LCOV - code coverage report
Current view: top level - synthesis/MeasurementEquations/lbfgs - specialfunctions.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 0 3803 0.0 %
Date: 2024-10-04 18:58:15 Functions: 0 153 0.0 %

          Line data    Source code
       1             : /*************************************************************************
       2             : ALGLIB 3.17.0 (source code generated 2020-12-27)
       3             : Copyright (c) Sergey Bochkanov (ALGLIB project).
       4             : 
       5             : >>> SOURCE LICENSE >>>
       6             : This program is free software; you can redistribute it and/or modify
       7             : it under the terms of the GNU General Public License as published by
       8             : the Free Software Foundation (www.fsf.org); either version 2 of the 
       9             : License, or (at your option) any later version.
      10             : 
      11             : This program is distributed in the hope that it will be useful,
      12             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14             : GNU General Public License for more details.
      15             : 
      16             : A copy of the GNU General Public License is available at
      17             : http://www.fsf.org/licensing/licenses
      18             : >>> END OF LICENSE >>>
      19             : *************************************************************************/
      20             : #ifdef _MSC_VER
      21             : #define _CRT_SECURE_NO_WARNINGS
      22             : #endif
      23             : #include "stdafx.h"
      24             : #include "specialfunctions.h"
      25             : 
      26             : // disable some irrelevant warnings
      27             : #if (AE_COMPILER==AE_MSVC) && !defined(AE_ALL_WARNINGS)
      28             : #pragma warning(disable:4100)
      29             : #pragma warning(disable:4127)
      30             : #pragma warning(disable:4611)
      31             : #pragma warning(disable:4702)
      32             : #pragma warning(disable:4996)
      33             : #endif
      34             : 
      35             : /////////////////////////////////////////////////////////////////////////
      36             : //
      37             : // THIS SECTION CONTAINS IMPLEMENTATION OF C++ INTERFACE
      38             : //
      39             : /////////////////////////////////////////////////////////////////////////
      40             : namespace alglib
      41             : {
      42             : 
      43             : #if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
      44             : 
      45             : #endif
      46             : 
      47             : #if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
      48             : 
      49             : #endif
      50             : 
      51             : #if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
      52             : 
      53             : #endif
      54             : 
      55             : #if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
      56             : 
      57             : #endif
      58             : 
      59             : #if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
      60             : 
      61             : #endif
      62             : 
      63             : #if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
      64             : 
      65             : #endif
      66             : 
      67             : #if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
      68             : 
      69             : #endif
      70             : 
      71             : #if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
      72             : 
      73             : #endif
      74             : 
      75             : #if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
      76             : 
      77             : #endif
      78             : 
      79             : #if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
      80             : 
      81             : #endif
      82             : 
      83             : #if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
      84             : 
      85             : #endif
      86             : 
      87             : #if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
      88             : 
      89             : #endif
      90             : 
      91             : #if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
      92             : 
      93             : #endif
      94             : 
      95             : #if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
      96             : 
      97             : #endif
      98             : 
      99             : #if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
     100             : 
     101             : #endif
     102             : 
     103             : #if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
     104             : 
     105             : #endif
     106             : 
     107             : #if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
     108             : 
     109             : #endif
     110             : 
     111             : #if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
     112             : 
     113             : #endif
     114             : 
     115             : #if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
     116             : 
     117             : #endif
     118             : 
     119             : #if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
     120             : 
     121             : #endif
     122             : 
     123             : #if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
     124             : 
     125             : #endif
     126             : 
     127             : #if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
     128             : 
     129             : #endif
     130             : 
     131             : #if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
     132             : 
     133             : #endif
     134             : 
     135             : #if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
     136             : /*************************************************************************
     137             : Gamma function
     138             : 
     139             : Input parameters:
     140             :     X   -   argument
     141             : 
     142             : Domain:
     143             :     0 < X < 171.6
     144             :     -170 < X < 0, X is not an integer.
     145             : 
     146             : Relative error:
     147             :  arithmetic   domain     # trials      peak         rms
     148             :     IEEE    -170,-33      20000       2.3e-15     3.3e-16
     149             :     IEEE     -33,  33     20000       9.4e-16     2.2e-16
     150             :     IEEE      33, 171.6   20000       2.3e-15     3.2e-16
     151             : 
     152             : Cephes Math Library Release 2.8:  June, 2000
     153             : Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
     154             : Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
     155             : *************************************************************************/
     156           0 : double gammafunction(const double x, const xparams _xparams)
     157             : {
     158             :     jmp_buf _break_jump;
     159             :     alglib_impl::ae_state _alglib_env_state;
     160           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     161           0 :     if( setjmp(_break_jump) )
     162             :     {
     163             : #if !defined(AE_NO_EXCEPTIONS)
     164           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     165             : #else
     166             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     167             :         return 0;
     168             : #endif
     169             :     }
     170           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     171           0 :     if( _xparams.flags!=0x0 )
     172           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     173           0 :     double result = alglib_impl::gammafunction(x, &_alglib_env_state);
     174           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     175           0 :     return *(reinterpret_cast<double*>(&result));
     176             : }
     177             : 
     178             : /*************************************************************************
     179             : Natural logarithm of gamma function
     180             : 
     181             : Input parameters:
     182             :     X       -   argument
     183             : 
     184             : Result:
     185             :     logarithm of the absolute value of the Gamma(X).
     186             : 
     187             : Output parameters:
     188             :     SgnGam  -   sign(Gamma(X))
     189             : 
     190             : Domain:
     191             :     0 < X < 2.55e305
     192             :     -2.55e305 < X < 0, X is not an integer.
     193             : 
     194             : ACCURACY:
     195             : arithmetic      domain        # trials     peak         rms
     196             :    IEEE    0, 3                 28000     5.4e-16     1.1e-16
     197             :    IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17
     198             : The error criterion was relative when the function magnitude
     199             : was greater than one but absolute when it was less than one.
     200             : 
     201             : The following test used the relative error criterion, though
     202             : at certain points the relative error could be much higher than
     203             : indicated.
     204             :    IEEE    -200, -4             10000     4.8e-16     1.3e-16
     205             : 
     206             : Cephes Math Library Release 2.8:  June, 2000
     207             : Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
     208             : Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
     209             : *************************************************************************/
     210           0 : double lngamma(const double x, double &sgngam, const xparams _xparams)
     211             : {
     212             :     jmp_buf _break_jump;
     213             :     alglib_impl::ae_state _alglib_env_state;
     214           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     215           0 :     if( setjmp(_break_jump) )
     216             :     {
     217             : #if !defined(AE_NO_EXCEPTIONS)
     218           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     219             : #else
     220             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     221             :         return 0;
     222             : #endif
     223             :     }
     224           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     225           0 :     if( _xparams.flags!=0x0 )
     226           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     227           0 :     double result = alglib_impl::lngamma(x, &sgngam, &_alglib_env_state);
     228           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     229           0 :     return *(reinterpret_cast<double*>(&result));
     230             : }
     231             : #endif
     232             : 
     233             : #if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
     234             : /*************************************************************************
     235             : Error function
     236             : 
     237             : The integral is
     238             : 
     239             :                           x
     240             :                            -
     241             :                 2         | |          2
     242             :   erf(x)  =  --------     |    exp( - t  ) dt.
     243             :              sqrt(pi)   | |
     244             :                          -
     245             :                           0
     246             : 
     247             : For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
     248             : erf(x) = 1 - erfc(x).
     249             : 
     250             : 
     251             : ACCURACY:
     252             : 
     253             :                      Relative error:
     254             : arithmetic   domain     # trials      peak         rms
     255             :    IEEE      0,1         30000       3.7e-16     1.0e-16
     256             : 
     257             : Cephes Math Library Release 2.8:  June, 2000
     258             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
     259             : *************************************************************************/
     260           0 : double errorfunction(const double x, const xparams _xparams)
     261             : {
     262             :     jmp_buf _break_jump;
     263             :     alglib_impl::ae_state _alglib_env_state;
     264           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     265           0 :     if( setjmp(_break_jump) )
     266             :     {
     267             : #if !defined(AE_NO_EXCEPTIONS)
     268           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     269             : #else
     270             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     271             :         return 0;
     272             : #endif
     273             :     }
     274           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     275           0 :     if( _xparams.flags!=0x0 )
     276           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     277           0 :     double result = alglib_impl::errorfunction(x, &_alglib_env_state);
     278           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     279           0 :     return *(reinterpret_cast<double*>(&result));
     280             : }
     281             : 
     282             : /*************************************************************************
     283             : Complementary error function
     284             : 
     285             :  1 - erf(x) =
     286             : 
     287             :                           inf.
     288             :                             -
     289             :                  2         | |          2
     290             :   erfc(x)  =  --------     |    exp( - t  ) dt
     291             :               sqrt(pi)   | |
     292             :                           -
     293             :                            x
     294             : 
     295             : 
     296             : For small x, erfc(x) = 1 - erf(x); otherwise rational
     297             : approximations are computed.
     298             : 
     299             : 
     300             : ACCURACY:
     301             : 
     302             :                      Relative error:
     303             : arithmetic   domain     # trials      peak         rms
     304             :    IEEE      0,26.6417   30000       5.7e-14     1.5e-14
     305             : 
     306             : Cephes Math Library Release 2.8:  June, 2000
     307             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
     308             : *************************************************************************/
     309           0 : double errorfunctionc(const double x, const xparams _xparams)
     310             : {
     311             :     jmp_buf _break_jump;
     312             :     alglib_impl::ae_state _alglib_env_state;
     313           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     314           0 :     if( setjmp(_break_jump) )
     315             :     {
     316             : #if !defined(AE_NO_EXCEPTIONS)
     317           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     318             : #else
     319             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     320             :         return 0;
     321             : #endif
     322             :     }
     323           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     324           0 :     if( _xparams.flags!=0x0 )
     325           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     326           0 :     double result = alglib_impl::errorfunctionc(x, &_alglib_env_state);
     327           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     328           0 :     return *(reinterpret_cast<double*>(&result));
     329             : }
     330             : 
     331             : /*************************************************************************
     332             : Same as normalcdf(), obsolete name.
     333             : *************************************************************************/
     334           0 : double normaldistribution(const double x, const xparams _xparams)
     335             : {
     336             :     jmp_buf _break_jump;
     337             :     alglib_impl::ae_state _alglib_env_state;
     338           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     339           0 :     if( setjmp(_break_jump) )
     340             :     {
     341             : #if !defined(AE_NO_EXCEPTIONS)
     342           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     343             : #else
     344             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     345             :         return 0;
     346             : #endif
     347             :     }
     348           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     349           0 :     if( _xparams.flags!=0x0 )
     350           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     351           0 :     double result = alglib_impl::normaldistribution(x, &_alglib_env_state);
     352           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     353           0 :     return *(reinterpret_cast<double*>(&result));
     354             : }
     355             : 
     356             : /*************************************************************************
     357             : Normal distribution PDF
     358             : 
     359             : Returns Gaussian probability density function:
     360             : 
     361             :                1
     362             :    f(x)  = --------- * exp(-x^2/2)
     363             :            sqrt(2pi)
     364             : 
     365             : Cephes Math Library Release 2.8:  June, 2000
     366             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
     367             : *************************************************************************/
     368           0 : double normalpdf(const double x, const xparams _xparams)
     369             : {
     370             :     jmp_buf _break_jump;
     371             :     alglib_impl::ae_state _alglib_env_state;
     372           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     373           0 :     if( setjmp(_break_jump) )
     374             :     {
     375             : #if !defined(AE_NO_EXCEPTIONS)
     376           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     377             : #else
     378             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     379             :         return 0;
     380             : #endif
     381             :     }
     382           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     383           0 :     if( _xparams.flags!=0x0 )
     384           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     385           0 :     double result = alglib_impl::normalpdf(x, &_alglib_env_state);
     386           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     387           0 :     return *(reinterpret_cast<double*>(&result));
     388             : }
     389             : 
     390             : /*************************************************************************
     391             : Normal distribution CDF
     392             : 
     393             : Returns the area under the Gaussian probability density
     394             : function, integrated from minus infinity to x:
     395             : 
     396             :                            x
     397             :                             -
     398             :                   1        | |          2
     399             :    ndtr(x)  = ---------    |    exp( - t /2 ) dt
     400             :               sqrt(2pi)  | |
     401             :                           -
     402             :                          -inf.
     403             : 
     404             :             =  ( 1 + erf(z) ) / 2
     405             :             =  erfc(z) / 2
     406             : 
     407             : where z = x/sqrt(2). Computation is via the functions
     408             : erf and erfc.
     409             : 
     410             : 
     411             : ACCURACY:
     412             : 
     413             :                      Relative error:
     414             : arithmetic   domain     # trials      peak         rms
     415             :    IEEE     -13,0        30000       3.4e-14     6.7e-15
     416             : 
     417             : Cephes Math Library Release 2.8:  June, 2000
     418             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
     419             : *************************************************************************/
     420           0 : double normalcdf(const double x, const xparams _xparams)
     421             : {
     422             :     jmp_buf _break_jump;
     423             :     alglib_impl::ae_state _alglib_env_state;
     424           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     425           0 :     if( setjmp(_break_jump) )
     426             :     {
     427             : #if !defined(AE_NO_EXCEPTIONS)
     428           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     429             : #else
     430             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     431             :         return 0;
     432             : #endif
     433             :     }
     434           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     435           0 :     if( _xparams.flags!=0x0 )
     436           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     437           0 :     double result = alglib_impl::normalcdf(x, &_alglib_env_state);
     438           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     439           0 :     return *(reinterpret_cast<double*>(&result));
     440             : }
     441             : 
     442             : /*************************************************************************
     443             : Inverse of the error function
     444             : 
     445             : Cephes Math Library Release 2.8:  June, 2000
     446             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
     447             : *************************************************************************/
     448           0 : double inverf(const double e, const xparams _xparams)
     449             : {
     450             :     jmp_buf _break_jump;
     451             :     alglib_impl::ae_state _alglib_env_state;
     452           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     453           0 :     if( setjmp(_break_jump) )
     454             :     {
     455             : #if !defined(AE_NO_EXCEPTIONS)
     456           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     457             : #else
     458             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     459             :         return 0;
     460             : #endif
     461             :     }
     462           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     463           0 :     if( _xparams.flags!=0x0 )
     464           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     465           0 :     double result = alglib_impl::inverf(e, &_alglib_env_state);
     466           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     467           0 :     return *(reinterpret_cast<double*>(&result));
     468             : }
     469             : 
     470             : /*************************************************************************
     471             : Same as invnormalcdf(), deprecated name
     472             : *************************************************************************/
     473           0 : double invnormaldistribution(const double y0, const xparams _xparams)
     474             : {
     475             :     jmp_buf _break_jump;
     476             :     alglib_impl::ae_state _alglib_env_state;
     477           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     478           0 :     if( setjmp(_break_jump) )
     479             :     {
     480             : #if !defined(AE_NO_EXCEPTIONS)
     481           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     482             : #else
     483             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     484             :         return 0;
     485             : #endif
     486             :     }
     487           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     488           0 :     if( _xparams.flags!=0x0 )
     489           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     490           0 :     double result = alglib_impl::invnormaldistribution(y0, &_alglib_env_state);
     491           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     492           0 :     return *(reinterpret_cast<double*>(&result));
     493             : }
     494             : 
     495             : /*************************************************************************
     496             : Inverse of Normal CDF
     497             : 
     498             : Returns the argument, x, for which the area under the
     499             : Gaussian probability density function (integrated from
     500             : minus infinity to x) is equal to y.
