LCOV - code coverage report
Current view: top level - mstransform/TVI - DenoisingLib.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 202 0.0 %
Date: 2024-10-09 13:55:54 Functions: 0 30 0.0 %

          Line data    Source code
       1             : //# DenoisingLib.h: This file contains the interface definition of the MSTransformManager class.
       2             : //#
       3             : //#  CASA - Common Astronomy Software Applications (http://casa.nrao.edu/)
       4             : //#  Copyright (C) Associated Universities, Inc. Washington DC, USA 2011, All rights reserved.
       5             : //#  Copyright (C) European Southern Observatory, 2011, All rights reserved.
       6             : //#
       7             : //#  This library is free software; you can redistribute it and/or
       8             : //#  modify it under the terms of the GNU Lesser General Public
       9             : //#  License as published by the Free software Foundation; either
      10             : //#  version 2.1 of the License, or (at your option) any later version.
      11             : //#
      12             : //#  This library is distributed in the hope that it will be useful,
      13             : //#  but WITHOUT ANY WARRANTY, without even the implied warranty of
      14             : //#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             : //#  Lesser General Public License for more details.
      16             : //#
      17             : //#  You should have received a copy of the GNU Lesser General Public
      18             : //#  License along with this library; if not, write to the Free Software
      19             : //#  Foundation, Inc., 59 Temple Place, Suite 330, Boston,
      20             : //#  MA 02111-1307  USA
      21             : //# $Id: $
      22             : 
      23             : #include <mstransform/TVI/DenoisingLib.h>
      24             : 
      25             : namespace casa { //# NAMESPACE CASA - BEGIN
      26             : 
      27             : namespace denoising { //# NAMESPACE DENOISING - BEGIN
      28             : 
      29             : using std::vector;
      30             : 
      31             : // -----------------------------------------------------------------------
      32             : // Wrap CASA Vector with a gsl_vector structure
      33             : // -----------------------------------------------------------------------
      34           0 : void GslVectorWrap(Vector<Double> casa_vector, gsl_vector &wrapper)
      35             : {
      36           0 :         wrapper.size = casa_vector.size();
      37           0 :         wrapper.stride = casa_vector.steps()(0);
      38           0 :         wrapper.data = casa_vector.data();
      39           0 :         wrapper.owner = false;
      40             : 
      41           0 :         return;
      42             : }
      43             : 
      44             : // -----------------------------------------------------------------------
      45             : //
      46             : // Wrap CASA Matrix with a gsl_matrix structure
      47             : //
      48             : // GSL Matrices are stored in row-major order, meaning that
      49             : // each row of elements forms a contiguous block in memory.
      50             : // This is the standard “C-language ordering” of two-dimensional arrays.
      51             : //
      52             : // CASA Matrices are however stored in column-major order
      53             : // so the elements of each column forms a contiguous block in memory.
      54             : //
      55             : // Therefore we have to swap rows-cols in order to match.
      56             : //
      57             : // Note that FORTRAN stores arrays in column-major order.
