LCOV - code coverage report
Current view: top level - synthesis/ImagerObjects - SDAlgorithmClarkClean.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 92 0.0 %
Date: 2024-10-10 19:51:30 Functions: 0 8 0.0 %

          Line data    Source code
       1             : //# SDAlgorithmClarkClean.cc: Implementation of SDAlgorithmClarkClean classes
       2             : //# Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003
       3             : //# Associated Universities, Inc. Washington DC, USA.
       4             : //#
       5             : //# This library is free software; you can redistribute it and/or modify it
       6             : //# under the terms of the GNU Library General Public License as published by
       7             : //# the Free Software Foundation; either version 2 of the License, or (at your
       8             : //# option) any later version.
       9             : //#
      10             : //# This library is distributed in the hope that it will be useful, but WITHOUT
      11             : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      12             : //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
      13             : //# License for more details.
      14             : //#
      15             : //# You should have received a copy of the GNU Library General Public License
      16             : //# along with this library; if not, write to the Free Software Foundation,
      17             : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
      18             : //#
      19             : //# Correspondence concerning AIPS++ should be addressed as follows:
      20             : //#        Internet email: casa-feedback@nrao.edu.
      21             : //#        Postal address: AIPS++ Project Office
      22             : //#                        National Radio Astronomy Observatory
      23             : //#                        520 Edgemont Road
      24             : //#                        Charlottesville, VA 22903-2475 USA
      25             : //#
      26             : //# $Id$
      27             : 
      28             : #include <casacore/casa/Arrays/ArrayMath.h>
      29             : #include <casacore/casa/OS/HostInfo.h>
      30             : 
      31             : #include <components/ComponentModels/SkyComponent.h>
      32             : #include <components/ComponentModels/ComponentList.h>
      33             : #include <casacore/images/Images/TempImage.h>
      34             : #include <casacore/images/Images/SubImage.h>
      35             : #include <casacore/images/Regions/ImageRegion.h>
      36             : #include <casacore/casa/OS/File.h>
      37             : #include <casacore/lattices/LEL/LatticeExpr.h>
      38             : #include <casacore/lattices/Lattices/TiledLineStepper.h>
      39             : #include <casacore/lattices/Lattices/LatticeStepper.h>
      40             : #include <casacore/lattices/Lattices/LatticeIterator.h>
      41             : #include <synthesis/TransformMachines/StokesImageUtil.h>
      42             : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
      43             : #include <casacore/casa/Exceptions/Error.h>
      44             : #include <casacore/casa/BasicSL/String.h>
      45             : #include <casacore/casa/Utilities/Assert.h>
      46             : #include <casacore/casa/OS/Directory.h>
      47             : #include <casacore/tables/Tables/TableLock.h>
      48             : 
      49             : #include<synthesis/ImagerObjects/SIMinorCycleController.h>
      50             : 
      51             : #include <sstream>
      52             : 
      53             : #include <casacore/casa/Logging/LogMessage.h>
      54             : #include <casacore/casa/Logging/LogIO.h>
      55             : #include <casacore/casa/Logging/LogSink.h>
      56             : 
      57             : #include <casacore/casa/System/Choice.h>
      58             : #include <msvis/MSVis/StokesVector.h>
      59             : 
      60             : #include <synthesis/ImagerObjects/SDAlgorithmClarkClean.h>
      61             : //#include <synthesis/MeasurementEquations/ClarkCleanLatModel.h>
      62             : //#include <synthesis/MeasurementEquations/LatConvEquation.h>
      63             : 