     501             : 
     502             : 
     503             : For small arguments 0 < y < exp(-2), the program computes
     504             : z = sqrt( -2.0 * log(y) );  then the approximation is
     505             : x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
     506             : There are two rational functions P/Q, one for 0 < y < exp(-32)
     507             : and the other for y up to exp(-2).  For larger arguments,
     508             : w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
     509             : 
     510             : ACCURACY:
     511             : 
     512             :                      Relative error:
     513             : arithmetic   domain        # trials      peak         rms
     514             :    IEEE     0.125, 1        20000       7.2e-16     1.3e-16
     515             :    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17
     516             : 
     517             : Cephes Math Library Release 2.8:  June, 2000
     518             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
     519             : *************************************************************************/
     520           0 : double invnormalcdf(const double y0, const xparams _xparams)
     521             : {
     522             :     jmp_buf _break_jump;
     523             :     alglib_impl::ae_state _alglib_env_state;
     524           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     525           0 :     if( setjmp(_break_jump) )
     526             :     {
     527             : #if !defined(AE_NO_EXCEPTIONS)
     528           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     529             : #else
     530             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     531             :         return 0;
     532             : #endif
     533             :     }
     534           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     535           0 :     if( _xparams.flags!=0x0 )
     536           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     537           0 :     double result = alglib_impl::invnormalcdf(y0, &_alglib_env_state);
     538           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     539           0 :     return *(reinterpret_cast<double*>(&result));
     540             : }
     541             : 
     542             : /*************************************************************************
     543             : Bivariate normal PDF
     544             : 
     545             : Returns probability density function of the bivariate  Gaussian  with
     546             : correlation parameter equal to Rho:
     547             : 
     548             :                          1              (    x^2 - 2*rho*x*y + y^2  )
     549             :     f(x,y,rho) = ----------------- * exp( - ----------------------- )
     550             :                  2pi*sqrt(1-rho^2)      (        2*(1-rho^2)        )
     551             : 
     552             : 
     553             : with -1<rho<+1 and arbitrary x, y.
     554             : 
     555             : This function won't fail as long as Rho is in (-1,+1) range.
     556             : 
     557             :   -- ALGLIB --
     558             :      Copyright 15.11.2019 by Bochkanov Sergey
     559             : *************************************************************************/
     560           0 : double bivariatenormalpdf(const double x, const double y, const double rho, const xparams _xparams)
     561             : {
     562             :     jmp_buf _break_jump;
     563             :     alglib_impl::ae_state _alglib_env_state;
     564           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     565           0 :     if( setjmp(_break_jump) )
     566             :     {
     567             : #if !defined(AE_NO_EXCEPTIONS)
     568           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     569             : #else
     570             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     571             :         return 0;
     572             : #endif
     573             :     }
     574           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     575           0 :     if( _xparams.flags!=0x0 )
     576           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     577           0 :     double result = alglib_impl::bivariatenormalpdf(x, y, rho, &_alglib_env_state);
     578           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     579           0 :     return *(reinterpret_cast<double*>(&result));
     580             : }
     581             : 
     582             : /*************************************************************************
     583             : Bivariate normal CDF
     584             : 
     585             : Returns the area under the bivariate Gaussian  PDF  with  correlation
     586             : parameter equal to Rho, integrated from minus infinity to (x,y):
     587             : 
     588             : 
     589             :                                           x      y
     590             :                                           -      -
     591             :                             1            | |    | |
     592             :     bvn(x,y,rho) = -------------------   |      |   f(u,v,rho)*du*dv
     593             :                     2pi*sqrt(1-rho^2)  | |    | |
     594             :                                         -      -
     595             :                                        -INF   -INF
     596             : 
     597             : 
     598             : where
     599             : 
     600             :                       (    u^2 - 2*rho*u*v + v^2  )
     601             :     f(u,v,rho)   = exp( - ----------------------- )
     602             :                       (        2*(1-rho^2)        )
     603             : 
     604             : 
     605             : with -1<rho<+1 and arbitrary x, y.
     606             : 
     607             : This subroutine uses high-precision approximation scheme proposed  by
     608             : Alan Genz in "Numerical  Computation  of  Rectangular  Bivariate  and
     609             : Trivariate Normal and  t  probabilities",  which  computes  CDF  with
     610             : absolute error roughly equal to 1e-14.
     611             : 
     612             : This function won't fail as long as Rho is in (-1,+1) range.
     613             : 
     614             :   -- ALGLIB --
     615             :      Copyright 15.11.2019 by Bochkanov Sergey
     616             : *************************************************************************/
     617           0 : double bivariatenormalcdf(const double x, const double y, const double rho, const xparams _xparams)
     618             : {
     619             :     jmp_buf _break_jump;
     620             :     alglib_impl::ae_state _alglib_env_state;
     621           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     622           0 :     if( setjmp(_break_jump) )
     623             :     {
     624             : #if !defined(AE_NO_EXCEPTIONS)
     625           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     626             : #else
     627             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     628             :         return 0;
     629             : #endif
     630             :     }
     631           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     632           0 :     if( _xparams.flags!=0x0 )
     633           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     634           0 :     double result = alglib_impl::bivariatenormalcdf(x, y, rho, &_alglib_env_state);
     635           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     636           0 :     return *(reinterpret_cast<double*>(&result));
     637             : }
     638             : #endif
     639             : 
     640             : #if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
     641             : /*************************************************************************
     642             : Incomplete gamma integral
     643             : 
     644             : The function is defined by
     645             : 
     646             :                           x
     647             :                            -
     648             :                   1       | |  -t  a-1
     649             :  igam(a,x)  =   -----     |   e   t   dt.
     650             :                  -      | |
     651             :                 | (a)    -
     652             :                           0
     653             : 
     654             : 
     655             : In this implementation both arguments must be positive.
     656             : The integral is evaluated by either a power series or
     657             : continued fraction expansion, depending on the relative
     658             : values of a and x.
     659             : 
     660             : ACCURACY:
     661             : 
     662             :                      Relative error:
     663             : arithmetic   domain     # trials      peak         rms
     664             :    IEEE      0,30       200000       3.6e-14     2.9e-15
     665             :    IEEE      0,100      300000       9.9e-14     1.5e-14
     666             : 
     667             : Cephes Math Library Release 2.8:  June, 2000
     668             : Copyright 1985, 1987, 2000 by Stephen L. Moshier
     669             : *************************************************************************/
     670           0 : double incompletegamma(const double a, const double x, const xparams _xparams)
     671             : {
     672             :     jmp_buf _break_jump;
     673             :     alglib_impl::ae_state _alglib_env_state;
     674           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     675           0 :     if( setjmp(_break_jump) )
     676             :     {
     677             : #if !defined(AE_NO_EXCEPTIONS)
     678           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     679             : #else
     680             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     681             :         return 0;
     682             : #endif
     683             :     }
     684           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     685           0 :     if( _xparams.flags!=0x0 )
     686           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     687           0 :     double result = alglib_impl::incompletegamma(a, x, &_alglib_env_state);
     688           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     689           0 :     return *(reinterpret_cast<double*>(&result));
     690             : }
     691             : 
     692             : /*************************************************************************
     693             : Complemented incomplete gamma integral
     694             : 
     695             : The function is defined by
     696             : 
     697             : 
     698             :  igamc(a,x)   =   1 - igam(a,x)
     699             : 
     700             :                            inf.
     701             :                              -
     702             :                     1       | |  -t  a-1
     703             :               =   -----     |   e   t   dt.
     704             :                    -      | |
     705             :                   | (a)    -
     706             :                             x
     707             : 
     708             : 
     709             : In this implementation both arguments must be positive.
     710             : The integral is evaluated by either a power series or
     711             : continued fraction expansion, depending on the relative
     712             : values of a and x.
     713             : 
     714             : ACCURACY:
     715             : 
     716             : Tested at random a, x.
     717             :                a         x                      Relative error:
     718             : arithmetic   domain   domain     # trials      peak         rms
     719             :    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15
     720             :    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15
     721             : 
     722             : Cephes Math Library Release 2.8:  June, 2000
     723             : Copyright 1985, 1987, 2000 by Stephen L. Moshier
     724             : *************************************************************************/
     725           0 : double incompletegammac(const double a, const double x, const xparams _xparams)
     726             : {
     727             :     jmp_buf _break_jump;
     728             :     alglib_impl::ae_state _alglib_env_state;
     729           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     730           0 :     if( setjmp(_break_jump) )
     731             :     {
     732             : #if !defined(AE_NO_EXCEPTIONS)
     733           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     734             : #else
     735             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     736             :         return 0;
     737             : #endif
     738             :     }
     739           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     740           0 :     if( _xparams.flags!=0x0 )
     741           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     742           0 :     double result = alglib_impl::incompletegammac(a, x, &_alglib_env_state);
     743           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     744           0 :     return *(reinterpret_cast<double*>(&result));
     745             : }
     746             : 
     747             : /*************************************************************************
     748             : Inverse of complemented imcomplete gamma integral
     749             : 
     750             : Given p, the function finds x such that
     751             : 
     752             :  igamc( a, x ) = p.
     753             : 
     754             : Starting with the approximate value
     755             : 
     756             :         3
     757             :  x = a t
     758             : 
     759             :  where
     760             : 
     761             :  t = 1 - d - ndtri(p) sqrt(d)
     762             : 
     763             : and
     764             : 
     765             :  d = 1/9a,
     766             : 
     767             : the routine performs up to 10 Newton iterations to find the
     768             : root of igamc(a,x) - p = 0.
     769             : 
     770             : ACCURACY:
     771             : 
     772             : Tested at random a, p in the intervals indicated.
     773             : 
     774             :                a        p                      Relative error:
     775             : arithmetic   domain   domain     # trials      peak         rms
     776             :    IEEE     0.5,100   0,0.5       100000       1.0e-14     1.7e-15
     777             :    IEEE     0.01,0.5  0,0.5       100000       9.0e-14     3.4e-15
     778             :    IEEE    0.5,10000  0,0.5        20000       2.3e-13     3.8e-14
     779             : 
     780             : Cephes Math Library Release 2.8:  June, 2000
     781             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
     782             : *************************************************************************/
     783           0 : double invincompletegammac(const double a, const double y0, const xparams _xparams)
     784             : {
     785             :     jmp_buf _break_jump;
     786             :     alglib_impl::ae_state _alglib_env_state;
     787           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     788           0 :     if( setjmp(_break_jump) )
     789             :     {
     790             : #if !defined(AE_NO_EXCEPTIONS)
     791           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     792             : #else
     793             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     794             :         return 0;
     795             : #endif
     796             :     }
     797           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     798           0 :     if( _xparams.flags!=0x0 )
     799           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     800           0 :     double result = alglib_impl::invincompletegammac(a, y0, &_alglib_env_state);
     801           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     802           0 :     return *(reinterpret_cast<double*>(&result));
     803             : }
     804             : #endif
     805             : 
     806             : #if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
     807             : /*************************************************************************
     808             : Complete elliptic integral of the first kind
     809             : 
     810             : Approximates the integral
     811             : 
     812             : 
     813             : 
     814             :            pi/2
     815             :             -
     816             :            | |
     817             :            |           dt
     818             : K(m)  =    |    ------------------
     819             :            |                   2
     820             :          | |    sqrt( 1 - m sin t )
     821             :           -
     822             :            0
     823             : 
     824             : using the approximation
     825             : 
     826             :     P(x)  -  log x Q(x).
     827             : 
     828             : ACCURACY:
     829             : 
     830             :                      Relative error:
     831             : arithmetic   domain     # trials      peak         rms
     832             :    IEEE       0,1        30000       2.5e-16     6.8e-17
     833             : 
     834             : Cephes Math Library, Release 2.8:  June, 2000
     835             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
     836             : *************************************************************************/
     837           0 : double ellipticintegralk(const double m, const xparams _xparams)
     838             : {
     839             :     jmp_buf _break_jump;
     840             :     alglib_impl::ae_state _alglib_env_state;
     841           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     842           0 :     if( setjmp(_break_jump) )
     843             :     {
     844             : #if !defined(AE_NO_EXCEPTIONS)
     845           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     846             : #else
     847             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     848             :         return 0;
     849             : #endif
     850             :     }
     851           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     852           0 :     if( _xparams.flags!=0x0 )
     853           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     854           0 :     double result = alglib_impl::ellipticintegralk(m, &_alglib_env_state);
     855           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     856           0 :     return *(reinterpret_cast<double*>(&result));
     857             : }
     858             : 
     859             : /*************************************************************************
     860             : Complete elliptic integral of the first kind
     861             : 
     862             : Approximates the integral
     863             : 
     864             : 
     865             : 
     866             :            pi/2
     867             :             -
     868             :            | |
     869             :            |           dt
     870             : K(m)  =    |    ------------------
     871             :            |                   2
     872             :          | |    sqrt( 1 - m sin t )
     873             :           -
     874             :            0
     875             : 
     876             : where m = 1 - m1, using the approximation
     877             : 
     878             :     P(x)  -  log x Q(x).
     879             : 
     880             : The argument m1 is used rather than m so that the logarithmic
     881             : singularity at m = 1 will be shifted to the origin; this
     882             : preserves maximum accuracy.
     883             : 
     884             : K(0) = pi/2.
     885             : 
     886             : ACCURACY:
     887             : 
     888             :                      Relative error:
     889             : arithmetic   domain     # trials      peak         rms
     890             :    IEEE       0,1        30000       2.5e-16     6.8e-17
     891             : 
     892             : Cephes Math Library, Release 2.8:  June, 2000
     893             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
     894             : *************************************************************************/
     895           0 : double ellipticintegralkhighprecision(const double m1, const xparams _xparams)
     896             : {
     897             :     jmp_buf _break_jump;
     898             :     alglib_impl::ae_state _alglib_env_state;
     899           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     900           0 :     if( setjmp(_break_jump) )
     901             :     {
     902             : #if !defined(AE_NO_EXCEPTIONS)
     903           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     904             : #else
     905             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     906             :         return 0;
     907             : #endif
     908             :     }
     909           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     910           0 :     if( _xparams.flags!=0x0 )
     911           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     912           0 :     double result = alglib_impl::ellipticintegralkhighprecision(m1, &_alglib_env_state);
     913           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     914           0 :     return *(reinterpret_cast<double*>(&result));
     915             : }
     916             : 
     917             : /*************************************************************************
     918             : Incomplete elliptic integral of the first kind F(phi|m)
     919             : 
     920             : Approximates the integral
     921             : 
     922             : 
     923             : 
     924             :                phi
     925             :                 -
     926             :                | |
     927             :                |           dt
     928             : F(phi_\m)  =    |    ------------------
     929             :                |                   2
     930             :              | |    sqrt( 1 - m sin t )
     931             :               -
     932             :                0
     933             : 
     934             : of amplitude phi and modulus m, using the arithmetic -
     935             : geometric mean algorithm.
     936             : 
     937             : 
     938             : 
     939             : 
     940             : ACCURACY:
     941             : 
     942             : Tested at random points with m in [0, 1] and phi as indicated.
     943             : 
     944             :                      Relative error:
     945             : arithmetic   domain     # trials      peak         rms
     946             :    IEEE     -10,10       200000      7.4e-16     1.0e-16
     947             : 
     948             : Cephes Math Library Release 2.8:  June, 2000
     949             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
     950             : *************************************************************************/
     951           0 : double incompleteellipticintegralk(const double phi, const double m, const xparams _xparams)
     952             : {
     953             :     jmp_buf _break_jump;
     954             :     alglib_impl::ae_state _alglib_env_state;
     955           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
     956           0 :     if( setjmp(_break_jump) )
     957             :     {
     958             : #if !defined(AE_NO_EXCEPTIONS)
     959           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
     960             : #else
     961             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
     962             :         return 0;
     963             : #endif
     964             :     }
     965           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
     966           0 :     if( _xparams.flags!=0x0 )
     967           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
     968           0 :     double result = alglib_impl::incompleteellipticintegralk(phi, m, &_alglib_env_state);
     969           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
     970           0 :     return *(reinterpret_cast<double*>(&result));
     971             : }
     972             : 
     973             : /*************************************************************************
     974             : Complete elliptic integral of the second kind
     975             : 
     976             : Approximates the integral
     977             : 
     978             : 
     979             :            pi/2
     980             :             -
     981             :            | |                 2
     982             : E(m)  =    |    sqrt( 1 - m sin t ) dt
     983             :          | |
     984             :           -
     985             :            0
     986             : 
     987             : using the approximation
     988             : 
     989             :      P(x)  -  x log x Q(x).
