LCOV - code coverage report
Current view: top level - synthesis/MeasurementComponents - SDDoubleCircleGainCalImpl.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 281 0.0 %
Date: 2024-10-10 11:40:37 Functions: 0 20 0.0 %

          Line data    Source code
       1             : /*
       2             :  * SDDoubleCircleGainCal.cpp
       3             :  *
       4             :  *  Created on: May 31, 2016
       5             :  *      Author: nakazato
       6             :  */
       7             : 
       8             : //#include "SDDoubleCircleGainCal.h"
       9             : #include "SDDoubleCircleGainCalImpl.h"
      10             : 
      11             : #include <casacore/casa/Arrays/Vector.h>
      12             : #include <casacore/casa/Arrays/ArrayMath.h>
      13             : #include <casacore/casa/IO/ArrayIO.h>
      14             : #include <casacore/scimath/Functionals/Interpolate1D.h>
      15             : #include <casacore/scimath/Functionals/ScalarSampledFunctional.h>
      16             : #include <casacore/casa/BasicSL/Constants.h>
      17             : #include <casacore/casa/Logging/LogIO.h>
      18             : #include <casacore/casa/Quanta/Quantum.h>
      19             : 
      20             : #include <casacore/casa/Utilities/Sort.h>
      21             : 
      22             : #include <cassert>
      23             : #include <cmath>
      24             : 
      25             : using namespace casacore;
      26             : 
      27             : #define LOG logger_ << LogOrigin("SDDoubleCircleGainCal", __FUNCTION__, WHERE)
      28             : #define POSTLOG LogIO::POST
      29             : 
      30             : namespace { // anonymous namespace START
      31             : // primary beam size based on observing frequency and antenna diameter in radian
      32           0 : inline Double getPrimaryBeamSize(Double const observing_frequency,
      33             :     Double const antenna_diameter) {
      34           0 :   Double beam_size = -1.0;
      35           0 :   constexpr Double kFactorALMA = 1.13; // measured factor for ALMA
      36           0 :   Double const speed_of_light = C::c;
      37             :   //Double const rad2arcsec = 180.0 / C::pi * 3600.0;
      38             : 
      39           0 :   if (observing_frequency <= 0.0 || antenna_diameter <= 0.0) {
      40           0 :     beam_size = 0.0;
      41             :   } else {
      42           0 :     beam_size = kFactorALMA * speed_of_light // * rad2arcsec
      43           0 :     / (antenna_diameter * observing_frequency);
      44             :   }
      45           0 :   return beam_size;
      46             : }
      47             : 
      48             : // default smoothing size based on the radius of central region
      49             : // radius will be given in unit of radian but the following formula
      50             : // seems to assume radius in unit of arcsec
      51           0 : inline Int getDefaultSmoothingSize(Double const radius) {
      52           0 :   auto const radius_in_arcsec = Quantity(radius, "rad").getValue("arcsec");
      53           0 :   return 2 * static_cast<Int>(round(radius_in_arcsec / 1.5)) + 1;
      54             : }
      55             : 
      56             : // average
      57           0 : inline Double average(size_t const index_from, size_t const index_to,
      58             :     Vector<Double> const &data) {
      59           0 :   Double sum = 0.0;
      60           0 :   assert(index_from <= index_to);
      61             :   //cout << "number of data to be averaged " << index_to - index_from << endl;
      62           0 :   for (size_t i = index_from; i < index_to; ++i) {
      63           0 :     sum += data[i];
      64             :   }
      65           0 :   return sum / static_cast<Double>(index_to - index_from);
      66             : }
      67           0 : inline Double average(size_t const index_from, size_t const index_to,
      68             :     Vector<Double> const &data, Vector<Bool> const &flag) {
      69           0 :   Double sum = 0.0;
      70           0 :   size_t count = 0;
      71           0 :   assert(index_from <= index_to);
      72             :   //cout << "number of data to be averaged " << index_to - index_from << endl;
      73           0 :   for (size_t i = index_from; i < index_to; ++i) {
      74           0 :     if (flag[i] == false) {