      58             : // -----------------------------------------------------------------------
      59           0 : void GslMatrixWrap(Matrix<Double> &casa_matrix, gsl_matrix &wrapper, size_t ncols)
      60             : {
      61           0 :     ThrowIf (not casa_matrix.contiguousStorage(),
      62             :              "Cannot map a non-contiguous CASA matrix to GSL matrix");
      63             : 
      64           0 :         wrapper.size1 = casa_matrix.ncolumn(); // Number of rows
      65           0 :         wrapper.size2 = ncols > 0? ncols : casa_matrix.nrow(); // Number of columns
      66           0 :         wrapper.tda = casa_matrix.nrow();
      67           0 :         wrapper.block = nullptr;
      68           0 :         wrapper.data = casa_matrix.data();
      69           0 :         wrapper.owner = false;
      70             : 
      71           0 :         return;
      72             : }
      73             : 
      74             : //////////////////////////////////////////////////////////////////////////
      75             : // GslMultifitLinearBase class
      76             : //////////////////////////////////////////////////////////////////////////
      77             : 
      78             : // -----------------------------------------------------------------------
      79             : //
      80             : // -----------------------------------------------------------------------
      81           0 : GslMultifitLinearBase::GslMultifitLinearBase()
      82             : {
      83           0 :         model_p = nullptr;
      84           0 :         ndata_p = 0;
      85           0 :         ncomponents_p = 0;
      86           0 :         max_ncomponents_p = 0;
      87             : 
      88           0 :         gsl_coeff_real_p = nullptr;
      89           0 :         gsl_coeff_imag_p = nullptr;
      90           0 :         gsl_covariance_p = nullptr;
      91           0 :         gsl_workspace_p = nullptr;
      92             : 
      93           0 :         errno_p = 0;
      94           0 :         chisq_p = 0;
      95             : 
      96           0 :         debug_p = false;
      97           0 : }
      98             : 
      99             : // -----------------------------------------------------------------------
     100             : //
     101             : // -----------------------------------------------------------------------
     102           0 : GslMultifitLinearBase::GslMultifitLinearBase(GslLinearModelBase<Double> &model)
     103             : {
     104           0 :         setModel(model);
     105             : 
     106           0 :         errno_p = 0;
     107           0 :         chisq_p = 0;
     108           0 : }
     109             : 
     110             : // -----------------------------------------------------------------------
     111             : //
     112             : // -----------------------------------------------------------------------
     113           0 : GslMultifitLinearBase::~GslMultifitLinearBase()
     114             : {
     115           0 :         freeGslResources();
     116           0 : }
     117             : 
     118             : // -----------------------------------------------------------------------
     119             : //
     120             : // -----------------------------------------------------------------------
     121           0 : void GslMultifitLinearBase::allocGslResources()
     122             : {
     123           0 :         gsl_covariance_p = gsl_matrix_alloc (ncomponents_p, ncomponents_p);
     124           0 :         gsl_workspace_p = gsl_multifit_linear_alloc (ndata_p, ncomponents_p);
     125           0 :         gsl_coeff_real_p = gsl_vector_alloc(ncomponents_p);
     126           0 :         gsl_coeff_imag_p = gsl_vector_alloc(ncomponents_p);
     127           0 : }
     128             : 
     129             : // -----------------------------------------------------------------------
     130             : //
     131             : // -----------------------------------------------------------------------
     132           0 : void GslMultifitLinearBase::freeGslResources()
     133             : {
     134           0 :         if (gsl_covariance_p != nullptr) gsl_matrix_free (gsl_covariance_p);
     135           0 :         if (gsl_workspace_p != nullptr) gsl_multifit_linear_free (gsl_workspace_p);
     136           0 :         if (gsl_coeff_real_p != nullptr) gsl_vector_free (gsl_coeff_real_p);
     137           0 :         if (gsl_coeff_imag_p != nullptr) gsl_vector_free (gsl_coeff_imag_p);
     138           0 : }
     139             : 
     140             : // -----------------------------------------------------------------------
     141             : //
     142             : // -----------------------------------------------------------------------
     143           0 : void GslMultifitLinearBase::setModel(GslLinearModelBase<Double> &model)