     990             : 
     991             : ACCURACY:
     992             : 
     993             :                      Relative error:
     994             : arithmetic   domain     # trials      peak         rms
     995             :    IEEE       0, 1       10000       2.1e-16     7.3e-17
     996             : 
     997             : Cephes Math Library, Release 2.8: June, 2000
     998             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
     999             : *************************************************************************/
    1000           0 : double ellipticintegrale(const double m, const xparams _xparams)
    1001             : {
    1002             :     jmp_buf _break_jump;
    1003             :     alglib_impl::ae_state _alglib_env_state;
    1004           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1005           0 :     if( setjmp(_break_jump) )
    1006             :     {
    1007             : #if !defined(AE_NO_EXCEPTIONS)
    1008           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1009             : #else
    1010             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1011             :         return 0;
    1012             : #endif
    1013             :     }
    1014           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1015           0 :     if( _xparams.flags!=0x0 )
    1016           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1017           0 :     double result = alglib_impl::ellipticintegrale(m, &_alglib_env_state);
    1018           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1019           0 :     return *(reinterpret_cast<double*>(&result));
    1020             : }
    1021             : 
    1022             : /*************************************************************************
    1023             : Incomplete elliptic integral of the second kind
    1024             : 
    1025             : Approximates the integral
    1026             : 
    1027             : 
    1028             :                phi
    1029             :                 -
    1030             :                | |
    1031             :                |                   2
    1032             : E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
    1033             :                |
    1034             :              | |
    1035             :               -
    1036             :                0
    1037             : 
    1038             : of amplitude phi and modulus m, using the arithmetic -
    1039             : geometric mean algorithm.
    1040             : 
    1041             : ACCURACY:
    1042             : 
    1043             : Tested at random arguments with phi in [-10, 10] and m in
    1044             : [0, 1].
    1045             :                      Relative error:
    1046             : arithmetic   domain     # trials      peak         rms
    1047             :    IEEE     -10,10      150000       3.3e-15     1.4e-16
    1048             : 
    1049             : Cephes Math Library Release 2.8:  June, 2000
    1050             : Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
    1051             : *************************************************************************/
    1052           0 : double incompleteellipticintegrale(const double phi, const double m, const xparams _xparams)
    1053             : {
    1054             :     jmp_buf _break_jump;
    1055             :     alglib_impl::ae_state _alglib_env_state;
    1056           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1057           0 :     if( setjmp(_break_jump) )
    1058             :     {
    1059             : #if !defined(AE_NO_EXCEPTIONS)
    1060           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1061             : #else
    1062             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1063             :         return 0;
    1064             : #endif
    1065             :     }
    1066           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1067           0 :     if( _xparams.flags!=0x0 )
    1068           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1069           0 :     double result = alglib_impl::incompleteellipticintegrale(phi, m, &_alglib_env_state);
    1070           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1071           0 :     return *(reinterpret_cast<double*>(&result));
    1072             : }
    1073             : #endif
    1074             : 
    1075             : #if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
    1076             : /*************************************************************************
    1077             : Calculation of the value of the Hermite polynomial.
    1078             : 
    1079             : Parameters:
    1080             :     n   -   degree, n>=0
    1081             :     x   -   argument
    1082             : 
    1083             : Result:
    1084             :     the value of the Hermite polynomial Hn at x
    1085             : *************************************************************************/
    1086           0 : double hermitecalculate(const ae_int_t n, const double x, const xparams _xparams)
    1087             : {
    1088             :     jmp_buf _break_jump;
    1089             :     alglib_impl::ae_state _alglib_env_state;
    1090           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1091           0 :     if( setjmp(_break_jump) )
    1092             :     {
    1093             : #if !defined(AE_NO_EXCEPTIONS)
    1094           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1095             : #else
    1096             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1097             :         return 0;
    1098             : #endif
    1099             :     }
    1100           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1101           0 :     if( _xparams.flags!=0x0 )
    1102           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1103           0 :     double result = alglib_impl::hermitecalculate(n, x, &_alglib_env_state);
    1104           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1105           0 :     return *(reinterpret_cast<double*>(&result));
    1106             : }
    1107             : 
    1108             : /*************************************************************************
    1109             : Summation of Hermite polynomials using Clenshaw's recurrence formula.
    1110             : 
    1111             : This routine calculates
    1112             :     c[0]*H0(x) + c[1]*H1(x) + ... + c[N]*HN(x)
    1113             : 
    1114             : Parameters:
    1115             :     n   -   degree, n>=0
    1116             :     x   -   argument
    1117             : 
    1118             : Result:
    1119             :     the value of the Hermite polynomial at x
    1120             : *************************************************************************/
    1121           0 : double hermitesum(const real_1d_array &c, const ae_int_t n, const double x, const xparams _xparams)
    1122             : {
    1123             :     jmp_buf _break_jump;
    1124             :     alglib_impl::ae_state _alglib_env_state;
    1125           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1126           0 :     if( setjmp(_break_jump) )
    1127             :     {
    1128             : #if !defined(AE_NO_EXCEPTIONS)
    1129           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1130             : #else
    1131             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1132             :         return 0;
    1133             : #endif
    1134             :     }
    1135           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1136           0 :     if( _xparams.flags!=0x0 )
    1137           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1138           0 :     double result = alglib_impl::hermitesum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), n, x, &_alglib_env_state);
    1139           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1140           0 :     return *(reinterpret_cast<double*>(&result));
    1141             : }
    1142             : 
    1143             : /*************************************************************************
    1144             : Representation of Hn as C[0] + C[1]*X + ... + C[N]*X^N
    1145             : 
    1146             : Input parameters:
    1147             :     N   -   polynomial degree, n>=0
    1148             : 
    1149             : Output parameters:
    1150             :     C   -   coefficients
    1151             : *************************************************************************/
    1152           0 : void hermitecoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams)
    1153             : {
    1154             :     jmp_buf _break_jump;
    1155             :     alglib_impl::ae_state _alglib_env_state;
    1156           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1157           0 :     if( setjmp(_break_jump) )
    1158             :     {
    1159             : #if !defined(AE_NO_EXCEPTIONS)
    1160           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1161             : #else
    1162             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1163             :         return;
    1164             : #endif
    1165             :     }
    1166           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1167           0 :     if( _xparams.flags!=0x0 )
    1168           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1169           0 :     alglib_impl::hermitecoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
    1170           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1171           0 :     return;
    1172             : }
    1173             : #endif
    1174             : 
    1175             : #if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
    1176             : /*************************************************************************
    1177             : Dawson's Integral
    1178             : 
    1179             : Approximates the integral
    1180             : 
    1181             :                             x
    1182             :                             -
    1183             :                      2     | |        2
    1184             :  dawsn(x)  =  exp( -x  )   |    exp( t  ) dt
    1185             :                          | |
    1186             :                           -
    1187             :                           0
    1188             : 
    1189             : Three different rational approximations are employed, for
    1190             : the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
    1191             : 
    1192             : ACCURACY:
    1193             : 
    1194             :                      Relative error:
    1195             : arithmetic   domain     # trials      peak         rms
    1196             :    IEEE      0,10        10000       6.9e-16     1.0e-16
    1197             : 
    1198             : Cephes Math Library Release 2.8:  June, 2000
    1199             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    1200             : *************************************************************************/
    1201           0 : double dawsonintegral(const double x, const xparams _xparams)
    1202             : {
    1203             :     jmp_buf _break_jump;
    1204             :     alglib_impl::ae_state _alglib_env_state;
    1205           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1206           0 :     if( setjmp(_break_jump) )
    1207             :     {
    1208             : #if !defined(AE_NO_EXCEPTIONS)
    1209           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1210             : #else
    1211             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1212             :         return 0;
    1213             : #endif
    1214             :     }
    1215           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1216           0 :     if( _xparams.flags!=0x0 )
    1217           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1218           0 :     double result = alglib_impl::dawsonintegral(x, &_alglib_env_state);
    1219           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1220           0 :     return *(reinterpret_cast<double*>(&result));
    1221             : }
    1222             : #endif
    1223             : 
    1224             : #if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
    1225             : /*************************************************************************
    1226             : Sine and cosine integrals
    1227             : 
    1228             : Evaluates the integrals
    1229             : 
    1230             :                          x
    1231             :                          -
    1232             :                         |  cos t - 1
    1233             :   Ci(x) = eul + ln x +  |  --------- dt,
    1234             :                         |      t
    1235             :                        -
    1236             :                         0
    1237             :             x
    1238             :             -
    1239             :            |  sin t
    1240             :   Si(x) =  |  ----- dt
    1241             :            |    t
    1242             :           -
    1243             :            0
    1244             : 
    1245             : where eul = 0.57721566490153286061 is Euler's constant.
    1246             : The integrals are approximated by rational functions.
    1247             : For x > 8 auxiliary functions f(x) and g(x) are employed
    1248             : such that
    1249             : 
    1250             : Ci(x) = f(x) sin(x) - g(x) cos(x)
    1251             : Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
    1252             : 
    1253             : 
    1254             : ACCURACY:
    1255             :    Test interval = [0,50].
    1256             : Absolute error, except relative when > 1:
    1257             : arithmetic   function   # trials      peak         rms
    1258             :    IEEE        Si        30000       4.4e-16     7.3e-17
    1259             :    IEEE        Ci        30000       6.9e-16     5.1e-17
    1260             : 
    1261             : Cephes Math Library Release 2.1:  January, 1989
    1262             : Copyright 1984, 1987, 1989 by Stephen L. Moshier
    1263             : *************************************************************************/
    1264           0 : void sinecosineintegrals(const double x, double &si, double &ci, const xparams _xparams)
    1265             : {
    1266             :     jmp_buf _break_jump;
    1267             :     alglib_impl::ae_state _alglib_env_state;
    1268           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1269           0 :     if( setjmp(_break_jump) )
    1270             :     {
    1271             : #if !defined(AE_NO_EXCEPTIONS)
    1272           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1273             : #else
    1274             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1275             :         return;
    1276             : #endif
    1277             :     }
    1278           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1279           0 :     if( _xparams.flags!=0x0 )
    1280           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1281           0 :     alglib_impl::sinecosineintegrals(x, &si, &ci, &_alglib_env_state);
    1282           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1283           0 :     return;
    1284             : }
    1285             : 
    1286             : /*************************************************************************
    1287             : Hyperbolic sine and cosine integrals
    1288             : 
    1289             : Approximates the integrals
    1290             : 
    1291             :                            x
    1292             :                            -
    1293             :                           | |   cosh t - 1
    1294             :   Chi(x) = eul + ln x +   |    -----------  dt,
    1295             :                         | |          t
    1296             :                          -
    1297             :                          0
    1298             : 
    1299             :               x
    1300             :               -
    1301             :              | |  sinh t
    1302             :   Shi(x) =   |    ------  dt
    1303             :            | |       t
    1304             :             -
    1305             :             0
    1306             : 
    1307             : where eul = 0.57721566490153286061 is Euler's constant.
    1308             : The integrals are evaluated by power series for x < 8
    1309             : and by Chebyshev expansions for x between 8 and 88.
    1310             : For large x, both functions approach exp(x)/2x.
    1311             : Arguments greater than 88 in magnitude return MAXNUM.
    1312             : 
    1313             : 
    1314             : ACCURACY:
    1315             : 
    1316             : Test interval 0 to 88.
    1317             :                      Relative error:
    1318             : arithmetic   function  # trials      peak         rms
    1319             :    IEEE         Shi      30000       6.9e-16     1.6e-16
    1320             :        Absolute error, except relative when |Chi| > 1:
    1321             :    IEEE         Chi      30000       8.4e-16     1.4e-16
    1322             : 
    1323             : Cephes Math Library Release 2.8:  June, 2000
    1324             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    1325             : *************************************************************************/
    1326           0 : void hyperbolicsinecosineintegrals(const double x, double &shi, double &chi, const xparams _xparams)
    1327             : {
    1328             :     jmp_buf _break_jump;
    1329             :     alglib_impl::ae_state _alglib_env_state;
    1330           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1331           0 :     if( setjmp(_break_jump) )
    1332             :     {
    1333             : #if !defined(AE_NO_EXCEPTIONS)
    1334           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1335             : #else
    1336             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1337             :         return;
    1338             : #endif
    1339             :     }
    1340           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1341           0 :     if( _xparams.flags!=0x0 )
    1342           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1343           0 :     alglib_impl::hyperbolicsinecosineintegrals(x, &shi, &chi, &_alglib_env_state);
    1344           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1345           0 :     return;
    1346             : }
    1347             : #endif
    1348             : 
    1349             : #if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
    1350             : /*************************************************************************
    1351             : Poisson distribution
    1352             : 
    1353             : Returns the sum of the first k+1 terms of the Poisson
    1354             : distribution:
    1355             : 
    1356             :   k         j
    1357             :   --   -m  m
    1358             :   >   e    --
    1359             :   --       j!
    1360             :  j=0
    1361             : 
    1362             : The terms are not summed directly; instead the incomplete
    1363             : gamma integral is employed, according to the relation
    1364             : 
    1365             : y = pdtr( k, m ) = igamc( k+1, m ).
    1366             : 
    1367             : The arguments must both be positive.
    1368             : ACCURACY:
    1369             : 
    1370             : See incomplete gamma function
    1371             : 
    1372             : Cephes Math Library Release 2.8:  June, 2000
    1373             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    1374             : *************************************************************************/
    1375           0 : double poissondistribution(const ae_int_t k, const double m, const xparams _xparams)
    1376             : {
    1377             :     jmp_buf _break_jump;
    1378             :     alglib_impl::ae_state _alglib_env_state;
    1379           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1380           0 :     if( setjmp(_break_jump) )
    1381             :     {
    1382             : #if !defined(AE_NO_EXCEPTIONS)
    1383           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1384             : #else
    1385             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1386             :         return 0;
    1387             : #endif
    1388             :     }
    1389           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1390           0 :     if( _xparams.flags!=0x0 )
    1391           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1392           0 :     double result = alglib_impl::poissondistribution(k, m, &_alglib_env_state);
    1393           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1394           0 :     return *(reinterpret_cast<double*>(&result));
    1395             : }
    1396             : 
    1397             : /*************************************************************************
    1398             : Complemented Poisson distribution
    1399             : 
    1400             : Returns the sum of the terms k+1 to infinity of the Poisson
    1401             : distribution:
    1402             : 
    1403             :  inf.       j
    1404             :   --   -m  m
    1405             :   >   e    --
    1406             :   --       j!
    1407             :  j=k+1
    1408             : 
    1409             : The terms are not summed directly; instead the incomplete
    1410             : gamma integral is employed, according to the formula
    1411             : 
    1412             : y = pdtrc( k, m ) = igam( k+1, m ).
    1413             : 
    1414             : The arguments must both be positive.
    1415             : 
    1416             : ACCURACY:
    1417             : 
    1418             : See incomplete gamma function
    1419             : 
    1420             : Cephes Math Library Release 2.8:  June, 2000
    1421             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    1422             : *************************************************************************/
    1423           0 : double poissoncdistribution(const ae_int_t k, const double m, const xparams _xparams)
    1424             : {
    1425             :     jmp_buf _break_jump;
    1426             :     alglib_impl::ae_state _alglib_env_state;
    1427           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1428           0 :     if( setjmp(_break_jump) )
    1429             :     {
    1430             : #if !defined(AE_NO_EXCEPTIONS)
    1431           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1432             : #else
    1433             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1434             :         return 0;
    1435             : #endif
    1436             :     }
    1437           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1438           0 :     if( _xparams.flags!=0x0 )
    1439           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1440           0 :     double result = alglib_impl::poissoncdistribution(k, m, &_alglib_env_state);
    1441           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1442           0 :     return *(reinterpret_cast<double*>(&result));
    1443             : }
    1444             : 
    1445             : /*************************************************************************
    1446             : Inverse Poisson distribution
    1447             : 
    1448             : Finds the Poisson variable x such that the integral
    1449             : from 0 to x of the Poisson density is equal to the
    1450             : given probability y.