      75           0 :       sum += data[i];
      76           0 :       count++;
      77             :     }
      78             :   }
      79             : 
      80           0 :   if (count == 0) {
      81           0 :     return 0.0;
      82             :   }
      83             : 
      84           0 :   return sum / static_cast<Double>(count);
      85             : }
      86             : 
      87             : // smoothing
      88           0 : inline void smooth(Int const smooth_size, Vector<Double> const &data,
      89             :     Vector<Double> &smoothed_data) {
      90             :   // TODO replace with sakura function
      91           0 :   assert(data.nelements() == smoothed_data.nelements());
      92           0 :   size_t num_data = data.nelements();
      93           0 :   if (smooth_size < 2 || static_cast<size_t>(smooth_size) >= num_data) {
      94             :     //cout << "no smoothing" << endl;
      95           0 :     smoothed_data = data;
      96             :   } else {
      97           0 :     size_t left_edge = (smooth_size + 1) / 2 - 1;
      98           0 :     size_t right_edge = smooth_size / 2 + 1;
      99           0 :     for (size_t i = 0; i < left_edge; ++i) {
     100           0 :       size_t l = 0;
     101           0 :       size_t r = i + right_edge;
     102             :       //cout << "i = " << i << ": l, r = " << l << "," << r << endl;
     103           0 :       smoothed_data[i] = average(l, r, data);
     104             :     }
     105           0 :     for (size_t i = left_edge; i < num_data - right_edge; ++i) {
     106           0 :       size_t l = i - left_edge;
     107           0 :       size_t r = i + right_edge;
     108             :       //cout << "i = " << i << ": l, r = " << l << "," << r << endl;
     109           0 :       smoothed_data[i] = average(l, r, data);
     110             :     }
     111           0 :     for (size_t i = num_data - right_edge; i < num_data; ++i) {
     112           0 :       size_t l = i - left_edge;
     113           0 :       size_t r = num_data;
     114             :       //cout << "i = " << i << ": l, r = " << l << "," << r << endl;
     115           0 :       smoothed_data[i] = average(l, r, data);
     116             :     }
     117             :   }
     118           0 : }
     119             : 
     120           0 : inline void smooth(Int const smooth_size, Vector<Double> const &data,
     121             :     Vector<Bool> const &flag, Vector<Double> &smoothed_data) {
     122             :   // TODO replace with sakura function
     123           0 :   assert(data.nelements() == smoothed_data.nelements());
     124           0 :   size_t num_data = data.nelements();
     125           0 :   if (smooth_size < 2 || static_cast<size_t>(smooth_size) >= num_data) {
     126             :     //cout << "no smoothing" << endl;
     127           0 :     smoothed_data = data;
     128             :   } else {
     129           0 :     size_t left_edge = (smooth_size + 1) / 2 - 1;
     130           0 :     size_t right_edge = smooth_size / 2 + 1;
     131           0 :     for (size_t i = 0; i < left_edge; ++i) {
     132           0 :       size_t l = 0;
     133           0 :       size_t r = i + right_edge;
     134             :       //cout << "i = " << i << ": l, r = " << l << "," << r << endl;
     135           0 :       if (flag[i] == true) {
     136           0 :         smoothed_data[i] = data[i];
     137             :       } else {
     138           0 :         smoothed_data[i] = average(l, r, data, flag);
     139             :       }
     140             :     }
     141           0 :     for (size_t i = left_edge; i < num_data - right_edge; ++i) {
     142           0 :       size_t l = i - left_edge;
     143           0 :       size_t r = i + right_edge;
     144             :       //cout << "i = " << i << ": l, r = " << l << "," << r << endl;
     145           0 :       if (flag[i] == true) {
     146           0 :         smoothed_data[i] = data[i];
     147             :       } else {
     148           0 :         smoothed_data[i] = average(l, r, data, flag);
     149             :       }
     150             :     }
     151           0 :     for (size_t i = num_data - right_edge; i < num_data; ++i) {
     152           0 :       size_t l = i - left_edge;
     153           0 :       size_t r = num_data;
