Line data Source code
1 : //# CExp.cc: Implementation of CExp (tabulated complex exponential) class 2 : //# Copyright (C) 1997,1998,1999,2000,2001,2002,2003 3 : //# Associated Universities, Inc. Washington DC, USA. 4 : //# 5 : //# This library is free software; you can redistribute it and/or modify it 6 : //# under the terms of the GNU Library General Public License as published by 7 : //# the Free Software Foundation; either version 2 of the License, or (at your 8 : //# option) any later version. 9 : //# 10 : //# This library is distributed in the hope that it will be useful, but WITHOUT 11 : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 : //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public 13 : //# License for more details. 14 : //# 15 : //# You should have received a copy of the GNU Library General Public License 16 : //# along with this library; if not, write to the Free Software Foundation, 17 : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA. 18 : //# 19 : //# Correspondence concerning AIPS++ should be addressed as follows: 20 : //# Internet email: casa-feedback@nrao.edu. 21 : //# Postal address: AIPS++ Project Office 22 : //# National Radio Astronomy Observatory 23 : //# 520 Edgemont Road 24 : //# Charlottesville, VA 22903-2475 USA 25 : //# 26 : //# $Id$ 27 : #if !defined(CEXP3_H) 28 : #define CEXP3_H 29 : 30 : #include <stdlib.h> 31 : #include <math.h> 32 : #include <iostream> 33 : #include <sstream> 34 : #include <complex> 35 : #include <vector> 36 : #include <ctime> 37 : 38 : namespace casa{ 39 : # define PI2 6.28318530717958623 40 : # define CE_TYPE float 41 : 42 : using namespace std; 43 : 44 : template <class T> class CExp3 45 : { 46 : public: 47 20 : CExp3() { Size = 0; ITable=RTable=NULL; }; 48 : CExp3(int n) { Size = n; build(Size); }; 49 20 : ~CExp3(){if (ITable) {free(ITable);free(RTable);}} 50 : inline void build(int n) 51 : { 52 : Size = n; 53 : // ITable.resize(Size); RTable.resize(Size); 54 : ITable = (T*)malloc(sizeof(T)*Size); 55 : RTable = (T*)malloc(sizeof(T)*Size); 56 : Step = PI2/Size; 57 : for (int i=0; i<Size; i++) { 58 : ITable[i] = sin(i*Step); 59 : RTable[i] = cos(i*Step); 60 : } 61 : } 62 : inline int f(T arg) 63 : { 64 : return (int)((arg<0)?((arg+1-(int)arg)*Size):((arg-(int)arg)*Size)); 65 : // if (arg < 0) return (int)((arg+1-(int)arg)*Size); return (int)((arg-(int)arg)*Size); 66 : } 67 : 68 : inline int hashFunction(T arg) 69 : { 70 : return f(arg/PI2); 71 : // return (int)(fmodf(fabsf(arg+PI2),PI2)/Step); 72 : } 73 : 74 : inline std::complex<T> operator()(T& arg) 75 : { 76 : int N=hashFunction(arg); 77 : return std::complex<T>(RTable[N],ITable[N]); 78 : } 79 : 80 : inline T imag(T arg) { return ITable[hashFunction(arg)]; } 81 : inline T real(T arg) { return RTable[hashFunction(arg)]; } 82 : inline void reim(T& arg,T& re, T&im) 83 : { int N = hashFunction(arg); 84 : re = RTable[N]; im = ITable[N]; 85 : } 86 : private: 87 : // vector<T> RTable, ITable; 88 : T *RTable, *ITable; 89 : T Step; 90 : int Size; 91 : }; 92 : }; 93 : #endif