    1451             : 
    1452             : This is accomplished using the inverse gamma integral
    1453             : function and the relation
    1454             : 
    1455             :    m = igami( k+1, y ).
    1456             : 
    1457             : ACCURACY:
    1458             : 
    1459             : See inverse incomplete gamma function
    1460             : 
    1461             : Cephes Math Library Release 2.8:  June, 2000
    1462             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    1463             : *************************************************************************/
    1464           0 : double invpoissondistribution(const ae_int_t k, const double y, const xparams _xparams)
    1465             : {
    1466             :     jmp_buf _break_jump;
    1467             :     alglib_impl::ae_state _alglib_env_state;
    1468           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1469           0 :     if( setjmp(_break_jump) )
    1470             :     {
    1471             : #if !defined(AE_NO_EXCEPTIONS)
    1472           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1473             : #else
    1474             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1475             :         return 0;
    1476             : #endif
    1477             :     }
    1478           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1479           0 :     if( _xparams.flags!=0x0 )
    1480           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1481           0 :     double result = alglib_impl::invpoissondistribution(k, y, &_alglib_env_state);
    1482           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1483           0 :     return *(reinterpret_cast<double*>(&result));
    1484             : }
    1485             : #endif
    1486             : 
    1487             : #if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
    1488             : /*************************************************************************
    1489             : Bessel function of order zero
    1490             : 
    1491             : Returns Bessel function of order zero of the argument.
    1492             : 
    1493             : The domain is divided into the intervals [0, 5] and
    1494             : (5, infinity). In the first interval the following rational
    1495             : approximation is used:
    1496             : 
    1497             : 
    1498             :        2         2
    1499             : (w - r  ) (w - r  ) P (w) / Q (w)
    1500             :       1         2    3       8
    1501             : 
    1502             :            2
    1503             : where w = x  and the two r's are zeros of the function.
    1504             : 
    1505             : In the second interval, the Hankel asymptotic expansion
    1506             : is employed with two rational functions of degree 6/6
    1507             : and 7/7.
    1508             : 
    1509             : ACCURACY:
    1510             : 
    1511             :                      Absolute error:
    1512             : arithmetic   domain     # trials      peak         rms
    1513             :    IEEE      0, 30       60000       4.2e-16     1.1e-16
    1514             : 
    1515             : Cephes Math Library Release 2.8:  June, 2000
    1516             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    1517             : *************************************************************************/
    1518           0 : double besselj0(const double x, const xparams _xparams)
    1519             : {
    1520             :     jmp_buf _break_jump;
    1521             :     alglib_impl::ae_state _alglib_env_state;
    1522           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1523           0 :     if( setjmp(_break_jump) )
    1524             :     {
    1525             : #if !defined(AE_NO_EXCEPTIONS)
    1526           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1527             : #else
    1528             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1529             :         return 0;
    1530             : #endif
    1531             :     }
    1532           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1533           0 :     if( _xparams.flags!=0x0 )
    1534           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1535           0 :     double result = alglib_impl::besselj0(x, &_alglib_env_state);
    1536           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1537           0 :     return *(reinterpret_cast<double*>(&result));
    1538             : }
    1539             : 
    1540             : /*************************************************************************
    1541             : Bessel function of order one
    1542             : 
    1543             : Returns Bessel function of order one of the argument.
    1544             : 
    1545             : The domain is divided into the intervals [0, 8] and
    1546             : (8, infinity). In the first interval a 24 term Chebyshev
    1547             : expansion is used. In the second, the asymptotic
    1548             : trigonometric representation is employed using two
    1549             : rational functions of degree 5/5.
    1550             : 
    1551             : ACCURACY:
    1552             : 
    1553             :                      Absolute error:
    1554             : arithmetic   domain      # trials      peak         rms
    1555             :    IEEE      0, 30       30000       2.6e-16     1.1e-16
    1556             : 
    1557             : Cephes Math Library Release 2.8:  June, 2000
    1558             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    1559             : *************************************************************************/
    1560           0 : double besselj1(const double x, const xparams _xparams)
    1561             : {
    1562             :     jmp_buf _break_jump;
    1563             :     alglib_impl::ae_state _alglib_env_state;
    1564           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1565           0 :     if( setjmp(_break_jump) )
    1566             :     {
    1567             : #if !defined(AE_NO_EXCEPTIONS)
    1568           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1569             : #else
    1570             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1571             :         return 0;
    1572             : #endif
    1573             :     }
    1574           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1575           0 :     if( _xparams.flags!=0x0 )
    1576           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1577           0 :     double result = alglib_impl::besselj1(x, &_alglib_env_state);
    1578           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1579           0 :     return *(reinterpret_cast<double*>(&result));
    1580             : }
    1581             : 
    1582             : /*************************************************************************
    1583             : Bessel function of integer order
    1584             : 
    1585             : Returns Bessel function of order n, where n is a
    1586             : (possibly negative) integer.
    1587             : 
    1588             : The ratio of jn(x) to j0(x) is computed by backward
    1589             : recurrence.  First the ratio jn/jn-1 is found by a
    1590             : continued fraction expansion.  Then the recurrence
    1591             : relating successive orders is applied until j0 or j1 is
    1592             : reached.
    1593             : 
    1594             : If n = 0 or 1 the routine for j0 or j1 is called
    1595             : directly.
    1596             : 
    1597             : ACCURACY:
    1598             : 
    1599             :                      Absolute error:
    1600             : arithmetic   range      # trials      peak         rms
    1601             :    IEEE      0, 30        5000       4.4e-16     7.9e-17
    1602             : 
    1603             : 
    1604             : Not suitable for large n or x. Use jv() (fractional order) instead.
    1605             : 
    1606             : Cephes Math Library Release 2.8:  June, 2000
    1607             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    1608             : *************************************************************************/
    1609           0 : double besseljn(const ae_int_t n, const double x, const xparams _xparams)
    1610             : {
    1611             :     jmp_buf _break_jump;
    1612             :     alglib_impl::ae_state _alglib_env_state;
    1613           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1614           0 :     if( setjmp(_break_jump) )
    1615             :     {
    1616             : #if !defined(AE_NO_EXCEPTIONS)
    1617           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1618             : #else
    1619             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1620             :         return 0;
    1621             : #endif
    1622             :     }
    1623           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1624           0 :     if( _xparams.flags!=0x0 )
    1625           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1626           0 :     double result = alglib_impl::besseljn(n, x, &_alglib_env_state);
    1627           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1628           0 :     return *(reinterpret_cast<double*>(&result));
    1629             : }
    1630             : 
    1631             : /*************************************************************************
    1632             : Bessel function of the second kind, order zero
    1633             : 
    1634             : Returns Bessel function of the second kind, of order
    1635             : zero, of the argument.
    1636             : 
    1637             : The domain is divided into the intervals [0, 5] and
    1638             : (5, infinity). In the first interval a rational approximation
    1639             : R(x) is employed to compute
    1640             :   y0(x)  = R(x)  +   2 * log(x) * j0(x) / PI.
    1641             : Thus a call to j0() is required.
    1642             : 
    1643             : In the second interval, the Hankel asymptotic expansion
    1644             : is employed with two rational functions of degree 6/6
    1645             : and 7/7.
    1646             : 
    1647             : 
    1648             : 
    1649             : ACCURACY:
    1650             : 
    1651             :  Absolute error, when y0(x) < 1; else relative error:
    1652             : 
    1653             : arithmetic   domain     # trials      peak         rms
    1654             :    IEEE      0, 30       30000       1.3e-15     1.6e-16
    1655             : 
    1656             : Cephes Math Library Release 2.8:  June, 2000
    1657             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    1658             : *************************************************************************/
    1659           0 : double bessely0(const double x, const xparams _xparams)
    1660             : {
    1661             :     jmp_buf _break_jump;
    1662             :     alglib_impl::ae_state _alglib_env_state;
    1663           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1664           0 :     if( setjmp(_break_jump) )
    1665             :     {
    1666             : #if !defined(AE_NO_EXCEPTIONS)
    1667           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1668             : #else
    1669             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1670             :         return 0;
    1671             : #endif
    1672             :     }
    1673           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1674           0 :     if( _xparams.flags!=0x0 )
    1675           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1676           0 :     double result = alglib_impl::bessely0(x, &_alglib_env_state);
    1677           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1678           0 :     return *(reinterpret_cast<double*>(&result));
    1679             : }
    1680             : 
    1681             : /*************************************************************************
    1682             : Bessel function of second kind of order one
    1683             : 
    1684             : Returns Bessel function of the second kind of order one
    1685             : of the argument.
    1686             : 
    1687             : The domain is divided into the intervals [0, 8] and
    1688             : (8, infinity). In the first interval a 25 term Chebyshev
    1689             : expansion is used, and a call to j1() is required.
    1690             : In the second, the asymptotic trigonometric representation
    1691             : is employed using two rational functions of degree 5/5.
    1692             : 
    1693             : ACCURACY:
    1694             : 
    1695             :                      Absolute error:
    1696             : arithmetic   domain      # trials      peak         rms
    1697             :    IEEE      0, 30       30000       1.0e-15     1.3e-16
    1698             : 
    1699             : Cephes Math Library Release 2.8:  June, 2000
    1700             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    1701             : *************************************************************************/
    1702           0 : double bessely1(const double x, const xparams _xparams)
    1703             : {
    1704             :     jmp_buf _break_jump;
    1705             :     alglib_impl::ae_state _alglib_env_state;
    1706           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1707           0 :     if( setjmp(_break_jump) )
    1708             :     {
    1709             : #if !defined(AE_NO_EXCEPTIONS)
    1710           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1711             : #else
    1712             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1713             :         return 0;
    1714             : #endif
    1715             :     }
    1716           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1717           0 :     if( _xparams.flags!=0x0 )
    1718           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1719           0 :     double result = alglib_impl::bessely1(x, &_alglib_env_state);
    1720           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1721           0 :     return *(reinterpret_cast<double*>(&result));
    1722             : }
    1723             : 
    1724             : /*************************************************************************
    1725             : Bessel function of second kind of integer order
    1726             : 
    1727             : Returns Bessel function of order n, where n is a
    1728             : (possibly negative) integer.
    1729             : 
    1730             : The function is evaluated by forward recurrence on
    1731             : n, starting with values computed by the routines
    1732             : y0() and y1().
    1733             : 
    1734             : If n = 0 or 1 the routine for y0 or y1 is called
    1735             : directly.
    1736             : 
    1737             : ACCURACY:
    1738             :                      Absolute error, except relative
    1739             :                      when y > 1:
    1740             : arithmetic   domain     # trials      peak         rms
    1741             :    IEEE      0, 30       30000       3.4e-15     4.3e-16
    1742             : 
    1743             : Cephes Math Library Release 2.8:  June, 2000
    1744             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    1745             : *************************************************************************/
    1746           0 : double besselyn(const ae_int_t n, const double x, const xparams _xparams)
    1747             : {
    1748             :     jmp_buf _break_jump;
    1749             :     alglib_impl::ae_state _alglib_env_state;
    1750           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1751           0 :     if( setjmp(_break_jump) )
    1752             :     {
    1753             : #if !defined(AE_NO_EXCEPTIONS)
    1754           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1755             : #else
    1756             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1757             :         return 0;
    1758             : #endif
    1759             :     }
    1760           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1761           0 :     if( _xparams.flags!=0x0 )
    1762           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1763           0 :     double result = alglib_impl::besselyn(n, x, &_alglib_env_state);
    1764           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1765           0 :     return *(reinterpret_cast<double*>(&result));
    1766             : }
    1767             : 
    1768             : /*************************************************************************
    1769             : Modified Bessel function of order zero
    1770             : 
    1771             : Returns modified Bessel function of order zero of the
    1772             : argument.
    1773             : 
    1774             : The function is defined as i0(x) = j0( ix ).
    1775             : 
    1776             : The range is partitioned into the two intervals [0,8] and
    1777             : (8, infinity).  Chebyshev polynomial expansions are employed
    1778             : in each interval.
    1779             : 
    1780             : ACCURACY:
    1781             : 
    1782             :                      Relative error:
    1783             : arithmetic   domain     # trials      peak         rms
    1784             :    IEEE      0,30        30000       5.8e-16     1.4e-16
    1785             : 
    1786             : Cephes Math Library Release 2.8:  June, 2000
    1787             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    1788             : *************************************************************************/
    1789           0 : double besseli0(const double x, const xparams _xparams)
    1790             : {
    1791             :     jmp_buf _break_jump;
    1792             :     alglib_impl::ae_state _alglib_env_state;
    1793           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1794           0 :     if( setjmp(_break_jump) )
    1795             :     {
    1796             : #if !defined(AE_NO_EXCEPTIONS)
    1797           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1798             : #else
    1799             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1800             :         return 0;
    1801             : #endif
    1802             :     }
    1803           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1804           0 :     if( _xparams.flags!=0x0 )
    1805           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1806           0 :     double result = alglib_impl::besseli0(x, &_alglib_env_state);
    1807           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1808           0 :     return *(reinterpret_cast<double*>(&result));
    1809             : }
    1810             : 
    1811             : /*************************************************************************
    1812             : Modified Bessel function of order one
    1813             : 
    1814             : Returns modified Bessel function of order one of the
    1815             : argument.
    1816             : 
    1817             : The function is defined as i1(x) = -i j1( ix ).
    1818             : 
    1819             : The range is partitioned into the two intervals [0,8] and
    1820             : (8, infinity).  Chebyshev polynomial expansions are employed
    1821             : in each interval.
    1822             : 
    1823             : ACCURACY:
    1824             : 
    1825             :                      Relative error:
    1826             : arithmetic   domain     # trials      peak         rms
    1827             :    IEEE      0, 30       30000       1.9e-15     2.1e-16
    1828             : 
    1829             : Cephes Math Library Release 2.8:  June, 2000
    1830             : Copyright 1985, 1987, 2000 by Stephen L. Moshier
    1831             : *************************************************************************/
    1832           0 : double besseli1(const double x, const xparams _xparams)
    1833             : {
    1834             :     jmp_buf _break_jump;
    1835             :     alglib_impl::ae_state _alglib_env_state;
    1836           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1837           0 :     if( setjmp(_break_jump) )
    1838             :     {
    1839             : #if !defined(AE_NO_EXCEPTIONS)
    1840           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1841             : #else
    1842             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1843             :         return 0;
    1844             : #endif
    1845             :     }
    1846           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1847           0 :     if( _xparams.flags!=0x0 )
    1848           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1849           0 :     double result = alglib_impl::besseli1(x, &_alglib_env_state);
    1850           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1851           0 :     return *(reinterpret_cast<double*>(&result));
    1852             : }
    1853             : 
    1854             : /*************************************************************************
    1855             : Modified Bessel function, second kind, order zero
    1856             : 
    1857             : Returns modified Bessel function of the second kind
    1858             : of order zero of the argument.
    1859             : 
    1860             : The range is partitioned into the two intervals [0,8] and
    1861             : (8, infinity).  Chebyshev polynomial expansions are employed
    1862             : in each interval.
    1863             : 
    1864             : ACCURACY:
    1865             : 
    1866             : Tested at 2000 random points between 0 and 8.  Peak absolute
    1867             : error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
    1868             :                      Relative error:
    1869             : arithmetic   domain     # trials      peak         rms
    1870             :    IEEE      0, 30       30000       1.2e-15     1.6e-16
    1871             : 
    1872             : Cephes Math Library Release 2.8:  June, 2000
    1873             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    1874             : *************************************************************************/
    1875           0 : double besselk0(const double x, const xparams _xparams)
    1876             : {
    1877             :     jmp_buf _break_jump;
    1878             :     alglib_impl::ae_state _alglib_env_state;
    1879           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1880           0 :     if( setjmp(_break_jump) )
    1881             :     {
    1882             : #if !defined(AE_NO_EXCEPTIONS)
    1883           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1884             : #else
    1885             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1886             :         return 0;
    1887             : #endif
    1888             :     }
    1889           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1890           0 :     if( _xparams.flags!=0x0 )
    1891           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1892           0 :     double result = alglib_impl::besselk0(x, &_alglib_env_state);
    1893           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1894           0 :     return *(reinterpret_cast<double*>(&result));
    1895             : }
    1896             : 
    1897             : /*************************************************************************
    1898             : Modified Bessel function, second kind, order one
    1899             : 
    1900             : Computes the modified Bessel function of the second kind
    1901             : of order one of the argument.
