LCOV - code coverage report
Current view: top level - synthesis/MeasurementEquations - ImageMSCleaner.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 287 0.0 %
Date: 2024-10-10 19:51:30 Functions: 0 23 0.0 %

          Line data    Source code
       1             : //# Copyright (C) 1997-2010
       2             : //# Associated Universities, Inc. Washington DC, USA.
       3             : //#
       4             : //# This library is free software; you can redistribute it and/or modify it
       5             : //# under the terms of the GNU Library General Public License as published by
       6             : //# the Free Software Foundation; either version 2 of the License, or (at your
       7             : //# option) any later version.
       8             : //#
       9             : //# This library is distributed in the hope that it will be useful, but WITHOUT
      10             : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      11             : //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
      12             : //# License for more details.
      13             : //#
      14             : //# You should have received a copy of the GNU Library General Public License
      15             : //# along with this library; if not, write to the Free Software Foundation,
      16             : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
      17             : //#
      18             : //# Correspondence concerning AIPS++ should be addressed as follows:
      19             : //#        Internet email: casa-feedback@nrao.edu.
      20             : //#        Postal address: AIPS++ Project Office
      21             : //#                        National Radio Astronomy Observatory
      22             : //#                        520 Edgemont Road
      23             : //#                        Charlottesville, VA 22903-2475 USA
      24             : //#
      25             : //# $Id:  $
      26             : #include <synthesis/MeasurementEquations/MatrixCleaner.h>
      27             : #include <synthesis/MeasurementEquations/ImageMSCleaner.h>
      28             : #include <casacore/images/Images/PagedImage.h>
      29             : #include <casacore/coordinates/Coordinates/CoordinateSystem.h>
      30             : #include <casacore/coordinates/Coordinates/CoordinateUtil.h>
      31             : 
      32             : using namespace casacore;
      33             : namespace casa { //# NAMESPACE CASA - BEGIN
      34             : 
      35           0 :   ImageMSCleaner::ImageMSCleaner(): psf_p(0), dirty_p(0), mask_p(0), nPsfChan_p(0), 
      36           0 :                                     nImChan_p(0), nPsfPol_p(0), nImPol_p(0), chanAxis_p(-1), 
      37           0 :                                     polAxis_p(-1), nMaskChan_p(0), nMaskPol_p(0), maskThresh_p(0.9), maxResidual_p(0.0)
      38             :  {
      39             : 
      40             : 
      41           0 :   }
      42           0 :   ImageMSCleaner::ImageMSCleaner(ImageInterface<Float>& psf, 
      43           0 :                                  ImageInterface<Float>& dirty): psf_p(&psf), 
      44           0 :                                                                       dirty_p(&dirty), mask_p(0), 
      45           0 :                                                                       nMaskChan_p(0), nMaskPol_p(0),
      46           0 :                                                                 maskThresh_p(0.9), maxResidual_p(0.0){
      47             :     
      48           0 :     chanAxis_p=CoordinateUtil::findSpectralAxis(dirty_p->coordinates());
      49           0 :     Vector<Stokes::StokesTypes> whichPols;
      50           0 :     polAxis_p=CoordinateUtil::findStokesAxis(whichPols, dirty_p->coordinates());
      51           0 :     if(chanAxis_p > -1){
      52           0 :       nPsfChan_p=psf_p->shape()(chanAxis_p);
      53           0 :       nImChan_p=dirty_p->shape()(chanAxis_p);
      54             :     }
      55           0 :     if(polAxis_p > -1){
      56           0 :       nPsfPol_p=psf_p->shape()(polAxis_p);