      64             : #include <synthesis/MeasurementEquations/ClarkCleanModel.h>
      65             : #include <synthesis/MeasurementEquations/ConvolutionEquation.h>
      66             : 
      67             : using namespace casacore;
      68             : namespace casa { //# NAMESPACE CASA - BEGIN
      69             : 
      70           0 :   SDAlgorithmClarkClean::SDAlgorithmClarkClean(String clarktype):
      71           0 :     SDAlgorithmBase()
      72             :  {
      73           0 :    itsAlgorithmName=String(clarktype);
      74           0 :    itsMatDeltaModel.resize();
      75           0 :  }
      76             : 
      77           0 :   SDAlgorithmClarkClean::~SDAlgorithmClarkClean()
      78             :  {
      79             :    
      80           0 :  }
      81             : 
      82             :   //  void SDAlgorithmClarkClean::initializeDeconvolver( Float &peakresidual, Float &modelflux )
      83           0 :   Long SDAlgorithmClarkClean::estimateRAM(const vector<int>& imsize){
      84           0 :     Long mem=0;
      85           0 :     if(itsImages)
      86             :     //Clark deconvolvers will have psf + residual + model + mask (1 plane at a time)
      87           0 :       mem=sizeof(Float)*(itsImages->getShape()(0))*(itsImages->getShape()(1))*6/1024;
      88           0 :     else if(imsize.size() >1)
      89           0 :       mem=sizeof(Float)*(imsize[0])*(imsize[1])*6/1024;
      90             :     else
      91           0 :       return 0;
      92             :       //throw(AipsError("Deconvolver cannot estimate the memory usage at this point"));
      93           0 :     return mem;
      94             :   }
      95           0 :   void SDAlgorithmClarkClean::initializeDeconvolver()
      96             :   {
      97           0 :     LogIO os( LogOrigin("SDAlgorithmClarkClean","initializeDeconvolver",WHERE) );
      98             : 
      99           0 :     itsImages->residual()->get( itsMatResidual, true );
     100           0 :     itsImages->model()->get( itsMatModel, true );
     101           0 :     itsImages->psf()->get( itsMatPsf, true );
     102           0 :     itsImages->mask()->get( itsMatMask, true );
     103             : 
     104             :     /*
     105             :     cout << "Clark : initDecon : " << itsImages->residual()->shape() << " : " << itsMatResidual.shape() 
     106             :          << itsImages->model()->shape() << " : " << itsMatModel.shape() 
     107             :          << itsImages->psf()->shape() << " : " << itsMatPsf.shape() 
     108             :          << endl;
     109             :     */
     110             :     /*
     111             :     IPosition shp = itsMatResidual.shape();
     112             :     IPosition startp( shp.nelements(),0);
     113             :     IPosition stopp( shp.nelements(),0);
     114             :     stopp[0]=shp[0]-1; stopp[1]=shp[1]-1;
     115             :     Matrix<Float> oneplane;
     116             :     oneplane.doNotDegenerate( itsMatResidual(startp,stopp), IPosition(  ) );
     117             :     findMaxAbs( oneplane, itsPeakResidual, itsMaxPos );
     118             :     */
     119             : 
     120             :     /*
     121             :     findMaxAbs( itsMatResidual, itsPeakResidual, itsMaxPos );
     122             :     itsModelFlux = sum( itsMatModel );
     123             : 
     124             :     peakresidual = itsPeakResidual;
     125             :     modelflux = itsModelFlux;
     126             :     */
     127             : 
     128             :     // Initialize the Delta Image model. Resize if needed.
     129           0 :     if ( itsMatDeltaModel.shape().nelements() != itsMatModel.shape().nelements() )
     130           0 :       { itsMatDeltaModel.resize ( itsMatModel.shape() ); }
     131             : 
     132             : 
     133             :     //cout << "Image Shapes : " << itsMatResidual.shape() << endl;
     134             : 
     135             :     ////////////////////////////////////////////////////////////////////////////////////
     136             :     // Get psf patch size
     137             :     // ...........fill this in....... after fitted beams are precomputed earlier..... and stored in ImageStore.