     144             : {
     145           0 :         model_p = &model;
     146           0 :         ndata_p = model_p->ndata();
     147           0 :         max_ncomponents_p = model_p->ncomponents();
     148             : 
     149           0 :         ncomponents_p = max_ncomponents_p;
     150           0 :         GslMatrixWrap(model_p->getModelMatrix(),gsl_model_p);
     151             : 
     152           0 :         data_p.resize(ndata_p, 1, false);
     153             : 
     154           0 :         allocGslResources();
     155           0 : }
     156             : 
     157             : // -----------------------------------------------------------------------
     158             : //
     159             : // -----------------------------------------------------------------------
     160           0 : void GslMultifitLinearBase::resetNComponents(size_t ncomponents)
     161             : {
     162           0 :     ThrowIf (ncomponents > max_ncomponents_p,
     163             :              "Maximum number of components is " + String::toString(max_ncomponents_p));
     164             : 
     165           0 :         ncomponents_p = ncomponents;
     166           0 :         GslMatrixWrap(model_p->getModelMatrix(),gsl_model_p,ncomponents_p);
     167             : 
     168           0 :         freeGslResources();
     169           0 :         allocGslResources();
     170           0 : }
     171             : 
     172             : // -----------------------------------------------------------------------
     173             : //
     174             : // -----------------------------------------------------------------------
     175           0 : void GslMultifitLinearBase::resetModel(GslLinearModelBase<Double> &model)
     176             : {
     177           0 :         freeGslResources();
     178           0 :         setModel(model);
     179           0 : }
     180             : 
     181             : // -----------------------------------------------------------------------
     182             : //
     183             : // -----------------------------------------------------------------------
     184           0 : void GslMultifitLinearBase::setData(Vector<Double> &data)
     185             : {
     186           0 :     ThrowIf (data.size() != ndata_p,"Size of data does not match model");
     187             : 
     188           0 :     data_p.column(0).reference(data);
     189           0 : }
     190             : 
     191             : // -----------------------------------------------------------------------
     192             : //
     193             : // -----------------------------------------------------------------------
     194           0 : void GslMultifitLinearBase::setData(Vector<Float> &data)
     195             : {
     196           0 :         ThrowIf (data.size() != ndata_p,"Size of data does not match model");
     197             : 
     198           0 :         for (size_t idx=0;idx<ndata_p;idx++)
     199             :         {
     200           0 :                 data_p(idx,0) = data(idx);
     201             :         }
     202           0 : }
     203             : 
     204             : // -----------------------------------------------------------------------
     205             : //
     206             : // -----------------------------------------------------------------------
     207           0 : void GslMultifitLinearBase::setData(Vector<Complex> &data)
     208             : {
     209           0 :         ThrowIf (data.size() != ndata_p,"Size of data does not match model");
     210             : 
     211           0 :         if (data_p.ncolumn() != 2) data_p.resize(ndata_p, 2, false);
     212             : 
     213           0 :         for (size_t idx=0;idx<ndata_p;idx++)
     214             :         {
     215           0 :                 data_p(idx,0) = real(data(idx));
     216           0 :                 data_p(idx,1) = imag(data(idx));
     217             :         }
     218           0 : }
     219             : 
     220             : // -----------------------------------------------------------------------
     221             : //
     222             : // Perform least-squares fits to a general linear model, y = X c where
     223             : // y is a vector of n observations, X is an n by p matrix of predictor variables,
     224             : // and the elements of the vector c are the p unknown best-fit parameters which
     225             : // are to be estimated.
     226             : //
     227             : // NOTE: gsl_multifit_linear expects that the model matrix is organized as follows
     228             : // X = [ 1   , x_1  , x_1^2 , ..., x_1^order;
     229             : //       1   , x_2  , x_2^2 , ..., x_2^order;
     230             : //       1   , x_3  , x_3^2 , ..., x_3^order;
     231             : //       ... , ...  , ...   , ..., ...