     154             :       //cout << "i = " << i << ": l, r = " << l << "," << r << endl;
     155           0 :       if (flag[i] == true) {
     156           0 :         smoothed_data[i] = data[i];
     157             :       } else {
     158           0 :         smoothed_data[i] = average(l, r, data, flag);
     159             :       }
     160             :     }
     161             :   }
     162           0 : }
     163             : 
     164             : // interpolation
     165             : // unused
     166             : /*
     167             : inline void interpolateLinear(Vector<Double> const &x0,
     168             :     Vector<Double> const &y0, Vector<Double> const &x1, Vector<Double> &y1) {
     169             :   // TODO replace with sakura function (need to add double precision version of interpolation function)
     170             :   Interpolate1D<Double, Double> interpolator(
     171             :       ScalarSampledFunctional<Double>(x0), ScalarSampledFunctional<Double>(y0),
     172             :       true, true);
     173             :   interpolator.setMethod(Interpolate1D<Double, Double>::linear);
     174             :   for (size_t i = 0; i < x1.nelements(); ++i) {
     175             :     y1[i] = interpolator(x1[i]);
     176             :   }
     177             : }
     178             : */
     179             : // utility
     180           0 : inline size_t toUnsigned(ssize_t const v) {
     181           0 :   assert(v >= 0);
     182           0 :   return static_cast<size_t>(v);
     183             : }
     184             : } // anonymous namespace END
     185             : 
     186             : namespace casa { // namespace casa START
     187           0 : SDDoubleCircleGainCalImpl::SDDoubleCircleGainCalImpl() :
     188           0 :     central_region_(-1.0), do_smooth_(false), smooth_size_(-1), observing_frequency_(
     189           0 :         0.0), antenna_diameter_(0.0), logger_() {
     190           0 : }
     191             : 
     192           0 : SDDoubleCircleGainCalImpl::~SDDoubleCircleGainCalImpl() {
     193           0 : }
     194             : 
     195           0 : Double SDDoubleCircleGainCalImpl::getPrimaryBeamSize() const {
     196             :   // ::getPrimaryBeamSize returns the size in radian
     197           0 :   return ::getPrimaryBeamSize(observing_frequency_, antenna_diameter_);
     198             : }
     199             : 
     200           0 : Int SDDoubleCircleGainCalImpl::getDefaultSmoothingSize() const {
     201           0 :   Int default_size = -1;
     202           0 :   if (central_region_ > 0.0) {
     203           0 :     default_size = ::getDefaultSmoothingSize(central_region_);
     204             :   } else {
     205           0 :     default_size = ::getDefaultSmoothingSize(0.5 * getPrimaryBeamSize());
     206             :   }
     207           0 :   return default_size;
     208             : }
     209             : 
     210           0 : void SDDoubleCircleGainCalImpl::calibrate(Cube<Float> const &data,
     211             :     Vector<Double> const &time, Matrix<Double> const &direction,
     212             :     Vector<Double> &gain_time, Cube<Float> &gain) {
     213             : 
     214             :   // radius of the central region
     215           0 :   Double radius = getRadius();
     216             : 
     217           0 :   LOG << "radius = " << radius << POSTLOG;
     218             : 
     219             :   // select data within radius
     220           0 :   auto const data_shape = data.shape();
     221           0 :   size_t const num_pol = ::toUnsigned(data_shape[0]);
     222           0 :   size_t const num_chan = ::toUnsigned(data_shape[1]);
     223           0 :   assert(time.nelements() == uInt(data_shape[2]));
     224           0 :   assert(direction.shape()[1] == data_shape[2]);
     225           0 :   assert(direction.shape()[0] == 2);
     226           0 :   findDataWithinRadius(radius, time, data, direction, gain_time, gain);
     227           0 :   size_t num_gain = gain_time.nelements();
     228           0 :   LOG << "num_gain = " << num_gain << POSTLOG;
     229             : 
     230             :   //LOG << "indices within radius: " << within_radius << POSTLOG;
     231             : 
     232           0 :   if (num_gain < 100) {
     233           0 :     LOG << LogIO::WARN << "Probably not enough points for gain calibration: "
