc=dc.makeFourierCoordinate(axes,elshape);        
    1050             :         Vector<Double> xpix(x.nelements());
    1051             :         indgen(xpix);
    1052             :         xpix +=Double(cweight.shape()[directionIndex])/2.0;
    1053             :         Matrix<Double> pix(2, xpix.nelements());
    1054             :         Matrix<Double> world(2, xpix.nelements());
    1055             :         Vector<Bool> failures;
    1056             :         pix.row(1)=elshape(0)/2;
    1057             :         pix.row(0)=xpix;
    1058             :         ftdc->toWorldMany(world, pix, failures);
    1059             :         xpix=world.row(0);
    1060             :         //cerr << "xpix " << xpix << endl;
    1061             :         xpix=fabs(xpix)*(C::c)/freq;
    1062             :         Vector<Double> ypix(y.nelements());
    1063             :         indgen(ypix);
    1064             :         ypix +=Double(cweight.shape()[directionIndex+1])/2.0;
    1065             :         pix.resize(2, ypix.nelements());
    1066             :         world.resize();
    1067             :         pix.row(1)=ypix;
    1068             :         pix.row(0)=elshape(1)/2;
    1069             :         ftdc->toWorldMany(world, pix, failures);
    1070             :         ypix=world.row(1);
    1071             :         ypix=fabs(ypix)*(C::c/freq);
    1072             :         PlotServerProxy *plotter = dbus::launch<PlotServerProxy>( );
    1073             :         dbus::variant panel_id = plotter->panel( "Feather function slice cuts", "Distance in m", "Amp", "Feather",
    1074             :                                                std::vector<int>( ), "right");
    1075             : 
    1076             :         if ( panel_id.type( ) != dbus::variant::INT ) {
    1077             :           os << LogIO::SEVERE << "failed to start plotter" << LogIO::POST;
    1078             :           return ;
    1079             :         }
    1080             : 
    1081             :       
    1082             :         plotter->line(dbus::af(xpix),dbus::af(x),"blue","x-interferometer weight",panel_id.getInt( ));
    1083             :         plotter->line(dbus::af(xpix),dbus::af(xdish),"cyan","x-singledish weight",panel_id.getInt( ));
    1084             :         
    1085             :         plotter->line(dbus::af(ypix),dbus::af(y),"green","y-interferometer weight",panel_id.getInt( ));
    1086             :         plotter->line(dbus::af(ypix),dbus::af(ydish),"purple","y-singledish weight",panel_id.getInt( ));
    1087             : 
    1088             :       }
    1089             :       //End plotting part
    1090             :       // FT high res image
    1091             :       TempImage<Complex> cimagehigh(high.shape(), high.coordinates() );
    1092             :       StokesImageUtil::From(cimagehigh, high);
    1093             :       LatticeFFT::cfft2d( cimagehigh );
    1094             :       
    1095             :       // FT low res image
    1096             :       TempImage<Complex> cimagelow(high.shape(), high.coordinates() );
    1097             :       StokesImageUtil::From(cimagelow, low);
    1098             :       LatticeFFT::cfft2d( cimagelow );
    1099             : 
    1100             : 
    1101             :       // This factor comes from the beam volumes
    1102             :       if(sdScale != 1.0)
    1103             :         os << LogIO::NORMAL // Loglevel INFO
    1104             :            << "Multiplying single dish data by user specified factor "
    1105             :            << sdScale << ".\n" << LogIO::POST;
    1106             :       Float sdScaling  = sdScale;
    1107             :       if (! hBeam.isNull() && ! lBeam.isNull()) {
    1108             : 
    1109             :         Float beamFactor=
    1110             :           hBeam.getArea("arcsec2")/lBeam.getArea("arcsec2");
    1111             :         os << LogIO::NORMAL // Loglevel INFO
    1112             :            << "Applying additional scaling for ratio of the volumes of the high to the low resolution images : "
    1113             :            <<  beamFactor << ".\n" << LogIO::POST;
    1114             :         sdScaling*=beamFactor;
    1115             :       }
    1116             :       else {
    1117             :         os << LogIO::WARN << "Insufficient information to scale correctly.\n" 
    1118             :            << LogIO::POST;
    1119             :       }
    1120             : 
    1121             :       // combine high and low res, appropriately normalized, in Fourier
    1122             :       // plane. The vital point to remember is that cimagelow is already
    1123             :       // multiplied by 1-cweight so we only need adjust for the ratio of beam