      57           0 :       nImPol_p=dirty_p->shape()(polAxis_p);
      58             :     }
      59           0 :   }
      60             : 
      61             : 
      62           0 :   ImageMSCleaner::ImageMSCleaner(const ImageMSCleaner& other){
      63           0 :     operator=(other);
      64           0 :   }
      65             : 
      66           0 :   ImageMSCleaner::~ImageMSCleaner(){
      67             : 
      68           0 :   }
      69             : 
      70           0 :   ImageMSCleaner& ImageMSCleaner::operator=(const ImageMSCleaner& other){
      71           0 :     if (this != &other) {
      72           0 :       matClean_p=other.matClean_p;
      73           0 :       psf_p=other.psf_p;
      74           0 :       dirty_p=other.dirty_p;
      75           0 :       mask_p=other.mask_p;
      76           0 :       nPsfChan_p=other.nPsfChan_p;
      77           0 :       nImChan_p=other.nImChan_p;
      78           0 :       nPsfPol_p=other.nPsfPol_p;
      79           0 :       nImPol_p=other.nImPol_p;
      80           0 :       chanAxis_p=other.chanAxis_p;
      81           0 :       nMaskChan_p=other.nMaskChan_p;
      82           0 :       nMaskPol_p=other.nMaskPol_p;
      83           0 :       polAxis_p=other.polAxis_p;
      84           0 :       scales_p=other.scales_p;
      85           0 :       maskThresh_p=other.maskThresh_p;
      86           0 :       maxResidual_p=other.maxResidual_p;
      87             :     }
      88           0 :     return *this;
      89             :   }
      90           0 :   void ImageMSCleaner::update(ImageInterface<Float>& dirty){
      91           0 :     dirty_p=&dirty;
      92           0 :     chanAxis_p=CoordinateUtil::findSpectralAxis(dirty_p->coordinates());
      93           0 :     Vector<Stokes::StokesTypes> whichPols;
      94           0 :     polAxis_p=CoordinateUtil::findStokesAxis(whichPols, dirty_p->coordinates());
      95           0 :     if(chanAxis_p > -1){
      96           0 :       nImChan_p=dirty_p->shape()(chanAxis_p);
      97             :     }
      98             :     else
      99           0 :       nImChan_p=0;
     100           0 :     if(polAxis_p > -1){
     101           0 :       nImPol_p=dirty_p->shape()(polAxis_p);
     102             :     }
     103             :     else
     104           0 :       nImPol_p=0;
     105           0 :   }
     106             : 
     107           0 :   void ImageMSCleaner::setPsf(ImageInterface<Float> & psf){
     108           0 :     psf_p=&psf;
     109           0 :     Int chanAxis=CoordinateUtil::findSpectralAxis(psf_p->coordinates());
     110           0 :     Vector<Stokes::StokesTypes> whichPols;
     111           0 :     Int polAxis=CoordinateUtil::findStokesAxis(whichPols, psf_p->coordinates());
     112           0 :     if(chanAxis > -1){
     113           0 :       nPsfChan_p=psf_p->shape()(chanAxis);
     114             :     }
     115             :     else
     116           0 :       nPsfChan_p=0;
     117           0 :     if(polAxis > -1){
     118           0 :       nPsfPol_p=psf_p->shape()(polAxis);
     119             :     }
     120             :     else
     121           0 :       nPsfPol_p=0;
     122           0 :   }
     123             :   
     124           0 :   void ImageMSCleaner::setscales(const Int nscs, const Float scaleInc){
     125           0 :     LogIO os(LogOrigin("ImageMSCleaner", "setscales()", WHERE));
     126           0 :     Int nscales=nscs;
     127             : 
     128           0 :     if(nscales<1) {
     129           0 :       os << "Using default of 5 scales" << LogIO::POST;
     130           0 :       nscales=5;
     131             :     }
     132             :   
     133           0 :     scales_p.resize(nscales);
     134             :   
     135             :     // Validate scales
     136           0 :     os << "Creating " << nscales << " scales" << LogIO::POST;
     137           0 :     scales_p(0) = 0.00001 * scaleInc;
     138           0 :     os << "scale 0 = 0.0 arcsec" << LogIO::POST;
     139           0 :     for (Int scale=1; scale<nscales;scale++) {