     138             : 
     139             :       // 4 pixels:  pretty arbitrary, but only look for sidelobes
     140             :       // outside the inner (2n+1) * (2n+1) square
     141           0 :       Int ncent=4;
     142             :       
     143             :       {//locate peak size
     144           0 :         CoordinateSystem cs= itsImages->psf()->coordinates();
     145           0 :         Vector<String> unitas=cs.worldAxisUnits();
     146           0 :         unitas(0)="arcsec";
     147           0 :         unitas(1)="arcsec";
     148           0 :         cs.setWorldAxisUnits(unitas);
     149             :         //Get the minimum increment in arcsec
     150           0 :         Double incr=abs(min(cs.increment()(0), cs.increment()(1)));
     151           0 :         if(incr > 0.0){
     152           0 :           GaussianBeam beamModel=itsImages->getBeamSet()(0,0);
     153             :           //      GaussianBeam beamModel=beam(model)(0,0);
     154           0 :           ncent=max(ncent, Int(ceil(beamModel.getMajor("arcsec")/incr)));
     155           0 :           ncent=max(ncent, Int(ceil(beamModel.getMinor("arcsec")/incr)));
     156           0 :         }
     157           0 :       }
     158             :       
     159           0 :       psfpatch_p=3*ncent+1;
     160             : 
     161           0 :       os << "Choosing a PSF patch size of " << psfpatch_p << " pixels."<< LogIO::POST;
     162             : 
     163           0 :   }
     164             : 
     165           0 :   void SDAlgorithmClarkClean::takeOneStep( Float loopgain, 
     166             :                                             Int cycleNiter, 
     167             :                                             Float cycleThreshold, 
     168             :                                             Float &peakresidual, 
     169             :                                             Float &modelflux, 
     170             :                                             Int &iterdone)
     171             :   {
     172             : 
     173             :     //// Store current model in this matrix.
     174           0 :     itsImages->model()->get( itsMatDeltaModel, true );
     175           0 :     itsMatModel.assign( itsMatDeltaModel ); // This should make an explicit copy
     176             : 
     177             :     //// Set model to zero
     178           0 :     itsImages->model()->set( 0.0 );
     179             : 
     180             :     //// Prepare a single plane mask. For multi-stokes, it still needs a single mask.
     181           0 :     IPosition shp = itsImages->mask()->shape();
     182           0 :     IPosition startp( shp.nelements(),0);
     183           0 :     IPosition stopp( shp.nelements(),1);
     184           0 :     stopp[0]=shp[0]; stopp[1]=shp[1];
     185           0 :     Slicer oneslice(startp, stopp);
     186             :     //cout << "Making mask slice of : " << oneslice.start() << " : " << oneslice.end() << endl;
     187           0 :     SubImage<Float> oneplane( *(itsImages->mask()), oneslice )  ;
     188             : 
     189             :     //// Set up the cleaner
     190           0 :     ClarkCleanModel cleaner(itsMatDeltaModel);
     191           0 :     cleaner.setMask(oneplane.get());
     192           0 :     cleaner.setGain(loopgain);
     193           0 :     cleaner.setNumberIterations(cycleNiter);
     194           0 :     cleaner.setInitialNumberIterations(0);
     195           0 :     cleaner.setThreshold(cycleThreshold);
     196           0 :     cleaner.setPsfPatchSize(IPosition(2,psfpatch_p)); 
     197           0 :     cleaner.setMaxNumberMajorCycles(10);
     198           0 :     cleaner.setHistLength(1024);
     199           0 :     cleaner.setMaxNumPix(32*1024);
     200           0 :     cleaner.setChoose(false);
     201           0 :     cleaner.setCycleSpeedup(-1.0);
     202           0 :     cleaner.setSpeedup(0.0);
     203             : 
     204             :                   /*
     205             :     cleaner.setMask( oneplane );
     206             :     cleaner.setNumberIterations(cycleNiter);
     207             :     cleaner.setMaxNumberMajorCycles(10);
     208             :     cleaner.setMaxNumberMinorIterations(cycleNiter);
     209             :     cleaner.setGain(loopgain);
     210             :     cleaner.setThreshold(cycleThreshold);
     211             :     cleaner.setPsfPatchSize(IPosition(2,psfpatch_p));
     212             :     cleaner.setHistLength(1024);
     213             :     //    cleaner.setMaxExtPsf(..)