     234           0 :         << num_gain << endl << "Skipping..." << POSTLOG;
     235           0 :     gain_time.resize();
     236           0 :     gain.resize();
     237           0 :     return;
     238             :   }
     239             : 
     240             :   // for each spectral data
     241           0 :   Vector<Double> work_data(num_gain);
     242           0 :   Vector<Double> smoothed_data;
     243           0 :   if (do_smooth_) {
     244           0 :     smoothed_data.resize(num_gain);
     245             :   }
     246           0 :   for (size_t ipol = 0; ipol < num_pol; ++ipol) {
     247           0 :     for (size_t ichan = 0; ichan < num_chan; ++ichan) {
     248           0 :       for (size_t idata = 0; idata < num_gain; ++idata) {
     249           0 :         work_data[idata] = gain(ipol, ichan, idata);
     250             :       }
     251             : 
     252             : //      LOG << "work_data[" << ipol << "," << ichan << "]=" << work_data
     253             : //          << POSTLOG;
     254             : 
     255             :       // smoothing if necessary
     256           0 :       if (do_smooth_) {
     257           0 :         Int smooth_size = getEffectiveSmoothingSize();
     258           0 :         if (smooth_size < 2 || static_cast<size_t>(smooth_size) >= num_gain) {
     259           0 :           LOG << LogIO::WARN
     260             :               << "data is not smoothed since smoothing size is invalid: "
     261             :               << smooth_size << " (number of data " << num_gain << ")"
     262           0 :               << POSTLOG;
     263             :         }
     264           0 :         smooth(smooth_size, work_data, smoothed_data);
     265             :       } else {
     266           0 :         LOG << "no smoothing" << POSTLOG;
     267           0 :         smoothed_data.reference(work_data);
     268             :       }
     269             : 
     270           0 :       LOG << LogIO::DEBUGGING << "smoothed_data[" << ipol << "," << ichan
     271           0 :           << "]=" << smoothed_data << POSTLOG;
     272             : 
     273           0 :       LOG << LogIO::DEBUGGING << "mean value = " << mean(smoothed_data)
     274           0 :           << POSTLOG;
     275             : 
     276             :       // derive gain factor: mean(smoothed_data) / smoothed_data
     277           0 :       work_data = mean(smoothed_data) / smoothed_data;
     278             : 
     279             : //      LOG << "gfactor[" << ipol << "," << ichan << "]=" << work_data
     280             : //          << POSTLOG;
     281             : 
     282             :       // conversion for G type calibration
     283           0 :       work_data = 1.0 / sqrt(work_data);
     284             : 
     285             : //      LOG << "fparam[" << ipol << "," << ichan << "]=" << work_data
     286             : //          << POSTLOG;
     287             : 
     288           0 :       for (size_t idata = 0; idata < num_gain; ++idata) {
     289           0 :         gain(ipol, ichan, idata) = work_data[idata];
     290             :       }
     291             :     }
     292             :   }
     293           0 : }
     294             : 
     295           0 : void SDDoubleCircleGainCalImpl::calibrate(Cube<Float> const &data,
     296             :     Cube<Bool> const &flag, Vector<Double> const &time,
     297             :     Matrix<Double> const &direction, Vector<Double> &gain_time,
     298             :     Cube<Float> &gain, Cube<Bool> &gain_flag) {
     299             : 
     300             :   // radius of the central region
     301           0 :   Double radius = getRadius();
     302             : 
     303           0 :   LOG << "radius = " << radius << POSTLOG;
     304             : 
     305             :   // select data within radius
     306           0 :   auto const data_shape = data.shape();
     307           0 :   assert(time.nelements() == uInt(data_shape[2]));
     308           0 :   assert(direction.shape()[1] == data_shape[2]);
     309           0 :   assert(direction.shape()[0] == 2);
     310           0 :   findDataWithinRadius(radius, time, data, flag, direction, gain_time, gain,
     311             :       gain_flag);
     312           0 :   doCalibrate(gain_time, gain, gain_flag);
     313           0 : }
     314             : 