     140           0 :     scales_p(scale) =
     141           0 :       scaleInc * pow(10.0, (Float(scale)-2.0)/2.0);
     142           0 :     os << "scale " << scale << " = " << scales_p(scale)
     143           0 :        << " arcsec" << LogIO::POST;
     144             :     }
     145             : 
     146           0 :   }
     147           0 :   void  ImageMSCleaner::setscales(const Vector<Float> & scales){
     148           0 :     scales_p.resize(scales.nelements());
     149           0 :     scales_p=scales;
     150           0 :   }
     151             : 
     152           0 :   Bool ImageMSCleaner::setcontrol(CleanEnums::CleanType cleanType, const Int niter,
     153             :                   const Float gain, const Quantity& aThreshold,
     154             :                                   const Quantity& fThreshold){
     155           0 :     return matClean_p.setcontrol(cleanType, niter, gain, aThreshold, fThreshold);
     156             :   }
     157           0 :   Bool ImageMSCleaner::setcontrol(CleanEnums::CleanType cleanType, const Int niter,
     158             :                                   const Float gain, const Quantity& threshold){
     159             : 
     160           0 :     return matClean_p.setcontrol(cleanType, niter, gain, threshold);
     161             : 
     162             :   }
     163           0 :   Int ImageMSCleaner::iteration() const{
     164           0 :     return matClean_p.iteration();
     165             :   }
     166           0 :   Int ImageMSCleaner::numberIterations() const{
     167           0 :     return matClean_p.numberIterations();
     168             :   }
     169           0 :   void ImageMSCleaner::startingIteration(const Int starting){
     170           0 :     matClean_p.startingIteration(starting);
     171           0 :   }
     172             : 
     173           0 :   void ImageMSCleaner::setMask(ImageInterface<Float> & mask, 
     174             :                                const Float& maskThreshold){
     175             :   
     176           0 :     maskThresh_p=maskThreshold;
     177           0 :     mask_p=&mask;
     178           0 :     Int chanAxis=CoordinateUtil::findSpectralAxis(mask_p->coordinates());
     179           0 :     Vector<Stokes::StokesTypes> whichPols;
     180           0 :     Int polAxis=CoordinateUtil::findStokesAxis(whichPols, mask_p->coordinates());
     181           0 :     if(chanAxis > -1){
     182           0 :       nMaskChan_p=mask_p->shape()(chanAxis);
     183             :     }
     184             :     else
     185           0 :       nMaskChan_p=0;
     186           0 :     if(polAxis > -1){
     187           0 :       nMaskPol_p=mask_p->shape()(polAxis);
     188             :     }
     189             :     else
     190           0 :       nMaskPol_p=0;
     191             : 
     192             : 
     193           0 :   }
     194             : 
     195           0 :   void ImageMSCleaner::ignoreCenterBox(Bool ign){
     196           0 :     matClean_p.ignoreCenterBox(ign);
     197           0 :   }
     198           0 :   void ImageMSCleaner::setSmallScaleBias(const Float x){
     199           0 :     matClean_p.setSmallScaleBias(x);
     200           0 :   }
     201           0 :   void ImageMSCleaner::stopAtLargeScaleNegative(){
     202           0 :     matClean_p.stopAtLargeScaleNegative();
     203           0 :   }
     204           0 :   void ImageMSCleaner::stopPointMode(Int nStopPointMode) {
     205           0 :     matClean_p.stopPointMode(nStopPointMode);
     206           0 :   }
     207           0 :   Bool ImageMSCleaner::queryStopPointMode() const{
     208           0 :     return matClean_p.queryStopPointMode();
     209             :   }
     210           0 :   void ImageMSCleaner::speedup(const Float Ndouble){
     211           0 :     matClean_p.speedup(Ndouble);
     212           0 :   }
     213             : 
     214           0 :   Bool ImageMSCleaner::setupMatCleaner(const String& alg, const Int niter,