    1902             : 
    1903             : The range is partitioned into the two intervals [0,2] and
    1904             : (2, infinity).  Chebyshev polynomial expansions are employed
    1905             : in each interval.
    1906             : 
    1907             : ACCURACY:
    1908             : 
    1909             :                      Relative error:
    1910             : arithmetic   domain     # trials      peak         rms
    1911             :    IEEE      0, 30       30000       1.2e-15     1.6e-16
    1912             : 
    1913             : Cephes Math Library Release 2.8:  June, 2000
    1914             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    1915             : *************************************************************************/
    1916           0 : double besselk1(const double x, const xparams _xparams)
    1917             : {
    1918             :     jmp_buf _break_jump;
    1919             :     alglib_impl::ae_state _alglib_env_state;
    1920           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1921           0 :     if( setjmp(_break_jump) )
    1922             :     {
    1923             : #if !defined(AE_NO_EXCEPTIONS)
    1924           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1925             : #else
    1926             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1927             :         return 0;
    1928             : #endif
    1929             :     }
    1930           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1931           0 :     if( _xparams.flags!=0x0 )
    1932           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1933           0 :     double result = alglib_impl::besselk1(x, &_alglib_env_state);
    1934           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1935           0 :     return *(reinterpret_cast<double*>(&result));
    1936             : }
    1937             : 
    1938             : /*************************************************************************
    1939             : Modified Bessel function, second kind, integer order
    1940             : 
    1941             : Returns modified Bessel function of the second kind
    1942             : of order n of the argument.
    1943             : 
    1944             : The range is partitioned into the two intervals [0,9.55] and
    1945             : (9.55, infinity).  An ascending power series is used in the
    1946             : low range, and an asymptotic expansion in the high range.
    1947             : 
    1948             : ACCURACY:
    1949             : 
    1950             :                      Relative error:
    1951             : arithmetic   domain     # trials      peak         rms
    1952             :    IEEE      0,30        90000       1.8e-8      3.0e-10
    1953             : 
    1954             : Error is high only near the crossover point x = 9.55
    1955             : between the two expansions used.
    1956             : 
    1957             : Cephes Math Library Release 2.8:  June, 2000
    1958             : Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
    1959             : *************************************************************************/
    1960           0 : double besselkn(const ae_int_t nn, const double x, const xparams _xparams)
    1961             : {
    1962             :     jmp_buf _break_jump;
    1963             :     alglib_impl::ae_state _alglib_env_state;
    1964           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    1965           0 :     if( setjmp(_break_jump) )
    1966             :     {
    1967             : #if !defined(AE_NO_EXCEPTIONS)
    1968           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    1969             : #else
    1970             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    1971             :         return 0;
    1972             : #endif
    1973             :     }
    1974           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    1975           0 :     if( _xparams.flags!=0x0 )
    1976           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    1977           0 :     double result = alglib_impl::besselkn(nn, x, &_alglib_env_state);
    1978           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    1979           0 :     return *(reinterpret_cast<double*>(&result));
    1980             : }
    1981             : #endif
    1982             : 
    1983             : #if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
    1984             : /*************************************************************************
    1985             : Incomplete beta integral
    1986             : 
    1987             : Returns incomplete beta integral of the arguments, evaluated
    1988             : from zero to x.  The function is defined as
    1989             : 
    1990             :                  x
    1991             :     -            -
    1992             :    | (a+b)      | |  a-1     b-1
    1993             :  -----------    |   t   (1-t)   dt.
    1994             :   -     -     | |
    1995             :  | (a) | (b)   -
    1996             :                 0
    1997             : 
    1998             : The domain of definition is 0 <= x <= 1.  In this
    1999             : implementation a and b are restricted to positive values.
    2000             : The integral from x to 1 may be obtained by the symmetry
    2001             : relation
    2002             : 
    2003             :    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).
    2004             : 
    2005             : The integral is evaluated by a continued fraction expansion
    2006             : or, when b*x is small, by a power series.
    2007             : 
    2008             : ACCURACY:
    2009             : 
    2010             : Tested at uniformly distributed random points (a,b,x) with a and b
    2011             : in "domain" and x between 0 and 1.
    2012             :                                        Relative error
    2013             : arithmetic   domain     # trials      peak         rms
    2014             :    IEEE      0,5         10000       6.9e-15     4.5e-16
    2015             :    IEEE      0,85       250000       2.2e-13     1.7e-14
    2016             :    IEEE      0,1000      30000       5.3e-12     6.3e-13
    2017             :    IEEE      0,10000    250000       9.3e-11     7.1e-12
    2018             :    IEEE      0,100000    10000       8.7e-10     4.8e-11
    2019             : Outputs smaller than the IEEE gradual underflow threshold
    2020             : were excluded from these statistics.
    2021             : 
    2022             : Cephes Math Library, Release 2.8:  June, 2000
    2023             : Copyright 1984, 1995, 2000 by Stephen L. Moshier
    2024             : *************************************************************************/
    2025           0 : double incompletebeta(const double a, const double b, const double x, const xparams _xparams)
    2026             : {
    2027             :     jmp_buf _break_jump;
    2028             :     alglib_impl::ae_state _alglib_env_state;
    2029           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2030           0 :     if( setjmp(_break_jump) )
    2031             :     {
    2032             : #if !defined(AE_NO_EXCEPTIONS)
    2033           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2034             : #else
    2035             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2036             :         return 0;
    2037             : #endif
    2038             :     }
    2039           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2040           0 :     if( _xparams.flags!=0x0 )
    2041           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2042           0 :     double result = alglib_impl::incompletebeta(a, b, x, &_alglib_env_state);
    2043           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2044           0 :     return *(reinterpret_cast<double*>(&result));
    2045             : }
    2046             : 
    2047             : /*************************************************************************
    2048             : Inverse of imcomplete beta integral
    2049             : 
    2050             : Given y, the function finds x such that
    2051             : 
    2052             :  incbet( a, b, x ) = y .
    2053             : 
    2054             : The routine performs interval halving or Newton iterations to find the
    2055             : root of incbet(a,b,x) - y = 0.
    2056             : 
    2057             : 
    2058             : ACCURACY:
    2059             : 
    2060             :                      Relative error:
    2061             :                x     a,b
    2062             : arithmetic   domain  domain  # trials    peak       rms
    2063             :    IEEE      0,1    .5,10000   50000    5.8e-12   1.3e-13
    2064             :    IEEE      0,1   .25,100    100000    1.8e-13   3.9e-15
    2065             :    IEEE      0,1     0,5       50000    1.1e-12   5.5e-15
    2066             : With a and b constrained to half-integer or integer values:
    2067             :    IEEE      0,1    .5,10000   50000    5.8e-12   1.1e-13
    2068             :    IEEE      0,1    .5,100    100000    1.7e-14   7.9e-16
    2069             : With a = .5, b constrained to half-integer or integer values:
    2070             :    IEEE      0,1    .5,10000   10000    8.3e-11   1.0e-11
    2071             : 
    2072             : Cephes Math Library Release 2.8:  June, 2000
    2073             : Copyright 1984, 1996, 2000 by Stephen L. Moshier
    2074             : *************************************************************************/
    2075           0 : double invincompletebeta(const double a, const double b, const double y, const xparams _xparams)
    2076             : {
    2077             :     jmp_buf _break_jump;
    2078             :     alglib_impl::ae_state _alglib_env_state;
    2079           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2080           0 :     if( setjmp(_break_jump) )
    2081             :     {
    2082             : #if !defined(AE_NO_EXCEPTIONS)
    2083           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2084             : #else
    2085             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2086             :         return 0;
    2087             : #endif
    2088             :     }
    2089           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2090           0 :     if( _xparams.flags!=0x0 )
    2091           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2092           0 :     double result = alglib_impl::invincompletebeta(a, b, y, &_alglib_env_state);
    2093           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2094           0 :     return *(reinterpret_cast<double*>(&result));
    2095             : }
    2096             : #endif
    2097             : 
    2098             : #if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
    2099             : /*************************************************************************
    2100             : F distribution
    2101             : 
    2102             : Returns the area from zero to x under the F density
    2103             : function (also known as Snedcor's density or the
    2104             : variance ratio density).  This is the density
    2105             : of x = (u1/df1)/(u2/df2), where u1 and u2 are random
    2106             : variables having Chi square distributions with df1
    2107             : and df2 degrees of freedom, respectively.
    2108             : The incomplete beta integral is used, according to the
    2109             : formula
    2110             : 
    2111             : P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
    2112             : 
    2113             : 
    2114             : The arguments a and b are greater than zero, and x is
    2115             : nonnegative.
    2116             : 
    2117             : ACCURACY:
    2118             : 
    2119             : Tested at random points (a,b,x).
    2120             : 
    2121             :                x     a,b                     Relative error:
    2122             : arithmetic  domain  domain     # trials      peak         rms
    2123             :    IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
    2124             :    IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
    2125             :    IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
    2126             :    IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13
    2127             : 
    2128             : Cephes Math Library Release 2.8:  June, 2000
    2129             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    2130             : *************************************************************************/
    2131           0 : double fdistribution(const ae_int_t a, const ae_int_t b, const double x, const xparams _xparams)
    2132             : {
    2133             :     jmp_buf _break_jump;
    2134             :     alglib_impl::ae_state _alglib_env_state;
    2135           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2136           0 :     if( setjmp(_break_jump) )
    2137             :     {
    2138             : #if !defined(AE_NO_EXCEPTIONS)
    2139           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2140             : #else
    2141             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2142             :         return 0;
    2143             : #endif
    2144             :     }
    2145           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2146           0 :     if( _xparams.flags!=0x0 )
    2147           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2148           0 :     double result = alglib_impl::fdistribution(a, b, x, &_alglib_env_state);
    2149           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2150           0 :     return *(reinterpret_cast<double*>(&result));
    2151             : }
    2152             : 
    2153             : /*************************************************************************
    2154             : Complemented F distribution
    2155             : 
    2156             : Returns the area from x to infinity under the F density
    2157             : function (also known as Snedcor's density or the
    2158             : variance ratio density).
    2159             : 
    2160             : 
    2161             :                      inf.
    2162             :                       -
    2163             :              1       | |  a-1      b-1
    2164             : 1-P(x)  =  ------    |   t    (1-t)    dt
    2165             :            B(a,b)  | |
    2166             :                     -
    2167             :                      x
    2168             : 
    2169             : 
    2170             : The incomplete beta integral is used, according to the
    2171             : formula
    2172             : 
    2173             : P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
    2174             : 
    2175             : 
    2176             : ACCURACY:
    2177             : 
    2178             : Tested at random points (a,b,x) in the indicated intervals.
    2179             :                x     a,b                     Relative error:
    2180             : arithmetic  domain  domain     # trials      peak         rms
    2181             :    IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
    2182             :    IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
    2183             :    IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
    2184             :    IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12
    2185             : 
    2186             : Cephes Math Library Release 2.8:  June, 2000
    2187             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    2188             : *************************************************************************/
    2189           0 : double fcdistribution(const ae_int_t a, const ae_int_t b, const double x, const xparams _xparams)
    2190             : {
    2191             :     jmp_buf _break_jump;
    2192             :     alglib_impl::ae_state _alglib_env_state;
    2193           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2194           0 :     if( setjmp(_break_jump) )
    2195             :     {
    2196             : #if !defined(AE_NO_EXCEPTIONS)
    2197           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2198             : #else
    2199             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2200             :         return 0;
    2201             : #endif
    2202             :     }
    2203           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2204           0 :     if( _xparams.flags!=0x0 )
    2205           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2206           0 :     double result = alglib_impl::fcdistribution(a, b, x, &_alglib_env_state);
    2207           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2208           0 :     return *(reinterpret_cast<double*>(&result));
    2209             : }
    2210             : 
    2211             : /*************************************************************************
    2212             : Inverse of complemented F distribution
    2213             : 
    2214             : Finds the F density argument x such that the integral
    2215             : from x to infinity of the F density is equal to the
    2216             : given probability p.
    2217             : 
    2218             : This is accomplished using the inverse beta integral
    2219             : function and the relations
    2220             : 
    2221             :      z = incbi( df2/2, df1/2, p )
    2222             :      x = df2 (1-z) / (df1 z).
    2223             : 
    2224             : Note: the following relations hold for the inverse of
    2225             : the uncomplemented F distribution:
    2226             : 
    2227             :      z = incbi( df1/2, df2/2, p )
    2228             :      x = df2 z / (df1 (1-z)).
    2229             : 
    2230             : ACCURACY:
    2231             : 
    2232             : Tested at random points (a,b,p).
    2233             : 
    2234             :              a,b                     Relative error:
    2235             : arithmetic  domain     # trials      peak         rms
    2236             :  For p between .001 and 1:
    2237             :    IEEE     1,100       100000      8.3e-15     4.7e-16
    2238             :    IEEE     1,10000     100000      2.1e-11     1.4e-13
    2239             :  For p between 10^-6 and 10^-3:
    2240             :    IEEE     1,100        50000      1.3e-12     8.4e-15
    2241             :    IEEE     1,10000      50000      3.0e-12     4.8e-14
    2242             : 
    2243             : Cephes Math Library Release 2.8:  June, 2000
    2244             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    2245             : *************************************************************************/
    2246           0 : double invfdistribution(const ae_int_t a, const ae_int_t b, const double y, const xparams _xparams)
    2247             : {
    2248             :     jmp_buf _break_jump;
    2249             :     alglib_impl::ae_state _alglib_env_state;
    2250           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2251           0 :     if( setjmp(_break_jump) )
    2252             :     {
    2253             : #if !defined(AE_NO_EXCEPTIONS)
    2254           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2255             : #else
    2256             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2257             :         return 0;
    2258             : #endif
    2259             :     }
    2260           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2261           0 :     if( _xparams.flags!=0x0 )
    2262           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2263           0 :     double result = alglib_impl::invfdistribution(a, b, y, &_alglib_env_state);
    2264           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2265           0 :     return *(reinterpret_cast<double*>(&result));
    2266             : }
    2267             : #endif
    2268             : 
    2269             : #if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
    2270             : /*************************************************************************
    2271             : Fresnel integral
    2272             : 
    2273             : Evaluates the Fresnel integrals
    2274             : 
    2275             :           x
    2276             :           -
    2277             :          | |
    2278             : C(x) =   |   cos(pi/2 t**2) dt,
    2279             :        | |
    2280             :         -
    2281             :          0
    2282             : 
    2283             :           x
    2284             :           -
    2285             :          | |
    2286             : S(x) =   |   sin(pi/2 t**2) dt.
    2287             :        | |
    2288             :         -
    2289             :          0
    2290             : 
    2291             : 
    2292             : The integrals are evaluated by a power series for x < 1.
    2293             : For x >= 1 auxiliary functions f(x) and g(x) are employed
    2294             : such that
    2295             : 
    2296             : C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
    2297             : S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
    2298             : 
    2299             : 
    2300             : 
    2301             : ACCURACY:
    2302             : 
    2303             :  Relative error.