     315           0 : void SDDoubleCircleGainCalImpl::doCalibrate(Vector<Double> &gain_time,
     316             :     Cube<Float> &gain, Cube<Bool> &gain_flag) {
     317             : 
     318           0 :   size_t const num_gain = gain_time.nelements();
     319           0 :   LOG << "num_gain = " << num_gain << POSTLOG;
     320             : 
     321           0 :   size_t const num_pol = ::toUnsigned(gain.shape()[0]);
     322           0 :   size_t const num_chan = ::toUnsigned(gain.shape()[1]);
     323           0 :   assert(gain.shape()[2] == num_gain);
     324             : 
     325             :   //LOG << "indices within radius: " << within_radius << POSTLOG;
     326             : 
     327           0 :   if (num_gain < 100) {
     328           0 :     LOG << LogIO::WARN << "Probably not enough points for gain calibration: "
     329           0 :         << num_gain << endl << "Skipping..." << POSTLOG;
     330           0 :     gain_time.resize();
     331           0 :     gain.resize();
     332           0 :     gain_flag.resize();
     333           0 :     return;
     334             :   }
     335             : 
     336             :   // for each spectral data
     337           0 :   Vector<Double> work_data(num_gain);
     338           0 :   Vector<Bool> work_flag(num_gain);
     339           0 :   Vector<Double> smoothed_data(num_gain);
     340           0 :   for (size_t ipol = 0; ipol < num_pol; ++ipol) {
     341           0 :     for (size_t ichan = 0; ichan < num_chan; ++ichan) {
     342           0 :       for (size_t idata = 0; idata < num_gain; ++idata) {
     343           0 :         work_data[idata] = gain(ipol, ichan, idata);
     344           0 :         work_flag[idata] = gain_flag(ipol, ichan, idata);
     345             :       }
     346             : 
     347             : //      LOG << "work_data[" << ipol << "," << ichan << "]=" << work_data
     348             : //          << POSTLOG;
     349             : 
     350             :       // smoothing if necessary
     351           0 :       if (do_smooth_) {
     352           0 :         Int smooth_size = getEffectiveSmoothingSize();
     353           0 :         if (smooth_size < 2 || static_cast<size_t>(smooth_size) >= num_gain) {
     354           0 :           LOG << LogIO::WARN
     355             :               << "data is not smoothed since smoothing size is invalid: "
     356             :               << smooth_size << " (number of data " << num_gain << ")"
     357           0 :               << POSTLOG;
     358             :         }
     359           0 :         smooth(smooth_size, work_data, work_flag, smoothed_data);
     360             :       } else {
     361           0 :         LOG << "no smoothing" << POSTLOG;
     362           0 :         smoothed_data = work_data;
     363             :       }
     364             : 
     365             : //      LOG << LogIO::DEBUGGING << "smoothed_data[" << ipol << "," << ichan
     366             : //          << "]=" << smoothed_data << POSTLOG;
     367             : 
     368             :       // derive gain factor: mean(smoothed_data) / smoothed_data
     369             :       //work_data = mean(smoothed_data) / smoothed_data;
     370           0 :       auto mean_value = ::average(0, num_gain, smoothed_data, work_flag);
     371             : 
     372             :       //work_data = mean_value / smoothed_data;
     373           0 :       if (mean_value < 0.0) {
     374           0 :         LOG << LogIO::WARN
     375             :             << "Negative reference value for gain calibration is found. "
     376           0 :             << "No valid calibration solution will be provided" << POSTLOG;
     377           0 :         work_data = 0.0;
     378           0 :         work_flag = True;
     379             :       } else {
     380           0 :         for (size_t idata = 0; idata < num_gain; ++idata) {
     381           0 :           if (work_data[idata] != 0.0) {
     382           0 :             work_data[idata] = mean_value / smoothed_data[idata];
     383             :           }
     384             :           else {
     385           0 :             work_data[idata] = 0.0;
     386           0 :             work_flag[idata] = True;
     387             :           }
     388             :         }
     389             : 
     390           0 :         LOG << LogIO::DEBUGGING << "mean value = " << mean_value