     232             : //       1   , x_n  , x_n^2 , ..., x_n^order]
     233             : //
     234             : // -----------------------------------------------------------------------
     235           0 : double GslMultifitLinearBase::calcFitCoeffCore(Vector<Double> data, gsl_vector* coeff)
     236             : {
     237             :         // Wrap data vector in a gsl_vector
     238             :         gsl_vector data_gsl;
     239           0 :         GslVectorWrap(data,data_gsl);
     240             : 
     241             :         // Perform coeff calculation
     242           0 :         errno_p = gsl_multifit_linear (&gsl_model_p, &data_gsl,
     243             :                         coeff, gsl_covariance_p, &chisq_p, gsl_workspace_p);
     244             : 
     245           0 :         return chisq_p;
     246             : }
     247             : 
     248             : // -----------------------------------------------------------------------
     249             : //
     250             : // -----------------------------------------------------------------------
     251             : std::pair<vector<Complex>, Complex>
     252           0 : GslMultifitLinearBase::calcFitCoeff(Vector<Complex> &data)
     253             : {
     254             :         // Set data
     255           0 :         setData(data);
     256             : 
     257             :         // Call fit method to calculate real/imag coefficients
     258           0 :         const auto chisqReal = calcFitCoeffCore(data_p.column(0), gsl_coeff_real_p);
     259           0 :         const auto chisqImag = calcFitCoeffCore(data_p.column(1), gsl_coeff_imag_p);
     260             : 
     261             :         // Get imag coefficients
     262           0 :         vector<Complex> fitCoeff(ncomponents_p);
     263           0 :         for (size_t coeff_idx=0;coeff_idx<ncomponents_p;coeff_idx++)
     264             :         {
     265           0 :                 fitCoeff[coeff_idx] = Complex(  gsl_vector_get(gsl_coeff_real_p,coeff_idx),
     266           0 :                                                                                 gsl_vector_get(gsl_coeff_imag_p,coeff_idx));
     267             :         }
     268             : 
     269           0 :         return make_pair(fitCoeff, Complex(chisqReal, chisqImag));
     270           0 : }
     271             : 
     272             : // -----------------------------------------------------------------------
     273             : //
     274             : // -----------------------------------------------------------------------
     275           0 : void GslMultifitLinearBase::calcFitModelStd(Vector<Complex> &model,Vector<Complex> &std)
     276             : {
     277             :         // Get imag coefficients
     278             :         gsl_vector xGSL;
     279             :         double y_real, y_imag, yerr_real, yerr_imag;
     280           0 :         for (size_t data_idx=0;data_idx<ndata_p;data_idx++)
     281             :         {
     282           0 :                 Vector<Double> xCASA = model_p->getModelAt(data_idx);
     283           0 :                 if (xCASA.size() != ncomponents_p) xCASA.resize(ncomponents_p,True);
     284           0 :                 GslVectorWrap(xCASA,xGSL);
     285             : 
     286           0 :                 y_real = 0;
     287           0 :                 yerr_real = 0;
     288           0 :                 errno_p = gsl_multifit_linear_est (&xGSL, gsl_coeff_real_p, gsl_covariance_p, &y_real, &yerr_real);
     289             : 
     290           0 :                 y_imag = 0;
     291           0 :                 yerr_imag = 0;
     292           0 :                 errno_p = gsl_multifit_linear_est (&xGSL, gsl_coeff_imag_p, gsl_covariance_p, &y_imag, &yerr_imag);
     293             : 
     294           0 :                 if (model.size() > 0) model(data_idx) = Complex(y_real,y_imag);
     295           0 :                 if (std.size() > 0 ) std(data_idx) = Complex(yerr_real,yerr_imag);
     296           0 :         }
     297             : 
     298           0 :         return;
     299             : }
     300             : 
     301             : // -----------------------------------------------------------------------
     302             : //
     303             : // -----------------------------------------------------------------------
     304           0 : void GslMultifitLinearBase::calcFitModel(Vector<Complex> &model)
     305             : {
     306           0 :         Complex coeff_i;
     307           0 :         Matrix<Double> &modelMatrix = model_p->getModelMatrix();
     308             : 
     309           0 :         coeff_i = Complex(gsl_vector_get(gsl_coeff_real_p,0),
     310           0 :                         gsl_vector_get(gsl_coeff_imag_p,0));
     311           0 :         for (size_t data_idx=0; data_idx<ndata_p; data_idx++)
     312             :         {