    1124             :       // volumes
    1125             :       Vector<Int> extraAxes(cimagehigh.shape().nelements()-2);
    1126             :       if(extraAxes.nelements() > 0){
    1127             :         
    1128             :         if(extraAxes.nelements() ==2){
    1129             :           Int n3=cimagehigh.shape()(2);
    1130             :           Int n4=cimagehigh.shape()(3);
    1131             :           IPosition blc(cimagehigh.shape());
    1132             :           IPosition trc(cimagehigh.shape());
    1133             :           blc(0)=0; blc(1)=0;
    1134             :           trc(0)=cimagehigh.shape()(0)-1;
    1135             :           trc(1)=cimagehigh.shape()(1)-1;
    1136             :           for (Int j=0; j < n3; ++j){
    1137             :             for (Int k=0; k < n4 ; ++k){
    1138             :               blc(2)=j; trc(2)=j;
    1139             :               blc(3)=k; trc(3)=k;
    1140             :               Slicer sl(blc, trc, Slicer::endIsLast);
    1141             :               SubImage<Complex> cimagehighSub(cimagehigh, sl, true);
    1142             :               SubImage<Complex> cimagelowSub(cimagelow, sl, true);
    1143             :               cimagehighSub.copyData(  (LatticeExpr<Complex>)((cimagehighSub * cweight + cimagelowSub * sdScaling)));
    1144             :             }
    1145             :           }
    1146             :         }
    1147             :       }
    1148             :       else{
    1149             :         cimagehigh.copyData(  
    1150             :                             (LatticeExpr<Complex>)((cimagehigh * cweight 
    1151             :                                                     + cimagelow * sdScaling)));
    1152             :       }
    1153             :       // FT back to image plane
    1154             :       LatticeFFT::cfft2d( cimagehigh, false);
    1155             :     
    1156             :       // write to output image
    1157             :       PagedImage<Float> featherImage(high.shape(), high.coordinates(), image );
    1158             :       StokesImageUtil::To(featherImage, cimagehigh);
    1159             :       ImageUtilities::copyMiscellaneous(featherImage, high);
    1160             : 
    1161             :       try{
    1162             :       { // write data processing history into image logtable
    1163             :         LoggerHolder imagelog (false);
    1164             :         LogSink& sink = imagelog.sink();
    1165             :         LogOrigin lor(String("Feather"), String("feather()"));
    1166             :         LogMessage msg(lor);
    1167             :         ostringstream oos;
    1168             :         oos << endl << "Imager::feather() input paramaters:" << endl
    1169             :             << "Feathered image =      '" << image   << "'" << endl
    1170             :             << "High resolution image ='" << high.name() << "'" << endl
    1171             :             << "Low resolution image = '" << low0.name()  << "'" << endl
    1172             :             << "Low resolution PSF =   '" << lowPSF  << "'" << endl << endl;
    1173             :         String inputs(oos);
    1174             :         sink.postLocally(msg.message(inputs));
    1175             :         imagelog.flush();
    1176             : 
    1177             :         LoggerHolder& log = featherImage.logger();
    1178             :         log.append(imagelog);
    1179             :         log.flush();
    1180             :       }
    1181             :       }catch(exception& x){
    1182             : 
    1183             :         os << LogIO::WARN << "Caught exception: " << x.what()
    1184             :        << LogIO::POST;
    1185             :         
    1186             : 
    1187             :       }
    1188             :       catch(...){
    1189             :         os << LogIO::SEVERE << "Unknown exception handled" << LogIO::POST;
    1190             : 
    1191             :       }
    1192             :    
    1193             : 
    1194             : 
    1195             : 
    1196             : 
    1197             : 
    1198             : 
    1199             : 
    1200             :    }catch(exception& x){
    1201             : 
    1202             :         os << LogIO::WARN << "Caught exception: " << x.what()
    1203             :            << LogIO::POST;  
    1204             :    }
    1205             :     
    1206             : 
    1207             : 
    1208             :   }
    1209             :   */
    1210           0 :  void Feather::feather(const String& image, const ImageInterface<Float>& high, const ImageInterface<Float>& low0, const Float& sdScale, const String& lowPSF, const Bool useDefaultPB, const String& vpTableStr, Float effDiam, const Bool doHiPassFilterOnSD){