     391           0 :         << " (simple mean " << mean(smoothed_data) << ")" << POSTLOG;
     392             :       }
     393             : 
     394             : //      LOG << LogIO::DEBUGGING << "gfactor[" << ipol << "," << ichan << "]=" << work_data
     395             : //          << POSTLOG;
     396             : 
     397             :       // conversion for G type calibration
     398             :       //work_data = 1.0 / sqrt(work_data);
     399           0 :       for (size_t idata = 0; idata < num_gain; ++idata) {
     400           0 :         if (work_data[idata] > 0.0) {
     401           0 :           work_data[idata] = 1.0 / sqrt(work_data[idata]);
     402             :         } else {
     403           0 :           work_data[idata] = 0.0;
     404           0 :           work_flag[idata] = True;
     405             :         }
     406             :       }
     407             : 
     408             : //      LOG << LogIO::DEBUGGING << "fparam[" << ipol << "," << ichan << "]=" << work_data
     409             : //          << POSTLOG;
     410             : 
     411           0 :       for (size_t idata = 0; idata < num_gain; ++idata) {
     412           0 :         gain(ipol, ichan, idata) = work_data[idata];
     413           0 :         gain_flag(ipol, ichan, idata) = work_flag[idata];
     414             :       }
     415             :     }
     416             :   }
     417           0 : }
     418             : 
     419           0 : Double SDDoubleCircleGainCalImpl::getRadius() {
     420             :   // radius of the central region
     421           0 :   Double radius = central_region_;
     422           0 :   if (radius <= 0.0) {
     423             :     // use default value: primary beam size
     424           0 :     radius = 0.5 * getPrimaryBeamSize();
     425             :   }
     426           0 :   if (radius <= 0.0) {
     427           0 :     ostringstream ss;
     428           0 :     ss << "Size of central region is not properly set: " << radius;
     429           0 :     LOG << LogIO::SEVERE << ss.str() << POSTLOG;
     430           0 :     throw AipsError(ss.str());
     431           0 :   }
     432             : 
     433           0 :   return radius;
     434             : }
     435             : 
     436           0 : Int SDDoubleCircleGainCalImpl::getEffectiveSmoothingSize() {
     437           0 :   LOG << "do smoothing with size " << smooth_size_ << POSTLOG;
     438             : 
     439           0 :   Int smooth_size = smooth_size_;
     440           0 :   if (smooth_size_ < 0) {
     441           0 :     smooth_size = getDefaultSmoothingSize();
     442           0 :     LOG << "default smoothing size will be used: " << smooth_size
     443           0 :     << POSTLOG;
     444             :   }
     445             : 
     446           0 :   return smooth_size;
     447             : }
     448             : 
     449           0 : void SDDoubleCircleGainCalImpl::findDataWithinRadius(Double const radius,
     450             :     Vector<Double> const &time, Cube<Float> const &data,
     451             :     Matrix<Double> const &direction, Vector<Double> &gain_time,
     452             :     Cube<Float> &gain) {
     453           0 :   Cube<Bool> flag(data.shape(), False);
     454           0 :   Cube<Bool> gain_flag;
     455           0 :   findDataWithinRadius(radius, time, data, flag, direction, gain_time, gain,
     456             :       gain_flag);
     457           0 : }
     458             : 
     459           0 : void SDDoubleCircleGainCalImpl::findDataWithinRadius(Double const radius,
     460             :     Vector<Double> const &time, Cube<Float> const &data, Cube<Bool> const &flag,
     461             :     Matrix<Double> const &direction, Vector<Double> &gain_time,
     462             :     Cube<Float> &gain, Cube<Bool> &gain_flag) {
     463           0 :   size_t num_data = ::toUnsigned(direction.shape()[1]);
     464             :   // find data within radius
     465           0 :   Vector<size_t> data_index(num_data);
     466           0 :   size_t num_gain = 0;
     467           0 :   for (size_t i = 0; i < num_data; ++i) {
     468           0 :     Double x = direction(0, i);
     469           0 :     Double y = direction(1, i);
     470           0 :     Double r2 = x * x + y * y;
     471           0 :     if (r2 <= radius * radius) {
     472           0 :       data_index[num_gain] = i;