    2304             : 
    2305             : Arithmetic  function   domain     # trials      peak         rms
    2306             :   IEEE       S(x)      0, 10       10000       2.0e-15     3.2e-16
    2307             :   IEEE       C(x)      0, 10       10000       1.8e-15     3.3e-16
    2308             : 
    2309             : Cephes Math Library Release 2.8:  June, 2000
    2310             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    2311             : *************************************************************************/
    2312           0 : void fresnelintegral(const double x, double &c, double &s, const xparams _xparams)
    2313             : {
    2314             :     jmp_buf _break_jump;
    2315             :     alglib_impl::ae_state _alglib_env_state;
    2316           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2317           0 :     if( setjmp(_break_jump) )
    2318             :     {
    2319             : #if !defined(AE_NO_EXCEPTIONS)
    2320           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2321             : #else
    2322             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2323             :         return;
    2324             : #endif
    2325             :     }
    2326           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2327           0 :     if( _xparams.flags!=0x0 )
    2328           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2329           0 :     alglib_impl::fresnelintegral(x, &c, &s, &_alglib_env_state);
    2330           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2331           0 :     return;
    2332             : }
    2333             : #endif
    2334             : 
    2335             : #if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
    2336             : /*************************************************************************
    2337             : Jacobian Elliptic Functions
    2338             : 
    2339             : Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
    2340             : and dn(u|m) of parameter m between 0 and 1, and real
    2341             : argument u.
    2342             : 
    2343             : These functions are periodic, with quarter-period on the
    2344             : real axis equal to the complete elliptic integral
    2345             : ellpk(1.0-m).
    2346             : 
    2347             : Relation to incomplete elliptic integral:
    2348             : If u = ellik(phi,m), then sn(u|m) = sin(phi),
    2349             : and cn(u|m) = cos(phi).  Phi is called the amplitude of u.
    2350             : 
    2351             : Computation is by means of the arithmetic-geometric mean
    2352             : algorithm, except when m is within 1e-9 of 0 or 1.  In the
    2353             : latter case with m close to 1, the approximation applies
    2354             : only for phi < pi/2.
    2355             : 
    2356             : ACCURACY:
    2357             : 
    2358             : Tested at random points with u between 0 and 10, m between
    2359             : 0 and 1.
    2360             : 
    2361             :            Absolute error (* = relative error):
    2362             : arithmetic   function   # trials      peak         rms
    2363             :    IEEE      phi         10000       9.2e-16*    1.4e-16*
    2364             :    IEEE      sn          50000       4.1e-15     4.6e-16
    2365             :    IEEE      cn          40000       3.6e-15     4.4e-16
    2366             :    IEEE      dn          10000       1.3e-12     1.8e-14
    2367             : 
    2368             :  Peak error observed in consistency check using addition
    2369             : theorem for sn(u+v) was 4e-16 (absolute).  Also tested by
    2370             : the above relation to the incomplete elliptic integral.
    2371             : Accuracy deteriorates when u is large.
    2372             : 
    2373             : Cephes Math Library Release 2.8:  June, 2000
    2374             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    2375             : *************************************************************************/
    2376           0 : void jacobianellipticfunctions(const double u, const double m, double &sn, double &cn, double &dn, double &ph, const xparams _xparams)
    2377             : {
    2378             :     jmp_buf _break_jump;
    2379             :     alglib_impl::ae_state _alglib_env_state;
    2380           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2381           0 :     if( setjmp(_break_jump) )
    2382             :     {
    2383             : #if !defined(AE_NO_EXCEPTIONS)
    2384           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2385             : #else
    2386             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2387             :         return;
    2388             : #endif
    2389             :     }
    2390           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2391           0 :     if( _xparams.flags!=0x0 )
    2392           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2393           0 :     alglib_impl::jacobianellipticfunctions(u, m, &sn, &cn, &dn, &ph, &_alglib_env_state);
    2394           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2395           0 :     return;
    2396             : }
    2397             : #endif
    2398             : 
    2399             : #if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
    2400             : /*************************************************************************
    2401             : Psi (digamma) function
    2402             : 
    2403             :              d      -
    2404             :   psi(x)  =  -- ln | (x)
    2405             :              dx
    2406             : 
    2407             : is the logarithmic derivative of the gamma function.
    2408             : For integer x,
    2409             :                   n-1
    2410             :                    -
    2411             : psi(n) = -EUL  +   >  1/k.
    2412             :                    -
    2413             :                   k=1
    2414             : 
    2415             : This formula is used for 0 < n <= 10.  If x is negative, it
    2416             : is transformed to a positive argument by the reflection
    2417             : formula  psi(1-x) = psi(x) + pi cot(pi x).
    2418             : For general positive x, the argument is made greater than 10
    2419             : using the recurrence  psi(x+1) = psi(x) + 1/x.
    2420             : Then the following asymptotic expansion is applied:
    2421             : 
    2422             :                           inf.   B
    2423             :                            -      2k
    2424             : psi(x) = log(x) - 1/2x -   >   -------
    2425             :                            -        2k
    2426             :                           k=1   2k x
    2427             : 
    2428             : where the B2k are Bernoulli numbers.
    2429             : 
    2430             : ACCURACY:
    2431             :    Relative error (except absolute when |psi| < 1):
    2432             : arithmetic   domain     # trials      peak         rms
    2433             :    IEEE      0,30        30000       1.3e-15     1.4e-16
    2434             :    IEEE      -30,0       40000       1.5e-15     2.2e-16
    2435             : 
    2436             : Cephes Math Library Release 2.8:  June, 2000
    2437             : Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
    2438             : *************************************************************************/
    2439           0 : double psi(const double x, const xparams _xparams)
    2440             : {
    2441             :     jmp_buf _break_jump;
    2442             :     alglib_impl::ae_state _alglib_env_state;
    2443           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2444           0 :     if( setjmp(_break_jump) )
    2445             :     {
    2446             : #if !defined(AE_NO_EXCEPTIONS)
    2447           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2448             : #else
    2449             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2450             :         return 0;
    2451             : #endif
    2452             :     }
    2453           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2454           0 :     if( _xparams.flags!=0x0 )
    2455           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2456           0 :     double result = alglib_impl::psi(x, &_alglib_env_state);
    2457           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2458           0 :     return *(reinterpret_cast<double*>(&result));
    2459             : }
    2460             : #endif
    2461             : 
    2462             : #if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
    2463             : /*************************************************************************
    2464             : Exponential integral Ei(x)
    2465             : 
    2466             :               x
    2467             :                -     t
    2468             :               | |   e
    2469             :    Ei(x) =   -|-   ---  dt .
    2470             :             | |     t
    2471             :              -
    2472             :             -inf
    2473             : 
    2474             : Not defined for x <= 0.
    2475             : See also expn.c.
    2476             : 
    2477             : 
    2478             : 
    2479             : ACCURACY:
    2480             : 
    2481             :                      Relative error:
    2482             : arithmetic   domain     # trials      peak         rms
    2483             :    IEEE       0,100       50000      8.6e-16     1.3e-16
    2484             : 
    2485             : Cephes Math Library Release 2.8:  May, 1999
    2486             : Copyright 1999 by Stephen L. Moshier
    2487             : *************************************************************************/
    2488           0 : double exponentialintegralei(const double x, const xparams _xparams)
    2489             : {
    2490             :     jmp_buf _break_jump;
    2491             :     alglib_impl::ae_state _alglib_env_state;
    2492           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2493           0 :     if( setjmp(_break_jump) )
    2494             :     {
    2495             : #if !defined(AE_NO_EXCEPTIONS)
    2496           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2497             : #else
    2498             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2499             :         return 0;
    2500             : #endif
    2501             :     }
    2502           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2503           0 :     if( _xparams.flags!=0x0 )
    2504           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2505           0 :     double result = alglib_impl::exponentialintegralei(x, &_alglib_env_state);
    2506           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2507           0 :     return *(reinterpret_cast<double*>(&result));
    2508             : }
    2509             : 
    2510             : /*************************************************************************
    2511             : Exponential integral En(x)
    2512             : 
    2513             : Evaluates the exponential integral
    2514             : 
    2515             :                 inf.
    2516             :                   -
    2517             :                  | |   -xt
    2518             :                  |    e
    2519             :      E (x)  =    |    ----  dt.
    2520             :       n          |      n
    2521             :                | |     t
    2522             :                 -
    2523             :                  1
    2524             : 
    2525             : 
    2526             : Both n and x must be nonnegative.
    2527             : 
    2528             : The routine employs either a power series, a continued
    2529             : fraction, or an asymptotic formula depending on the
    2530             : relative values of n and x.
    2531             : 
    2532             : ACCURACY:
    2533             : 
    2534             :                      Relative error:
    2535             : arithmetic   domain     # trials      peak         rms
    2536             :    IEEE      0, 30       10000       1.7e-15     3.6e-16
    2537             : 
    2538             : Cephes Math Library Release 2.8:  June, 2000
    2539             : Copyright 1985, 2000 by Stephen L. Moshier
    2540             : *************************************************************************/
    2541           0 : double exponentialintegralen(const double x, const ae_int_t n, const xparams _xparams)
    2542             : {
    2543             :     jmp_buf _break_jump;
    2544             :     alglib_impl::ae_state _alglib_env_state;
    2545           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2546           0 :     if( setjmp(_break_jump) )
    2547             :     {
    2548             : #if !defined(AE_NO_EXCEPTIONS)
    2549           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2550             : #else
    2551             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2552             :         return 0;
    2553             : #endif
    2554             :     }
    2555           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2556           0 :     if( _xparams.flags!=0x0 )
    2557           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2558           0 :     double result = alglib_impl::exponentialintegralen(x, n, &_alglib_env_state);
    2559           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2560           0 :     return *(reinterpret_cast<double*>(&result));
    2561             : }
    2562             : #endif
    2563             : 
    2564             : #if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
    2565             : /*************************************************************************
    2566             : Calculation of the value of the Laguerre polynomial.
    2567             : 
    2568             : Parameters:
    2569             :     n   -   degree, n>=0
    2570             :     x   -   argument
    2571             : 
    2572             : Result:
    2573             :     the value of the Laguerre polynomial Ln at x
    2574             : *************************************************************************/
    2575           0 : double laguerrecalculate(const ae_int_t n, const double x, const xparams _xparams)
    2576             : {
    2577             :     jmp_buf _break_jump;
    2578             :     alglib_impl::ae_state _alglib_env_state;
    2579           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2580           0 :     if( setjmp(_break_jump) )
    2581             :     {
    2582             : #if !defined(AE_NO_EXCEPTIONS)
    2583           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2584             : #else
    2585             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2586             :         return 0;
    2587             : #endif
    2588             :     }
    2589           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2590           0 :     if( _xparams.flags!=0x0 )
    2591           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2592           0 :     double result = alglib_impl::laguerrecalculate(n, x, &_alglib_env_state);
    2593           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2594           0 :     return *(reinterpret_cast<double*>(&result));
    2595             : }
    2596             : 
    2597             : /*************************************************************************
    2598             : Summation of Laguerre polynomials using Clenshaw's recurrence formula.
    2599             : 
    2600             : This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x)
    2601             : 
    2602             : Parameters:
    2603             :     n   -   degree, n>=0
    2604             :     x   -   argument
    2605             : 
    2606             : Result:
    2607             :     the value of the Laguerre polynomial at x
    2608             : *************************************************************************/
    2609           0 : double laguerresum(const real_1d_array &c, const ae_int_t n, const double x, const xparams _xparams)
    2610             : {
    2611             :     jmp_buf _break_jump;
    2612             :     alglib_impl::ae_state _alglib_env_state;
    2613           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2614           0 :     if( setjmp(_break_jump) )
    2615             :     {
    2616             : #if !defined(AE_NO_EXCEPTIONS)
    2617           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2618             : #else
    2619             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2620             :         return 0;
    2621             : #endif
    2622             :     }
    2623           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2624           0 :     if( _xparams.flags!=0x0 )
    2625           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2626           0 :     double result = alglib_impl::laguerresum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), n, x, &_alglib_env_state);
    2627           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2628           0 :     return *(reinterpret_cast<double*>(&result));
    2629             : }
    2630             : 
    2631             : /*************************************************************************
    2632             : Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N
    2633             : 
    2634             : Input parameters:
    2635             :     N   -   polynomial degree, n>=0
    2636             : 
    2637             : Output parameters:
    2638             :     C   -   coefficients
    2639             : *************************************************************************/
    2640           0 : void laguerrecoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams)
    2641             : {
    2642             :     jmp_buf _break_jump;
    2643             :     alglib_impl::ae_state _alglib_env_state;
    2644           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2645           0 :     if( setjmp(_break_jump) )
    2646             :     {
    2647             : #if !defined(AE_NO_EXCEPTIONS)
    2648           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2649             : #else
    2650             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2651             :         return;
    2652             : #endif
    2653             :     }
    2654           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2655           0 :     if( _xparams.flags!=0x0 )
    2656           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2657           0 :     alglib_impl::laguerrecoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
    2658           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2659           0 :     return;
    2660             : }
    2661             : #endif
    2662             : 
    2663             : #if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
    2664             : /*************************************************************************
    2665             : Chi-square distribution
    2666             : 
    2667             : Returns the area under the left hand tail (from 0 to x)
    2668             : of the Chi square probability density function with
    2669             : v degrees of freedom.
    2670             : 
    2671             : 
    2672             :                                   x
    2673             :                                    -
    2674             :                        1          | |  v/2-1  -t/2
    2675             :  P( x | v )   =   -----------     |   t      e     dt
    2676             :                    v/2  -       | |
    2677             :                   2    | (v/2)   -
    2678             :                                   0
    2679             : 
    2680             : where x is the Chi-square variable.
    2681             : 
    2682             : The incomplete gamma integral is used, according to the
    2683             : formula
    2684             : 
    2685             : y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
    2686             : 
    2687             : The arguments must both be positive.
    2688             : 
    2689             : ACCURACY:
    2690             : 
    2691             : See incomplete gamma function
    2692             : 
    2693             : 
    2694             : Cephes Math Library Release 2.8:  June, 2000
    2695             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    2696             : *************************************************************************/
    2697           0 : double chisquaredistribution(const double v, const double x, const xparams _xparams)
    2698             : {
    2699             :     jmp_buf _break_jump;
    2700             :     alglib_impl::ae_state _alglib_env_state;
    2701           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2702           0 :     if( setjmp(_break_jump) )
    2703             :     {
    2704             : #if !defined(AE_NO_EXCEPTIONS)
    2705           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2706             : #else
    2707             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2708             :         return 0;
    2709             : #endif
    2710             :     }
    2711           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2712           0 :     if( _xparams.flags!=0x0 )
    2713           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2714           0 :     double result = alglib_impl::chisquaredistribution(v, x, &_alglib_env_state);
    2715           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2716           0 :     return *(reinterpret_cast<double*>(&result));
    2717             : }
    2718             : 
    2719             : /*************************************************************************
    2720             : Complemented Chi-square distribution
    2721             : 
    2722             : Returns the area under the right hand tail (from x to
    2723             : infinity) of the Chi square probability density function
    2724             : with v degrees of freedom:
    2725             : 
    2726             :                                  inf.
    2727             :                                    -
    2728             :                        1          | |  v/2-1  -t/2
    2729             :  P( x | v )   =   -----------     |   t      e     dt
    2730             :                    v/2  -       | |
    2731             :                   2    | (v/2)   -
    2732             :                                   x
    2733             : 
    2734             : where x is the Chi-square variable.
    2735             : 
    2736             : The incomplete gamma integral is used, according to the
    2737             : formula
    2738             : 
    2739             : y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
    2740             : 
    2741             : The arguments must both be positive.
    2742             : 
    2743             : ACCURACY:
    2744             : 
    2745             : See incomplete gamma function
    2746             : 
    2747             : Cephes Math Library Release 2.8:  June, 2000
    2748             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    2749             : *************************************************************************/
    2750           0 : double chisquarecdistribution(const double v, const double x, const xparams _xparams)
    2751             : {
    2752             :     jmp_buf _break_jump;
    2753             :     alglib_impl::ae_state _alglib_env_state;
    2754           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2755           0 :     if( setjmp(_break_jump) )
    2756             :     {
    2757             : #if !defined(AE_NO_EXCEPTIONS)
    2758           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2759             : #else
    2760             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2761             :         return 0;
    2762             : #endif
    2763             :     }
    2764           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2765           0 :     if( _xparams.flags!=0x0 )
    2766           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2767           0 :     double result = alglib_impl::chisquarecdistribution(v, x, &_alglib_env_state);
    2768           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2769           0 :     return *(reinterpret_cast<double*>(&result));
    2770             : }
    2771             : 
    2772             : /*************************************************************************
    2773             : Inverse of complemented Chi-square distribution
    2774             : 
    2775             : Finds the Chi-square argument x such that the integral
    2776             : from x to infinity of the Chi-square density is equal
    2777             : to the given cumulative probability y.