     313           0 :                 model(data_idx) = coeff_i*modelMatrix(0,data_idx);
     314             :         }
     315             : 
     316           0 :         for (size_t model_idx=1;model_idx<ncomponents_p;model_idx++)
     317             :         {
     318           0 :                 coeff_i = Complex(gsl_vector_get(gsl_coeff_real_p,model_idx),
     319           0 :                                 gsl_vector_get(gsl_coeff_imag_p,model_idx));
     320           0 :                 for (size_t data_idx=0; data_idx<ndata_p; data_idx++)
     321             :                 {
     322           0 :                         model(data_idx) += coeff_i*modelMatrix(model_idx,data_idx);
     323             :                 }
     324             :         }
     325             : 
     326           0 :         return;
     327             : }
     328             : 
     329             : //////////////////////////////////////////////////////////////////////////
     330             : // GslMultifitWeightedLinear class
     331             : //////////////////////////////////////////////////////////////////////////
     332             : 
     333             : // -----------------------------------------------------------------------
     334             : //
     335             : // -----------------------------------------------------------------------
     336           0 : GslMultifitWeightedLinear::GslMultifitWeightedLinear() :
     337           0 :                 GslMultifitLinearBase()
     338             : {
     339             : 
     340           0 : }
     341             : 
     342             : // -----------------------------------------------------------------------
     343             : //
     344             : // -----------------------------------------------------------------------
     345           0 : GslMultifitWeightedLinear::GslMultifitWeightedLinear(GslLinearModelBase<Double> &model) :
     346           0 :                 GslMultifitLinearBase()
     347             : {
     348           0 :         setModel(model);
     349           0 : }
     350             : 
     351             : // -----------------------------------------------------------------------
     352             : //
     353             : // -----------------------------------------------------------------------
     354           0 : GslMultifitWeightedLinear::~GslMultifitWeightedLinear()
     355             : {
     356             : 
     357           0 : }
     358             : 
     359             : // -----------------------------------------------------------------------
     360             : //
     361             : // -----------------------------------------------------------------------
     362           0 : void GslMultifitWeightedLinear::setModel(GslLinearModelBase<Double> &model)
     363             : {
     364           0 :         GslMultifitLinearBase::setModel(model);
     365           0 :         weights_p.resize(ndata_p, false);
     366           0 :         GslVectorWrap(weights_p,gls_weights_p);
     367           0 : }
     368             : 
     369             : // -----------------------------------------------------------------------
     370             : //
     371             : // -----------------------------------------------------------------------
     372           0 : void GslMultifitWeightedLinear::setWeights(Vector<Float> &weights)
     373             : {
     374             :         // Dim check
     375           0 :         ThrowIf (weights.size() != ndata_p,"Size of weights does not match model");
     376             : 
     377             :         // Fill in
     378           0 :         for (size_t idx=0;idx<ndata_p;idx++)
     379             :         {
     380           0 :                 weights_p(idx) = weights(idx);
     381             :         }
     382           0 : }
     383             : 
     384             : // -----------------------------------------------------------------------
     385             : //
     386             : // -----------------------------------------------------------------------
     387           0 : void GslMultifitWeightedLinear::setFlags(Vector<Bool> &flags, Bool goodIsTrue)
     388             : {
     389             :         // Dim check
     390           0 :         ThrowIf (flags.size() != ndata_p,"Size of flags does not match model");
     391             : 
     392             :         // Fill in
     393           0 :         if (goodIsTrue)
     394             :         {
     395           0 :                 for (size_t idx=0;idx<ndata_p;idx++)
     396             :                 {
     397           0 :                         weights_p(idx) = flags(idx);
     398             :                 }
     399             :         }
     400             :         else
     401             :         {
     402           0 :                 for (size_t idx=0;idx<ndata_p;idx++)
     403             :                 {