    1211             : 
    1212           0 :    Feather plume;
    1213           0 :    plume.setINTImage(high);
    1214           0 :    ImageInfo lowInfo=low0.imageInfo();
    1215           0 :    GaussianBeam lBeam=lowInfo.restoringBeam();
    1216           0 :    if(lBeam.isNull()) {
    1217           0 :      getLowBeam(low0, lowPSF, useDefaultPB, vpTableStr, lBeam);
    1218           0 :      if(lBeam.isNull())
    1219           0 :        throw(AipsError("Do not have low resolution beam info "));
    1220           0 :      TempImage<Float> newLow(low0.shape(), low0.coordinates());
    1221           0 :      newLow.copyData(low0);
    1222           0 :      lowInfo.removeRestoringBeam();
    1223           0 :      lowInfo.setRestoringBeam(lBeam);
    1224           0 :      newLow.setImageInfo(lowInfo);
    1225           0 :      plume.setSDImage(newLow);    
    1226           0 :    }
    1227             :    else{
    1228           0 :      plume.setSDImage(low0);
    1229             :    }
    1230           0 :    plume.setSDScale(sdScale);
    1231           0 :    if(effDiam >0.0){
    1232           0 :      plume.setEffectiveDishDiam(effDiam, effDiam);
    1233             :    }
    1234           0 :    else if(doHiPassFilterOnSD){
    1235             :      Float xdiam, ydiam;
    1236           0 :      plume.getEffectiveDishDiam(xdiam, ydiam);
    1237           0 :      plume.setEffectiveDishDiam(xdiam, ydiam);
    1238             :    }
    1239           0 :    plume.saveFeatheredImage(image);
    1240             : 
    1241           0 :  }
    1242             :   
    1243             : 
    1244           0 :   void Feather::getLowBeam(const ImageInterface<Float>& low0, const String& lowPSF, const Bool useDefaultPB, const String& vpTableStr, GaussianBeam& lBeam){
    1245           0 :     LogIO os(LogOrigin("Feather", "getLowBeam()", WHERE));
    1246           0 :     PBMath * myPBp = 0;
    1247           0 :     if((lowPSF=="") && lBeam.isNull()) {
    1248             :       // create the low res's PBMath object, needed to apply PB 
    1249             :       // to make high res Fourier weight image
    1250           0 :       if (useDefaultPB) {
    1251             :         // look up the telescope in ObsInfo
    1252           0 :         ObsInfo oi = low0.coordinates().obsInfo();
    1253           0 :         String myTelescope = oi.telescope();
    1254           0 :         if (myTelescope == "") {
    1255             :           os << LogIO::SEVERE << "No telescope imbedded in low res image" 
    1256           0 :              << LogIO::POST;
    1257             :           os << LogIO::SEVERE << "Create a PB description with the vpmanager"
    1258           0 :              << LogIO::EXCEPTION;
    1259             :         }
    1260           0 :         Quantity qFreq;
    1261             :         {
    1262           0 :           Double freq  = worldFreq(low0.coordinates(), 0);
    1263           0 :           qFreq = Quantity( freq, "Hz" );
    1264             :         }
    1265           0 :         String band;
    1266             :         PBMath::CommonPB whichPB;
    1267           0 :         String pbName;
    1268             :         // get freq from coordinates
    1269           0 :         PBMath::whichCommonPBtoUse (myTelescope, qFreq, band, whichPB, 
    1270             :                                     pbName);
    1271           0 :         if (whichPB  == PBMath::UNKNOWN) {
    1272             :           os << LogIO::SEVERE << "Unknown telescope for PB type: " 
    1273           0 :              << myTelescope << LogIO::EXCEPTION;
    1274             :         }
    1275           0 :         myPBp = new PBMath(whichPB);
    1276           0 :       } else {
    1277             :         // get the PB from the vpTable
    1278           0 :         Table vpTable( vpTableStr );
    1279           0 :         ScalarColumn<TableRecord> recCol(vpTable, (String)"pbdescription");
    1280           0 :         myPBp = new PBMath(recCol(0));
    1281           0 :       }
    1282           0 :       AlwaysAssert((myPBp != 0), AipsError);
    1283             :     }
    1284             : 
    1285             :    
    1286             :     // get image center direction
    1287           0 :     MDirection wcenter;  
    1288             :     {
    1289             :       Int directionIndex=
    1290           0 :         low0.coordinates().findCoordinate(Coordinate::DIRECTION);
    1291           0 :       AlwaysAssert(directionIndex>=0, AipsError);
    1292             :       DirectionCoordinate