    2778             : 
    2779             : This is accomplished using the inverse gamma integral
    2780             : function and the relation
    2781             : 
    2782             :    x/2 = igami( df/2, y );
    2783             : 
    2784             : ACCURACY:
    2785             : 
    2786             : See inverse incomplete gamma function
    2787             : 
    2788             : 
    2789             : Cephes Math Library Release 2.8:  June, 2000
    2790             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    2791             : *************************************************************************/
    2792           0 : double invchisquaredistribution(const double v, const double y, const xparams _xparams)
    2793             : {
    2794             :     jmp_buf _break_jump;
    2795             :     alglib_impl::ae_state _alglib_env_state;
    2796           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2797           0 :     if( setjmp(_break_jump) )
    2798             :     {
    2799             : #if !defined(AE_NO_EXCEPTIONS)
    2800           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2801             : #else
    2802             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2803             :         return 0;
    2804             : #endif
    2805             :     }
    2806           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2807           0 :     if( _xparams.flags!=0x0 )
    2808           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2809           0 :     double result = alglib_impl::invchisquaredistribution(v, y, &_alglib_env_state);
    2810           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2811           0 :     return *(reinterpret_cast<double*>(&result));
    2812             : }
    2813             : #endif
    2814             : 
    2815             : #if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
    2816             : /*************************************************************************
    2817             : Calculation of the value of the Legendre polynomial Pn.
    2818             : 
    2819             : Parameters:
    2820             :     n   -   degree, n>=0
    2821             :     x   -   argument
    2822             : 
    2823             : Result:
    2824             :     the value of the Legendre polynomial Pn at x
    2825             : *************************************************************************/
    2826           0 : double legendrecalculate(const ae_int_t n, const double x, const xparams _xparams)
    2827             : {
    2828             :     jmp_buf _break_jump;
    2829             :     alglib_impl::ae_state _alglib_env_state;
    2830           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2831           0 :     if( setjmp(_break_jump) )
    2832             :     {
    2833             : #if !defined(AE_NO_EXCEPTIONS)
    2834           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2835             : #else
    2836             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2837             :         return 0;
    2838             : #endif
    2839             :     }
    2840           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2841           0 :     if( _xparams.flags!=0x0 )
    2842           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2843           0 :     double result = alglib_impl::legendrecalculate(n, x, &_alglib_env_state);
    2844           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2845           0 :     return *(reinterpret_cast<double*>(&result));
    2846             : }
    2847             : 
    2848             : /*************************************************************************
    2849             : Summation of Legendre polynomials using Clenshaw's recurrence formula.
    2850             : 
    2851             : This routine calculates
    2852             :     c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
    2853             : 
    2854             : Parameters:
    2855             :     n   -   degree, n>=0
    2856             :     x   -   argument
    2857             : 
    2858             : Result:
    2859             :     the value of the Legendre polynomial at x
    2860             : *************************************************************************/
    2861           0 : double legendresum(const real_1d_array &c, const ae_int_t n, const double x, const xparams _xparams)
    2862             : {
    2863             :     jmp_buf _break_jump;
    2864             :     alglib_impl::ae_state _alglib_env_state;
    2865           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2866           0 :     if( setjmp(_break_jump) )
    2867             :     {
    2868             : #if !defined(AE_NO_EXCEPTIONS)
    2869           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2870             : #else
    2871             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2872             :         return 0;
    2873             : #endif
    2874             :     }
    2875           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2876           0 :     if( _xparams.flags!=0x0 )
    2877           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2878           0 :     double result = alglib_impl::legendresum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), n, x, &_alglib_env_state);
    2879           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2880           0 :     return *(reinterpret_cast<double*>(&result));
    2881             : }
    2882             : 
    2883             : /*************************************************************************
    2884             : Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
    2885             : 
    2886             : Input parameters:
    2887             :     N   -   polynomial degree, n>=0
    2888             : 
    2889             : Output parameters:
    2890             :     C   -   coefficients
    2891             : *************************************************************************/
    2892           0 : void legendrecoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams)
    2893             : {
    2894             :     jmp_buf _break_jump;
    2895             :     alglib_impl::ae_state _alglib_env_state;
    2896           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2897           0 :     if( setjmp(_break_jump) )
    2898             :     {
    2899             : #if !defined(AE_NO_EXCEPTIONS)
    2900           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2901             : #else
    2902             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2903             :         return;
    2904             : #endif
    2905             :     }
    2906           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2907           0 :     if( _xparams.flags!=0x0 )
    2908           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2909           0 :     alglib_impl::legendrecoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
    2910           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2911           0 :     return;
    2912             : }
    2913             : #endif
    2914             : 
    2915             : #if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
    2916             : /*************************************************************************
    2917             : Beta function
    2918             : 
    2919             : 
    2920             :                   -     -
    2921             :                  | (a) | (b)
    2922             : beta( a, b )  =  -----------.
    2923             :                     -
    2924             :                    | (a+b)
    2925             : 
    2926             : For large arguments the logarithm of the function is
    2927             : evaluated using lgam(), then exponentiated.
    2928             : 
    2929             : ACCURACY:
    2930             : 
    2931             :                      Relative error:
    2932             : arithmetic   domain     # trials      peak         rms
    2933             :    IEEE       0,30       30000       8.1e-14     1.1e-14
    2934             : 
    2935             : Cephes Math Library Release 2.0:  April, 1987
    2936             : Copyright 1984, 1987 by Stephen L. Moshier
    2937             : *************************************************************************/
    2938           0 : double beta(const double a, const double b, const xparams _xparams)
    2939             : {
    2940             :     jmp_buf _break_jump;
    2941             :     alglib_impl::ae_state _alglib_env_state;
    2942           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2943           0 :     if( setjmp(_break_jump) )
    2944             :     {
    2945             : #if !defined(AE_NO_EXCEPTIONS)
    2946           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2947             : #else
    2948             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2949             :         return 0;
    2950             : #endif
    2951             :     }
    2952           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2953           0 :     if( _xparams.flags!=0x0 )
    2954           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2955           0 :     double result = alglib_impl::beta(a, b, &_alglib_env_state);
    2956           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2957           0 :     return *(reinterpret_cast<double*>(&result));
    2958             : }
    2959             : #endif
    2960             : 
    2961             : #if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
    2962             : /*************************************************************************
    2963             : Calculation of the value of the Chebyshev polynomials of the
    2964             : first and second kinds.
    2965             : 
    2966             : Parameters:
    2967             :     r   -   polynomial kind, either 1 or 2.
    2968             :     n   -   degree, n>=0
    2969             :     x   -   argument, -1 <= x <= 1
    2970             : 
    2971             : Result:
    2972             :     the value of the Chebyshev polynomial at x
    2973             : *************************************************************************/
    2974           0 : double chebyshevcalculate(const ae_int_t r, const ae_int_t n, const double x, const xparams _xparams)
    2975             : {
    2976             :     jmp_buf _break_jump;
    2977             :     alglib_impl::ae_state _alglib_env_state;
    2978           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    2979           0 :     if( setjmp(_break_jump) )
    2980             :     {
    2981             : #if !defined(AE_NO_EXCEPTIONS)
    2982           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    2983             : #else
    2984             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    2985             :         return 0;
    2986             : #endif
    2987             :     }
    2988           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    2989           0 :     if( _xparams.flags!=0x0 )
    2990           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    2991           0 :     double result = alglib_impl::chebyshevcalculate(r, n, x, &_alglib_env_state);
    2992           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    2993           0 :     return *(reinterpret_cast<double*>(&result));
    2994             : }
    2995             : 
    2996             : /*************************************************************************
    2997             : Summation of Chebyshev polynomials using Clenshaw's recurrence formula.
    2998             : 
    2999             : This routine calculates
    3000             :     c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
    3001             : or
    3002             :     c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
    3003             : depending on the R.
    3004             : 
    3005             : Parameters:
    3006             :     r   -   polynomial kind, either 1 or 2.
    3007             :     n   -   degree, n>=0
    3008             :     x   -   argument
    3009             : 
    3010             : Result:
    3011             :     the value of the Chebyshev polynomial at x
    3012             : *************************************************************************/
    3013           0 : double chebyshevsum(const real_1d_array &c, const ae_int_t r, const ae_int_t n, const double x, const xparams _xparams)
    3014             : {
    3015             :     jmp_buf _break_jump;
    3016             :     alglib_impl::ae_state _alglib_env_state;
    3017           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3018           0 :     if( setjmp(_break_jump) )
    3019             :     {
    3020             : #if !defined(AE_NO_EXCEPTIONS)
    3021           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3022             : #else
    3023             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3024             :         return 0;
    3025             : #endif
    3026             :     }
    3027           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3028           0 :     if( _xparams.flags!=0x0 )
    3029           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3030           0 :     double result = alglib_impl::chebyshevsum(const_cast<alglib_impl::ae_vector*>(c.c_ptr()), r, n, x, &_alglib_env_state);
    3031           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3032           0 :     return *(reinterpret_cast<double*>(&result));
    3033             : }
    3034             : 
    3035             : /*************************************************************************
    3036             : Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
    3037             : 
    3038             : Input parameters:
    3039             :     N   -   polynomial degree, n>=0
    3040             : 
    3041             : Output parameters:
    3042             :     C   -   coefficients
    3043             : *************************************************************************/
    3044           0 : void chebyshevcoefficients(const ae_int_t n, real_1d_array &c, const xparams _xparams)
    3045             : {
    3046             :     jmp_buf _break_jump;
    3047             :     alglib_impl::ae_state _alglib_env_state;
    3048           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3049           0 :     if( setjmp(_break_jump) )
    3050             :     {
    3051             : #if !defined(AE_NO_EXCEPTIONS)
    3052           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3053             : #else
    3054             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3055             :         return;
    3056             : #endif
    3057             :     }
    3058           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3059           0 :     if( _xparams.flags!=0x0 )
    3060           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3061           0 :     alglib_impl::chebyshevcoefficients(n, const_cast<alglib_impl::ae_vector*>(c.c_ptr()), &_alglib_env_state);
    3062           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3063           0 :     return;
    3064             : }
    3065             : 
    3066             : /*************************************************************************
    3067             : Conversion of a series of Chebyshev polynomials to a power series.
    3068             : 
    3069             : Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
    3070             : B[0] + B[1]*X + ... + B[N]*X^N.
    3071             : 
    3072             : Input parameters:
    3073             :     A   -   Chebyshev series coefficients
    3074             :     N   -   degree, N>=0
    3075             : 
    3076             : Output parameters
    3077             :     B   -   power series coefficients
    3078             : *************************************************************************/
    3079           0 : void fromchebyshev(const real_1d_array &a, const ae_int_t n, real_1d_array &b, const xparams _xparams)
    3080             : {
    3081             :     jmp_buf _break_jump;
    3082             :     alglib_impl::ae_state _alglib_env_state;
    3083           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3084           0 :     if( setjmp(_break_jump) )
    3085             :     {
    3086             : #if !defined(AE_NO_EXCEPTIONS)
    3087           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3088             : #else
    3089             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3090             :         return;
    3091             : #endif
    3092             :     }
    3093           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3094           0 :     if( _xparams.flags!=0x0 )
    3095           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3096           0 :     alglib_impl::fromchebyshev(const_cast<alglib_impl::ae_vector*>(a.c_ptr()), n, const_cast<alglib_impl::ae_vector*>(b.c_ptr()), &_alglib_env_state);
    3097           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3098           0 :     return;
    3099             : }
    3100             : #endif
    3101             : 
    3102             : #if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
    3103             : /*************************************************************************
    3104             : Student's t distribution
    3105             : 
    3106             : Computes the integral from minus infinity to t of the Student
    3107             : t distribution with integer k > 0 degrees of freedom:
    3108             : 
    3109             :                                      t
    3110             :                                      -
    3111             :                                     | |
    3112             :              -                      |         2   -(k+1)/2
    3113             :             | ( (k+1)/2 )           |  (     x   )
    3114             :       ----------------------        |  ( 1 + --- )        dx
    3115             :                     -               |  (      k  )
    3116             :       sqrt( k pi ) | ( k/2 )        |
    3117             :                                   | |
    3118             :                                    -
    3119             :                                   -inf.
    3120             : 
    3121             : Relation to incomplete beta integral:
    3122             : 
    3123             :        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
    3124             : where
    3125             :        z = k/(k + t**2).
    3126             : 
    3127             : For t < -2, this is the method of computation.  For higher t,
    3128             : a direct method is derived from integration by parts.
    3129             : Since the function is symmetric about t=0, the area under the
    3130             : right tail of the density is found by calling the function
    3131             : with -t instead of t.
    3132             : 
    3133             : ACCURACY:
    3134             : 
    3135             : Tested at random 1 <= k <= 25.  The "domain" refers to t.
    3136             :                      Relative error:
    3137             : arithmetic   domain     # trials      peak         rms
    3138             :    IEEE     -100,-2      50000       5.9e-15     1.4e-15
    3139             :    IEEE     -2,100      500000       2.7e-15     4.9e-17
    3140             : 
    3141             : Cephes Math Library Release 2.8:  June, 2000
    3142             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    3143             : *************************************************************************/
    3144           0 : double studenttdistribution(const ae_int_t k, const double t, const xparams _xparams)
    3145             : {
    3146             :     jmp_buf _break_jump;
    3147             :     alglib_impl::ae_state _alglib_env_state;
    3148           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3149           0 :     if( setjmp(_break_jump) )
    3150             :     {
    3151             : #if !defined(AE_NO_EXCEPTIONS)
    3152           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3153             : #else
    3154             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3155             :         return 0;
    3156             : #endif
    3157             :     }
    3158           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3159           0 :     if( _xparams.flags!=0x0 )
    3160           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3161           0 :     double result = alglib_impl::studenttdistribution(k, t, &_alglib_env_state);
    3162           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3163           0 :     return *(reinterpret_cast<double*>(&result));
    3164             : }
    3165             : 
    3166             : /*************************************************************************
    3167             : Functional inverse of Student's t distribution
    3168             : 
    3169             : Given probability p, finds the argument t such that stdtr(k,t)
    3170             : is equal to p.
    3171             : 
    3172             : ACCURACY:
    3173             : 
    3174             : Tested at random 1 <= k <= 100.  The "domain" refers to p:
    3175             :                      Relative error:
    3176             : arithmetic   domain     # trials      peak         rms
    3177             :    IEEE    .001,.999     25000       5.7e-15     8.0e-16
    3178             :    IEEE    10^-6,.001    25000       2.0e-12     2.9e-14
    3179             : 
    3180             : Cephes Math Library Release 2.8:  June, 2000
    3181             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    3182             : *************************************************************************/
    3183           0 : double invstudenttdistribution(const ae_int_t k, const double p, const xparams _xparams)
    3184             : {
    3185             :     jmp_buf _break_jump;
    3186             :     alglib_impl::ae_state _alglib_env_state;
    3187           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3188           0 :     if( setjmp(_break_jump) )
    3189             :     {
    3190             : #if !defined(AE_NO_EXCEPTIONS)
    3191           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3192             : #else
    3193             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3194             :         return 0;
    3195             : #endif
    3196             :     }
    3197           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3198           0 :     if( _xparams.flags!=0x0 )
    3199           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3200           0 :     double result = alglib_impl::invstudenttdistribution(k, p, &_alglib_env_state);
    3201           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3202           0 :     return *(reinterpret_cast<double*>(&result));
    3203             : }
    3204             : #endif
    3205             : 
    3206             : #if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
    3207             : /*************************************************************************
    3208             : Binomial distribution
    3209             : 
    3210             : Returns the sum of the terms 0 through k of the Binomial
    3211             : probability density:
    3212             : 
    3213             :   k
    3214             :   --  ( n )   j      n-j
    3215             :   >   (   )  p  (1-p)
    3216             :   --  ( j )
    3217             :  j=0
    3218             : 
    3219             : The terms are not summed directly; instead the incomplete
    3220             : beta integral is employed, according to the formula
    3221             : 
    3222             : y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
    3223             : 
    3224             : The arguments must be positive, with p ranging from 0 to 1.