     215             :                                        const Float gain, const Quantity& threshold, const Quantity& fthresh){
     216             : 
     217           0 :     LogIO os(LogOrigin("ImageMSCleaner", "setupclean()", WHERE));
     218             :     
     219           0 :     String algorithm=alg;
     220           0 :     algorithm.downcase();
     221           0 :     if((algorithm=="msclean")||(algorithm=="fullmsclean" )|| (algorithm=="multiscale") 
     222           0 :        || (algorithm=="fullmultiscale")) {
     223             :       //os << "Cleaning image using multi-scale algorithm" << LogIO::POST;
     224           0 :       if(scales_p.nelements()==0) {
     225           0 :         os << LogIO::SEVERE << "Scales not yet set" << LogIO::POST;
     226           0 :         return false;
     227             :       }
     228             :       //matClean_p.setscales(scaleSizes_p);
     229           0 :       matClean_p.setcontrol(CleanEnums::MULTISCALE, niter, gain, threshold, fthresh);
     230             :     }
     231           0 :     else if (algorithm=="hogbom") {
     232           0 :       scales_p=Vector<Float>(1,0.0);
     233           0 :       matClean_p.defineScales(scales_p);
     234           0 :       matClean_p.setcontrol(CleanEnums::HOGBOM, niter, gain, threshold, fthresh);
     235             :     } else {
     236           0 :       os << LogIO::SEVERE << "Unknown algorithm: " << algorithm << LogIO::POST;
     237           0 :       return false; 
     238             :     }
     239             : 
     240           0 :     if(algorithm=="fullmsclean" || algorithm=="fullmultiscale") {
     241           0 :       matClean_p.ignoreCenterBox(true);
     242             :     }
     243           0 :     return true;
     244           0 :   }
     245             : 
     246           0 :   Int ImageMSCleaner::clean(ImageInterface<Float> & modelimage, const String& algorithm, 
     247             :                             const Int niter,
     248             :                             const Float gain, const Quantity& threshold, const Quantity& fthresh, Bool /*doPlotProgress*/){
     249             : 
     250             : 
     251             :     
     252             :     
     253             :     
     254           0 :     Int result=0;
     255             :     ///case of single plane mask
     256             :     //now may be a time to set stuff  scales will be done later
     257           0 :     if(!setupMatCleaner(algorithm, niter, gain, threshold, fthresh))
     258           0 :       return false;
     259           0 :     matClean_p.defineScales(scales_p);
     260             :     //cerr << "nPol " << nMaskPol_p << " " << nPsfPol_p << " " << nImPol_p << endl;
     261             :     //cerr << "nChan " << nMaskChan_p << " " << nPsfChan_p << " " << nImChan_p << endl;
     262           0 :     if( (nMaskPol_p >1) && (nMaskPol_p != nImPol_p))
     263           0 :       throw(AipsError("Donot know how to deal with mask that has different pol axis as Image")); 
     264           0 :     if(mask_p && nMaskChan_p < 2 && nMaskPol_p < 2){
     265           0 :       Matrix<Float> maskMat;
     266           0 :       Array<Float> mbuf;
     267           0 :       mask_p->get(mbuf, true);
     268           0 :       maskMat.reference(mbuf);
     269             :      
     270           0 :       matClean_p.setMask(maskMat, maskThresh_p);
     271           0 :     }
     272           0 :     if(!psf_p)
     273           0 :       throw(AipsError("No PSF defined "));
     274             :     ///case of single plane psf
     275           0 :     if(nPsfChan_p < 2){
     276           0 :       Matrix<Float> psfMat;
     277           0 :       Array<Float> mbuf;
     278           0 :       if(nPsfPol_p > 1){
     279             :         ///First stokes psf is good enough
     280           0 :         IPosition blc(dirty_p->ndim(),0);
     281           0 :         IPosition trc=(dirty_p->shape()) -1;
     282           0 :         trc(polAxis_p)=0;
     283           0 :         Slicer sl(blc, trc, Slicer::endIsLast);