     214             :     cleaner.setSpeedup(-1.0);
     215             :     cleaner.setMaxNumPix(32*1024);
     216             :                   */
     217             : 
     218             :     //// Prepare a single plane PSF
     219           0 :     IPosition shp2 = itsImages->psf()->shape();
     220           0 :     IPosition startp2( shp2.nelements(),0);
     221           0 :     IPosition stopp2( shp2.nelements(),1);
     222           0 :     stopp2[0]=shp2[0]; stopp2[1]=shp2[1];
     223           0 :     Slicer oneslice2(startp2, stopp2);
     224             :     //cout << "Making psf slice of : " << oneslice2.start() << " : " << oneslice2.end() << endl;
     225           0 :     SubImage<Float> oneplane2( *(itsImages->psf()), oneslice2 )  ;
     226             : 
     227             :     //// Make the convolution equation with a single plane PSF and possibly multiplane residual
     228           0 :     Array<Float> psfplane;
     229           0 :     oneplane2.get( psfplane, true );
     230           0 :     ConvolutionEquation eqn( psfplane , itsMatResidual );
     231             :    
     232             :     //Bool result = 
     233           0 :     cleaner.singleSolve( eqn, itsMatResidual );
     234             :     //    cout << result << endl;
     235             : 
     236           0 :     iterdone = cleaner.numberIterations();
     237             : 
     238             :     // Retrieve residual before major cycle
     239             :     //    itsImages->residual()->copyData( cleaner.getResidual() );
     240             :     // (itsImages->residual())->put( itsMatResidual );
     241             : 
     242           0 :     cleaner.getModel( itsMatDeltaModel );
     243             : 
     244             :     // Add delta model to old model
     245             :     //Bool ret2 = 
     246             :       //    itsImages->model()->get( itsMatDeltaModel, true );
     247             :     //    itsMatModel += itsMatDeltaModel;
     248             : 
     249           0 :     itsMatModel = itsMatDeltaModel;
     250             : 
     251             :     //--------------------------------- DECIDE WHICH PEAK RESIDUAL TO USE HERE.....
     252             : 
     253             :     //////  Find Peak Residual across the whole image
     254             :     
     255             :     //itsImages->residual()->get( itsMatResidual, true );
     256             :     //    itsImages->mask()->get( itsMatMask, true );
     257             :     //   findMaxAbsMask( itsMatResidual, itsMatMask, itsPeakResidual, itsMaxPos );
     258             :     
     259             : 
     260             :     ////// Find Peak Residual from the Clark Clean method (within current active pixels only).
     261           0 :     itsPeakResidual = cleaner.getMaxResidual();
     262             : 
     263           0 :     peakresidual = itsPeakResidual;
     264             : 
     265             :     // Find Total Model flux
     266           0 :     modelflux = sum( itsMatModel ); // Performance hog ?
     267           0 :     (itsImages->model())->put( itsMatModel );
     268           0 :   }         
     269             : 
     270           0 :   void SDAlgorithmClarkClean::finalizeDeconvolver()
     271             :   {
     272           0 :     (itsImages->residual())->put( itsMatResidual );
     273           0 :     (itsImages->model())->put( itsMatModel );
     274           0 :   }
     275             : 
     276             : 
     277           0 :   void SDAlgorithmClarkClean::queryDesiredShape(Int &nchanchunks, 
     278             :                                                 Int &npolchunks, 
     279             :                                                 IPosition imshape) // , nImageFacets.
     280             :   {  
     281           0 :     AlwaysAssert( imshape.nelements()==4, AipsError );
     282           0 :     nchanchunks=imshape(3);  // Each channel should appear separately.
     283             : 
     284           0 :     itsAlgorithmName.downcase();
     285             : 
     286           0 :     if( itsAlgorithmName.matches("clarkstokes") )
     287             :       {
     288           0 :         npolchunks=imshape(2); // Each pol should appear separately.
     289             :       }
     290             :     else // "Clark"
     291             :       {
     292           0 :         npolchunks=1; // Send in all pols together.
     293             :       }
     294             : 
     295           0 :   }
     296             : 
     297             : 
     298             : } //# NAMESPACE CASA - END
     299             : 

Generated by: LCOV version 1.16