     473           0 :       num_gain++;
     474             :     }
     475             :   }
     476             : 
     477             :   // store data for calibration
     478           0 :   gain_time.resize(num_gain);
     479           0 :   IPosition gain_shape(data.shape());
     480           0 :   gain_shape[2] = num_gain;
     481           0 :   gain.resize(gain_shape);
     482           0 :   gain_flag.resize(gain_shape);
     483           0 :   for (size_t i = 0; i < num_gain; ++i) {
     484           0 :     size_t j = data_index[i];
     485           0 :     gain_time[i] = time[j];
     486           0 :     gain.xyPlane(i) = data.xyPlane(j);
     487           0 :     gain_flag.xyPlane(i) = flag.xyPlane(j);
     488             :   }
     489           0 : }
     490             : 
     491           0 : bool SDDoubleCircleGainCalImpl::findTimeRange(Vector<Double> const &time,
     492             :     Vector<Double> const &interval, Matrix<Double> const &direction,
     493             :     TimeRangeList &timerange) {
     494             :   // radius of the central region
     495           0 :   Double radius = getRadius();
     496             : 
     497             :   // find data within radius
     498           0 :   size_t num_all_data = time.nelements();
     499           0 :   Vector<size_t> data_index(num_all_data);
     500           0 :   size_t num_data = 0;
     501           0 :   for (size_t i = 0; i < num_all_data; ++i) {
     502           0 :     Double x = direction(0, i);
     503           0 :     Double y = direction(1, i);
     504           0 :     Double r2 = x * x + y * y;
     505           0 :     if (r2 <= radius * radius) {
     506           0 :       data_index[num_data] = i;
     507           0 :       num_data++;
     508             :     }
     509             :   }
     510             : 
     511             :   // list of time and interval
     512           0 :   Vector<Double> time_sel(num_data);
     513           0 :   Vector<Double> interval_sel(num_data);
     514           0 :   for (size_t i = 0; i < num_data; ++i) {
     515           0 :     time_sel[i] = time[data_index[i]];
     516           0 :     interval_sel[i] = interval[data_index[i]];
     517             :   }
     518             : 
     519             :   // sort
     520           0 :   Sort s(time_sel.data(), num_data);
     521           0 :   Vector<uInt> index_vector;
     522           0 :   uInt num_sorted = s.sort(index_vector, num_data);
     523           0 :   if (num_sorted != index_vector.nelements()) {
     524           0 :     return false;
     525             :   }
     526             : 
     527             :   // conversion from the list of timestamp to TimeRangeList
     528           0 :   timerange.clear();
     529           0 :   Double time_from = time_sel[index_vector[0]] - 0.5 * interval_sel[index_vector[0]];
     530           0 :   Double time_to = time_sel[index_vector[0]] + 0.5 * interval_sel[index_vector[0]];
     531           0 :   auto iter = index_vector.begin();
     532           0 :   for (++iter; iter != index_vector.end(); ++iter) {
     533           0 :     Double current_from = time_sel[*iter] - 0.5 * interval_sel[*iter];
     534           0 :     Double current_to = time_sel[*iter] + 0.5 * interval_sel[*iter];
     535           0 :     if (abs(current_from - time_to) < time_to * C::dbl_epsilon) {
     536           0 :       time_to = current_to;
     537             :     } else {
     538           0 :       TimeRange range(time_from, time_to);
     539           0 :       timerange.push_back(range);
     540           0 :       time_from = current_from;
     541           0 :       time_to = current_to;
     542             :     }
     543             :   }
     544           0 :   TimeRange range(time_from, time_to);
     545           0 :   timerange.push_back(range);
     546             : 
     547           0 :   return true;
     548           0 : }
     549             : 
     550             : //void SDDoubleCircleGainCalImpl::apply(Vector<Double> const &gain_time,
     551             : //    Cube<Float> const &gain, Vector<Double> const &time, Cube<Float> &data) {
     552             : //  // TODO implement
     553             : //  // not necessary to implement? reuse G type application?
     554             : //}
     555             : }// namespace casa END

Generated by: LCOV version 1.16