     404           0 :                         weights_p(idx) = !flags(idx);
     405             :                 }
     406             :         }
     407           0 : }
     408             : 
     409             : // -----------------------------------------------------------------------
     410             : //
     411             : // -----------------------------------------------------------------------
     412           0 : void GslMultifitWeightedLinear::setWeightsAndFlags(Vector<Float> &weights, Vector<Bool> &flags, Bool goodIsTrue)
     413             : {
     414             :         // Dim check
     415           0 :         ThrowIf (weights.size() != ndata_p,"Size of weights does not match model");
     416           0 :         ThrowIf (flags.size() != ndata_p,"Size of flags does not match model");
     417             : 
     418             :         // Fill in
     419           0 :         if (goodIsTrue)
     420             :         {
     421           0 :                 for (size_t idx=0;idx<ndata_p;idx++)
     422             :                 {
     423           0 :                         weights_p(idx) = weights(idx)*flags(idx);
     424             :                 }
     425             :         }
     426             :         else
     427             :         {
     428           0 :                 for (size_t idx=0;idx<ndata_p;idx++)
     429             :                 {
     430           0 :                         weights_p(idx) = weights(idx)*!flags(idx);
     431             :                 }
     432             :         }
     433           0 : }
     434             : 
     435             : // -----------------------------------------------------------------------
     436             : //
     437             : // Perform least-squares fits to a general linear weighted model, y = X c where
     438             : // y is a vector of n observations, with weights w, X is an n by p matrix of
     439             : // predictor variables, and the elements of the vector c are the p unknown best-fit
     440             : // parameters which are to be estimated.
     441             : //
     442             : // NOTE: gsl_multifit_linear expects that the model matrix is organized as follows
     443             : // X = [ 1   , x_1  , x_1^2 , ..., x_1^order;
     444             : //       1   , x_2  , x_2^2 , ..., x_2^order;
     445             : //       1   , x_3  , x_3^2 , ..., x_3^order;
     446             : //       ... , ...  , ...   , ..., ...
     447             : //       1   , x_n  , x_n^2 , ..., x_n^order]
     448             : //
     449             : // NOTE: More than one data series can use the same weights / workspace
     450             : //       Therefore input data is a matrix where each row represents a data series
     451             : //
     452             : // -----------------------------------------------------------------------
     453           0 : double GslMultifitWeightedLinear::calcFitCoeffCore(Vector<Double> data, gsl_vector* coeff)
     454             : {
     455             :         // Wrap data vector in a gsl_vector
     456             :         gsl_vector data_gsl;
     457           0 :         GslVectorWrap(data,data_gsl);
     458             : 
     459             :         // Perform coeff calculation
     460           0 :         errno_p = gsl_multifit_wlinear (&gsl_model_p, &gls_weights_p, &data_gsl,
     461             :                         coeff, gsl_covariance_p, &chisq_p, gsl_workspace_p);
     462             : 
     463           0 :         return chisq_p;
     464             : }
     465             : 
     466             : //////////////////////////////////////////////////////////////////////////
     467             : // IterativelyReweightedLeastSquares class
     468             : //////////////////////////////////////////////////////////////////////////
     469             : 
     470             : // -----------------------------------------------------------------------
     471             : //
     472             : // -----------------------------------------------------------------------
     473           0 : IterativelyReweightedLeastSquares::IterativelyReweightedLeastSquares() :
     474           0 :                 GslMultifitWeightedLinear()
     475             : {
     476           0 :         nIter_p = 1;
     477           0 : }
     478             : 
     479             : // -----------------------------------------------------------------------
     480             : //
     481             : // -----------------------------------------------------------------------
     482           0 : IterativelyReweightedLeastSquares::IterativelyReweightedLeastSquares(GslLinearModelBase<Double> &model,size_t nIter) :
     483           0 :                 GslMultifitWeightedLinear(model)
     484             : {
     485           0 :         nIter_p = nIter;
     486           0 : }
     487             : 