     284           0 :         psf_p->getSlice(mbuf, sl, true);
     285           0 :       }
     286             :       else{
     287           0 :         psf_p->get(mbuf, true);
     288             :       }
     289           0 :       psfMat.reference(mbuf);
     290           0 :       matClean_p.setPsf(psfMat);
     291           0 :       matClean_p.makePsfScales();
     292             :       //matClean_p.makeScaleMasks();
     293             :       
     294           0 :     }
     295             : 
     296             :     
     297             : 
     298             :     //has cube axis
     299           0 :     if(chanAxis_p > -1 && nImChan_p > 0){
     300           0 :       Int npol=1;
     301           0 :       if(polAxis_p > -1 && nImPol_p >0){
     302           0 :         npol=nImPol_p;
     303             :       }
     304           0 :       Matrix<Float> subModel;
     305           0 :       Bool getModel=false;
     306           0 :       IPosition blc(dirty_p->ndim(), 0);
     307           0 :       IPosition trc=dirty_p->shape() -1;
     308           0 :       for (Int k=0; k < nImChan_p ; ++k){
     309           0 :         for (Int j=0; j < npol; ++j){
     310           0 :           if(npol > 1 ){
     311           0 :             blc(polAxis_p)=j;
     312           0 :             trc(polAxis_p)=j;
     313             :           }
     314           0 :           blc(chanAxis_p)=k;
     315           0 :           trc(chanAxis_p)=k;
     316           0 :           Slicer sl(blc, trc, Slicer::endIsLast);
     317           0 :           Matrix<Float> dirtySub ;
     318           0 :           Array<Float> buf;
     319           0 :           dirty_p->getSlice(buf, sl, true);
     320           0 :           dirtySub.reference(buf);
     321           0 :           matClean_p.setDirty(dirtySub);
     322           0 :           Array<Float> bufMod;
     323           0 :           getModel=modelimage.getSlice(bufMod, sl, true);
     324           0 :           subModel.reference(bufMod);
     325             :           
     326           0 :           if((nPsfChan_p>1) && (k<(nPsfChan_p-1))){
     327           0 :             Matrix<Float> psfSub;
     328           0 :             Array<Float> buf1;
     329           0 :             psf_p->getSlice(buf1, sl, true);
     330           0 :             psfSub.reference(buf1);
     331           0 :             matClean_p.setPsf(psfSub);
     332           0 :             matClean_p.makePsfScales();
     333           0 :           }
     334           0 :           matClean_p.makeDirtyScales();
     335           0 :           if(mask_p !=0){
     336           0 :             if((nMaskChan_p >1) && (k<(nMaskChan_p-1))){
     337           0 :               Matrix<Float> maskSub;
     338           0 :               Array<Float> buf2;
     339           0 :               mask_p->getSlice(buf2, sl, true);
     340           0 :               maskSub.reference(buf2);
     341           0 :               matClean_p.setMask(maskSub, maskThresh_p);
     342             :               //Set mask above does the makeScaleMasks as psf-scale-Xfr are valid               
     343           0 :             }
     344             :             //use one plane mask to all planes
     345           0 :             else if(nMaskChan_p==1){
     346           0 :               if((nMaskPol_p >1) && (mask_p !=0) ){
     347           0 :                 Matrix<Float> maskSub;
     348           0 :                 Array<Float> buf2;
     349           0 :                 mask_p->getSlice(buf2, sl, true);
     350           0 :                 maskSub.reference(buf2);
     351           0 :                 matClean_p.setMask(maskSub, maskThresh_p);
     352           0 :               }
     353           0 :               matClean_p.makeScaleMasks();
     354             :             }
     355             :             else{
     356           0 :               matClean_p.unsetMask();
     357             :             }
     358             :           }
     359           0 :           result=matClean_p.clean(subModel, true);