    1293           0 :         directionCoord=low0.coordinates().directionCoordinate(directionIndex);
    1294           0 :       Vector<Double> pcenter(2);
    1295           0 :       pcenter(0) = low0.shape()(0)/2;
    1296           0 :       pcenter(1) = low0.shape()(1)/2;    
    1297           0 :       directionCoord.toWorld( wcenter, pcenter );
    1298           0 :     }
    1299             :     
    1300             :     // make the weight image 
    1301           0 :       IPosition myshap(low0.shape());
    1302           0 :       for( uInt k=2; k< myshap.nelements(); ++k){
    1303           0 :         myshap(k)=1;
    1304             :       }
    1305             :       
    1306           0 :       TempImage<Float> lowpsf0;
    1307           0 :       TempImage<Complex> cweight(myshap, low0.coordinates());
    1308           0 :       if(lowPSF=="") {
    1309             :         os << LogIO::NORMAL // Loglevel INFO
    1310           0 :            << "Using primary beam to determine weighting.\n" << LogIO::POST;
    1311           0 :         cweight.set(1.0);
    1312           0 :         if (myPBp != 0) {
    1313           0 :           myPBp->applyPB(cweight, cweight, wcenter, Quantity(0.0, "deg"), 
    1314             :                          BeamSquint::NONE);
    1315             :           
    1316           0 :           lowpsf0=TempImage<Float>(cweight.shape(), cweight.coordinates());
    1317             :           
    1318             :           os << LogIO::NORMAL // Loglevel INFO
    1319             :              << "Determining scaling from SD Primary Beam.\n"
    1320           0 :              << LogIO::POST;
    1321           0 :           StokesImageUtil::To(lowpsf0, cweight);
    1322           0 :           StokesImageUtil::FitGaussianPSF(lowpsf0, 
    1323             :                                           lBeam);
    1324             :         }
    1325           0 :         delete myPBp;   
    1326             :       }
    1327             :       else {
    1328             :         os << LogIO::NORMAL // Loglevel INFO
    1329             :            << "Using specified low resolution PSF to determine weighting.\n" 
    1330           0 :            << LogIO::POST;
    1331             :         // regrid the single dish psf
    1332           0 :         PagedImage<Float> lowpsfDisk(lowPSF);
    1333           0 :         IPosition lshape(lowpsfDisk.shape());
    1334           0 :         lshape.resize(4);
    1335           0 :         lshape(2)=1; lshape(3)=1;
    1336           0 :         TempImage<Float>lowpsf(lshape,lowpsfDisk.coordinates());
    1337           0 :         IPosition blc(lowpsfDisk.shape());
    1338           0 :         IPosition trc(lowpsfDisk.shape());
    1339           0 :         blc(0)=0; blc(1)=0;
    1340           0 :         trc(0)=lowpsfDisk.shape()(0)-1;
    1341           0 :         trc(1)=lowpsfDisk.shape()(1)-1;
    1342           0 :         for( uInt k=2; k < lowpsfDisk.shape().nelements(); ++k){
    1343           0 :           blc(k)=0; trc(k)=0;             
    1344             :         }// taking first plane
    1345           0 :         Slicer sl(blc, trc, Slicer::endIsLast);
    1346           0 :         lowpsf.copyData(SubImage<Float>(lowpsfDisk, sl, false));
    1347             :         os << LogIO::NORMAL // Loglevel INFO
    1348           0 :            << "Determining scaling from low resolution PSF.\n" << LogIO::POST;
    1349           0 :         StokesImageUtil::FitGaussianPSF(lowpsf, lBeam);
    1350           0 :       }
    1351             :        
    1352             :  
    1353             : 
    1354           0 :   }
    1355             : 
    1356           0 :   Double Feather::worldFreq(const CoordinateSystem& cs, Int spectralpix){
    1357             :     ///freq part
    1358           0 :     Int spectralIndex=cs.findCoordinate(Coordinate::SPECTRAL);
    1359             :     SpectralCoordinate
    1360             :       spectralCoord=
    1361           0 :       cs.spectralCoordinate(spectralIndex);
    1362           0 :     Vector<String> units(1); units = "Hz";
    1363           0 :     spectralCoord.setWorldAxisUnits(units);     
    1364           0 :     Vector<Double> spectralWorld(1);
    1365           0 :     Vector<Double> spectralPixel(1);
    1366           0 :     spectralPixel(0) = spectralpix;
    1367           0 :     spectralCoord.toWorld(spectralWorld, spectralPixel);  
    1368           0 :     Double freq  = spectralWorld(0);
    1369           0 :     return freq;
    1370           0 :   }
    1371             : 
    1372             : 
    1373             : 
    1374             : 
    1375             : 
    1376             : }//# NAMESPACE CASA - END

Generated by: LCOV version 1.16