     488             : // -----------------------------------------------------------------------
     489             : //
     490             : // -----------------------------------------------------------------------
     491           0 : IterativelyReweightedLeastSquares::~IterativelyReweightedLeastSquares()
     492             : {
     493             : 
     494           0 : }
     495             : 
     496             : // -----------------------------------------------------------------------
     497             : //
     498             : // -----------------------------------------------------------------------
     499           0 : double IterativelyReweightedLeastSquares::calcFitCoeffCore(Vector<Double> data, gsl_vector* coeff)
     500             : {
     501             :         // Wrap data vector in a gsl_vector
     502             :         gsl_vector data_gsl;
     503           0 :         GslVectorWrap(data,data_gsl);
     504             : 
     505           0 :         if (nIter_p == 1)
     506             :         {
     507           0 :                 errno_p = gsl_multifit_wlinear (&gsl_model_p, &gls_weights_p, &data_gsl,
     508             :                                 coeff, gsl_covariance_p, &chisq_p, gsl_workspace_p);
     509             :         }
     510             :         else
     511             :         {
     512             :                 // Create a vector to store iterative weights and wrap it in a gsl_vector
     513           0 :                 Vector<Double> reweights(ndata_p);
     514           0 :                 reweights = weights_p; // Deep copy
     515             :                 gsl_vector reweights_gsl;
     516           0 :                 GslVectorWrap(reweights,reweights_gsl);
     517             : 
     518             :                 // Create vectors to store model
     519           0 :                 Vector<Double> model(ndata_p);
     520             : 
     521             :                 // Iterative process
     522           0 :                 for (size_t iter=0; iter<nIter_p; iter++)
     523             :                 {
     524             :                         // Calculate coefficients for this iteration
     525           0 :                         errno_p = gsl_multifit_wlinear (&gsl_model_p, &reweights_gsl, &data_gsl,
     526             :                                         coeff, gsl_covariance_p, &chisq_p, gsl_workspace_p);
     527             : 
     528           0 :                         if (iter<nIter_p-1)
     529             :                         {
     530             :                                 // Calculate output std
     531           0 :                                 calcFitModelCore(model,coeff);
     532             : 
     533             :                                 // Update weights
     534           0 :                                 updateWeights(data,model,reweights);
     535             :                         }
     536             :                 }
     537           0 :         }
     538             : 
     539           0 :         return chisq_p;
     540             : }
     541             : 
     542             : // -----------------------------------------------------------------------
     543             : //
     544             : // -----------------------------------------------------------------------
     545           0 : void IterativelyReweightedLeastSquares::updateWeights(Vector<Double> &data, Vector<Double> &model,  Vector<Double> &weights)
     546             : {
     547             :         double currentResidual, maxResidual;
     548             : 
     549             :         // Find max residual
     550           0 :         maxResidual = 0;
     551           0 :         for (size_t idx=0; idx<ndata_p; idx++)
     552             :         {
     553           0 :                 currentResidual = 0;
     554           0 :                 if (weights(idx) > 0)
     555             :                 {
     556           0 :                         currentResidual = abs(data(idx)-model(idx));
     557           0 :                         if (currentResidual > maxResidual) maxResidual = currentResidual;
     558             :                 }
     559           0 :                 weights(idx) = currentResidual;
     560             :         }
     561             : 
     562             :         // Normalize
     563           0 :         for (size_t idx=0; idx<ndata_p; idx++)
     564             :         {
     565           0 :                 if (weights(idx) > 0) weights(idx) = (maxResidual - weights(idx))/maxResidual;
     566             :         }
     567             : 
     568           0 :         return;
     569             : }
     570             : 
     571             : } //# NAMESPACE DENOISING - END
     572             : 
     573             : } //# NAMESPACE CASA - END
     574             : 

Generated by: LCOV version 1.16