     360             :           //Update the private flux and residuals here
     361           0 :           maxResidual_p=max(maxResidual_p, matClean_p.strengthOptimum()); 
     362           0 :           if(!getModel)
     363           0 :             modelimage.putSlice(bufMod, sl.start());
     364             :           
     365           0 :         }
     366             :       }
     367           0 :     }
     368             :     //has no channel but has pol
     369           0 :     else if(polAxis_p > -1 && nImPol_p > 1){
     370             :       //The psf should have been set above before the if loop
     371             :       //for this case
     372           0 :       Matrix<Float> subModel;
     373           0 :       Bool getModel=false;
     374           0 :       IPosition blc(dirty_p->ndim(), 0);
     375           0 :       IPosition trc=dirty_p->shape() -1;
     376           0 :       for (Int j=0; j < nImPol_p; ++j){
     377           0 :         blc(polAxis_p)=j;
     378           0 :         trc(polAxis_p)=j;
     379           0 :         Slicer sl(blc, trc, Slicer::endIsLast);
     380           0 :         Matrix<Float> dirtySub ;
     381           0 :         Array<Float> buf;
     382           0 :         dirty_p->getSlice(buf, sl, true);
     383           0 :         dirtySub.reference(buf);
     384           0 :         matClean_p.setDirty(dirtySub);
     385           0 :         matClean_p.makeDirtyScales();
     386           0 :         Array<Float> bufMod;
     387           0 :         getModel=modelimage.getSlice(bufMod, sl, true);
     388           0 :         subModel.reference(bufMod);
     389           0 :         if(mask_p !=0){
     390           0 :           if((nMaskPol_p >1)){
     391           0 :             Matrix<Float> maskSub;
     392           0 :             Array<Float> buf2;
     393           0 :             mask_p->getSlice(buf2, sl, true);
     394           0 :             maskSub.reference(buf2);
     395           0 :             matClean_p.setMask(maskSub, maskThresh_p);
     396           0 :           }
     397           0 :           matClean_p.makeScaleMasks();
     398             :         }
     399           0 :         result=matClean_p.clean(subModel, true);
     400             :         //Update the private flux and residuals here
     401           0 :         maxResidual_p=max(maxResidual_p, matClean_p.strengthOptimum()); 
     402           0 :         if(!getModel)
     403           0 :           modelimage.putSlice(bufMod, sl.start());
     404           0 :       }      
     405           0 :     }
     406             :     //1 pol or less
     407             :     else{
     408             :       //psf and mask should have been set above if 
     409           0 :       Matrix<Float> dirtySub ;
     410           0 :       Array<Float> buf;
     411           0 :       dirty_p->get(buf, true);
     412           0 :       if(buf.shape().nelements() != 2){
     413           0 :         throw(AipsError("Non-expected axes in this image"));
     414             :       } 
     415           0 :       dirtySub.reference(buf);
     416           0 :       matClean_p.setDirty(dirtySub);
     417           0 :       matClean_p.makeDirtyScales();
     418           0 :       Matrix<Float> subModel;
     419           0 :       Array<Float> buf0;
     420           0 :       Bool getModel=false;
     421           0 :       getModel=modelimage.get(buf0, true);
     422           0 :       subModel.reference(buf0);
     423           0 :       result=matClean_p.clean(subModel, true);
     424             :       //Update the private flux and residuals here
     425           0 :       maxResidual_p=max(maxResidual_p, matClean_p.strengthOptimum()); 
     426           0 :       if(!getModel)
     427           0 :         modelimage.put(subModel);
     428           0 :     }
     429           0 :     return result;
     430             :     
     431             :   }
     432             : 
     433             : 
     434             : } //# NAMESPACE CASA - END

Generated by: LCOV version 1.16