    3225             : 
    3226             : ACCURACY:
    3227             : 
    3228             : Tested at random points (a,b,p), with p between 0 and 1.
    3229             : 
    3230             :               a,b                     Relative error:
    3231             : arithmetic  domain     # trials      peak         rms
    3232             :  For p between 0.001 and 1:
    3233             :    IEEE     0,100       100000      4.3e-15     2.6e-16
    3234             : 
    3235             : Cephes Math Library Release 2.8:  June, 2000
    3236             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    3237             : *************************************************************************/
    3238           0 : double binomialdistribution(const ae_int_t k, const ae_int_t n, const double p, const xparams _xparams)
    3239             : {
    3240             :     jmp_buf _break_jump;
    3241             :     alglib_impl::ae_state _alglib_env_state;
    3242           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3243           0 :     if( setjmp(_break_jump) )
    3244             :     {
    3245             : #if !defined(AE_NO_EXCEPTIONS)
    3246           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3247             : #else
    3248             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3249             :         return 0;
    3250             : #endif
    3251             :     }
    3252           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3253           0 :     if( _xparams.flags!=0x0 )
    3254           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3255           0 :     double result = alglib_impl::binomialdistribution(k, n, p, &_alglib_env_state);
    3256           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3257           0 :     return *(reinterpret_cast<double*>(&result));
    3258             : }
    3259             : 
    3260             : /*************************************************************************
    3261             : Complemented binomial distribution
    3262             : 
    3263             : Returns the sum of the terms k+1 through n of the Binomial
    3264             : probability density:
    3265             : 
    3266             :   n
    3267             :   --  ( n )   j      n-j
    3268             :   >   (   )  p  (1-p)
    3269             :   --  ( j )
    3270             :  j=k+1
    3271             : 
    3272             : The terms are not summed directly; instead the incomplete
    3273             : beta integral is employed, according to the formula
    3274             : 
    3275             : y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
    3276             : 
    3277             : The arguments must be positive, with p ranging from 0 to 1.
    3278             : 
    3279             : ACCURACY:
    3280             : 
    3281             : Tested at random points (a,b,p).
    3282             : 
    3283             :               a,b                     Relative error:
    3284             : arithmetic  domain     # trials      peak         rms
    3285             :  For p between 0.001 and 1:
    3286             :    IEEE     0,100       100000      6.7e-15     8.2e-16
    3287             :  For p between 0 and .001:
    3288             :    IEEE     0,100       100000      1.5e-13     2.7e-15
    3289             : 
    3290             : Cephes Math Library Release 2.8:  June, 2000
    3291             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    3292             : *************************************************************************/
    3293           0 : double binomialcdistribution(const ae_int_t k, const ae_int_t n, const double p, const xparams _xparams)
    3294             : {
    3295             :     jmp_buf _break_jump;
    3296             :     alglib_impl::ae_state _alglib_env_state;
    3297           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3298           0 :     if( setjmp(_break_jump) )
    3299             :     {
    3300             : #if !defined(AE_NO_EXCEPTIONS)
    3301           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3302             : #else
    3303             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3304             :         return 0;
    3305             : #endif
    3306             :     }
    3307           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3308           0 :     if( _xparams.flags!=0x0 )
    3309           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3310           0 :     double result = alglib_impl::binomialcdistribution(k, n, p, &_alglib_env_state);
    3311           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3312           0 :     return *(reinterpret_cast<double*>(&result));
    3313             : }
    3314             : 
    3315             : /*************************************************************************
    3316             : Inverse binomial distribution
    3317             : 
    3318             : Finds the event probability p such that the sum of the
    3319             : terms 0 through k of the Binomial probability density
    3320             : is equal to the given cumulative probability y.
    3321             : 
    3322             : This is accomplished using the inverse beta integral
    3323             : function and the relation
    3324             : 
    3325             : 1 - p = incbi( n-k, k+1, y ).
    3326             : 
    3327             : ACCURACY:
    3328             : 
    3329             : Tested at random points (a,b,p).
    3330             : 
    3331             :               a,b                     Relative error:
    3332             : arithmetic  domain     # trials      peak         rms
    3333             :  For p between 0.001 and 1:
    3334             :    IEEE     0,100       100000      2.3e-14     6.4e-16
    3335             :    IEEE     0,10000     100000      6.6e-12     1.2e-13
    3336             :  For p between 10^-6 and 0.001:
    3337             :    IEEE     0,100       100000      2.0e-12     1.3e-14
    3338             :    IEEE     0,10000     100000      1.5e-12     3.2e-14
    3339             : 
    3340             : Cephes Math Library Release 2.8:  June, 2000
    3341             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    3342             : *************************************************************************/
    3343           0 : double invbinomialdistribution(const ae_int_t k, const ae_int_t n, const double y, const xparams _xparams)
    3344             : {
    3345             :     jmp_buf _break_jump;
    3346             :     alglib_impl::ae_state _alglib_env_state;
    3347           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3348           0 :     if( setjmp(_break_jump) )
    3349             :     {
    3350             : #if !defined(AE_NO_EXCEPTIONS)
    3351           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3352             : #else
    3353             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3354             :         return 0;
    3355             : #endif
    3356             :     }
    3357           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3358           0 :     if( _xparams.flags!=0x0 )
    3359           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3360           0 :     double result = alglib_impl::invbinomialdistribution(k, n, y, &_alglib_env_state);
    3361           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3362           0 :     return *(reinterpret_cast<double*>(&result));
    3363             : }
    3364             : #endif
    3365             : 
    3366             : #if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
    3367             : /*************************************************************************
    3368             : Airy function
    3369             : 
    3370             : Solution of the differential equation
    3371             : 
    3372             : y"(x) = xy.
    3373             : 
    3374             : The function returns the two independent solutions Ai, Bi
    3375             : and their first derivatives Ai'(x), Bi'(x).
    3376             : 
    3377             : Evaluation is by power series summation for small x,
    3378             : by rational minimax approximations for large x.
    3379             : 
    3380             : 
    3381             : 
    3382             : ACCURACY:
    3383             : Error criterion is absolute when function <= 1, relative
    3384             : when function > 1, except * denotes relative error criterion.
    3385             : For large negative x, the absolute error increases as x^1.5.
    3386             : For large positive x, the relative error increases as x^1.5.
    3387             : 
    3388             : Arithmetic  domain   function  # trials      peak         rms
    3389             : IEEE        -10, 0     Ai        10000       1.6e-15     2.7e-16
    3390             : IEEE          0, 10    Ai        10000       2.3e-14*    1.8e-15*
    3391             : IEEE        -10, 0     Ai'       10000       4.6e-15     7.6e-16
    3392             : IEEE          0, 10    Ai'       10000       1.8e-14*    1.5e-15*
    3393             : IEEE        -10, 10    Bi        30000       4.2e-15     5.3e-16
    3394             : IEEE        -10, 10    Bi'       30000       4.9e-15     7.3e-16
    3395             : 
    3396             : Cephes Math Library Release 2.8:  June, 2000
    3397             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    3398             : *************************************************************************/
    3399           0 : void airy(const double x, double &ai, double &aip, double &bi, double &bip, const xparams _xparams)
    3400             : {
    3401             :     jmp_buf _break_jump;
    3402             :     alglib_impl::ae_state _alglib_env_state;
    3403           0 :     alglib_impl::ae_state_init(&_alglib_env_state);
    3404           0 :     if( setjmp(_break_jump) )
    3405             :     {
    3406             : #if !defined(AE_NO_EXCEPTIONS)
    3407           0 :         _ALGLIB_CPP_EXCEPTION(_alglib_env_state.error_msg);
    3408             : #else
    3409             :         _ALGLIB_SET_ERROR_FLAG(_alglib_env_state.error_msg);
    3410             :         return;
    3411             : #endif
    3412             :     }
    3413           0 :     ae_state_set_break_jump(&_alglib_env_state, &_break_jump);
    3414           0 :     if( _xparams.flags!=0x0 )
    3415           0 :         ae_state_set_flags(&_alglib_env_state, _xparams.flags);
    3416           0 :     alglib_impl::airy(x, &ai, &aip, &bi, &bip, &_alglib_env_state);
    3417           0 :     alglib_impl::ae_state_clear(&_alglib_env_state);
    3418           0 :     return;
    3419             : }
    3420             : #endif
    3421             : }
    3422             : 
    3423             : /////////////////////////////////////////////////////////////////////////
    3424             : //
    3425             : // THIS SECTION CONTAINS IMPLEMENTATION OF COMPUTATIONAL CORE
    3426             : //
    3427             : /////////////////////////////////////////////////////////////////////////
    3428             : namespace alglib_impl
    3429             : {
    3430             : #if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
    3431             : static double gammafunc_gammastirf(double x, ae_state *_state);
    3432             : 
    3433             : 
    3434             : #endif
    3435             : #if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
    3436             : static double normaldistr_bvnintegrate3(double rangea,
    3437             :      double rangeb,
    3438             :      double x,
    3439             :      double y,
    3440             :      double gw,
    3441             :      double gx,
    3442             :      ae_state *_state);
    3443             : static double normaldistr_bvnintegrate6(double rangea,
    3444             :      double rangeb,
    3445             :      double x,
    3446             :      double y,
    3447             :      double s,
    3448             :      double gw,
    3449             :      double gx,
    3450             :      ae_state *_state);
    3451             : 
    3452             : 
    3453             : #endif
    3454             : #if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
    3455             : 
    3456             : 
    3457             : #endif
    3458             : #if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
    3459             : 
    3460             : 
    3461             : #endif
    3462             : #if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
    3463             : 
    3464             : 
    3465             : #endif
    3466             : #if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
    3467             : 
    3468             : 
    3469             : #endif
    3470             : #if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
    3471             : static void trigintegrals_chebiterationshichi(double x,
    3472             :      double c,
    3473             :      double* b0,
    3474             :      double* b1,
    3475             :      double* b2,
    3476             :      ae_state *_state);
    3477             : 
    3478             : 
    3479             : #endif
    3480             : #if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
    3481             : 
    3482             : 
    3483             : #endif
    3484             : #if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
    3485             : static void bessel_besselmfirstcheb(double c,
    3486             :      double* b0,
    3487             :      double* b1,
    3488             :      double* b2,
    3489             :      ae_state *_state);
    3490             : static void bessel_besselmnextcheb(double x,
    3491             :      double c,
    3492             :      double* b0,
    3493             :      double* b1,
    3494             :      double* b2,
    3495             :      ae_state *_state);
    3496             : static void bessel_besselm1firstcheb(double c,
    3497             :      double* b0,
    3498             :      double* b1,
    3499             :      double* b2,
    3500             :      ae_state *_state);
    3501             : static void bessel_besselm1nextcheb(double x,
    3502             :      double c,
    3503             :      double* b0,
    3504             :      double* b1,
    3505             :      double* b2,
    3506             :      ae_state *_state);
    3507             : static void bessel_besselasympt0(double x,
    3508             :      double* pzero,
    3509             :      double* qzero,
    3510             :      ae_state *_state);
    3511             : static void bessel_besselasympt1(double x,
    3512             :      double* pzero,
    3513             :      double* qzero,
    3514             :      ae_state *_state);
    3515             : 
    3516             : 
    3517             : #endif
    3518             : #if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
    3519             : static double ibetaf_incompletebetafe(double a,
    3520             :      double b,
    3521             :      double x,
    3522             :      double big,
    3523             :      double biginv,
    3524             :      ae_state *_state);
    3525             : static double ibetaf_incompletebetafe2(double a,
    3526             :      double b,
    3527             :      double x,
    3528             :      double big,
    3529             :      double biginv,
    3530             :      ae_state *_state);
    3531             : static double ibetaf_incompletebetaps(double a,
    3532             :      double b,
    3533             :      double x,
    3534             :      double maxgam,
    3535             :      ae_state *_state);
    3536             : 
    3537             : 
    3538             : #endif
    3539             : #if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
    3540             : 
    3541             : 
    3542             : #endif
    3543             : #if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
    3544             : 
    3545             : 
    3546             : #endif
    3547             : #if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
    3548             : 
    3549             : 
    3550             : #endif
    3551             : #if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
    3552             : 
    3553             : 
    3554             : #endif
    3555             : #if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
    3556             : 
    3557             : 
    3558             : #endif
    3559             : #if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
    3560             : 
    3561             : 
    3562             : #endif
    3563             : #if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
    3564             : 
    3565             : 
    3566             : #endif
    3567             : #if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
    3568             : 
    3569             : 
    3570             : #endif
    3571             : #if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
    3572             : 
    3573             : 
    3574             : #endif
    3575             : #if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
    3576             : 
    3577             : 
    3578             : #endif
    3579             : #if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
    3580             : 
    3581             : 
    3582             : #endif
    3583             : #if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
    3584             : 
    3585             : 
    3586             : #endif
    3587             : #if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
    3588             : 
    3589             : 
    3590             : #endif
    3591             : 
    3592             : #if defined(AE_COMPILE_GAMMAFUNC) || !defined(AE_PARTIAL_BUILD)
    3593             : 
    3594             : 
    3595             : /*************************************************************************
    3596             : Gamma function
    3597             : 
    3598             : Input parameters:
    3599             :     X   -   argument
    3600             : 
    3601             : Domain:
    3602             :     0 < X < 171.6
    3603             :     -170 < X < 0, X is not an integer.
    3604             : 
    3605             : Relative error:
    3606             :  arithmetic   domain     # trials      peak         rms
    3607             :     IEEE    -170,-33      20000       2.3e-15     3.3e-16
    3608             :     IEEE     -33,  33     20000       9.4e-16     2.2e-16
    3609             :     IEEE      33, 171.6   20000       2.3e-15     3.2e-16
    3610             : 
    3611             : Cephes Math Library Release 2.8:  June, 2000
    3612             : Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
    3613             : Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
    3614             : *************************************************************************/
    3615           0 : double gammafunction(double x, ae_state *_state)
    3616             : {
    3617             : #ifndef ALGLIB_INTERCEPTS_SPECFUNCS
    3618             :     double p;
    3619             :     double pp;
    3620             :     double q;
    3621             :     double qq;
    3622             :     double z;
    3623             :     ae_int_t i;
    3624             :     double sgngam;
    3625             :     double result;
    3626             : 
    3627             : 
    3628           0 :     sgngam = (double)(1);
    3629           0 :     q = ae_fabs(x, _state);
    3630           0 :     if( ae_fp_greater(q,33.0) )
    3631             :     {
    3632           0 :         if( ae_fp_less(x,0.0) )
    3633             :         {
    3634           0 :             p = (double)(ae_ifloor(q, _state));
    3635           0 :             i = ae_round(p, _state);
    3636           0 :             if( i%2==0 )
    3637             :             {
    3638           0 :                 sgngam = (double)(-1);
    3639             :             }
    3640           0 :             z = q-p;
    3641           0 :             if( ae_fp_greater(z,0.5) )
    3642             :             {
    3643           0 :                 p = p+1;
    3644           0 :                 z = q-p;
    3645             :             }
    3646           0 :             z = q*ae_sin(ae_pi*z, _state);
    3647           0 :             z = ae_fabs(z, _state);
    3648           0 :             z = ae_pi/(z*gammafunc_gammastirf(q, _state));
    3649             :         }
    3650             :         else
    3651             :         {
    3652           0 :             z = gammafunc_gammastirf(x, _state);
    3653             :         }
    3654           0 :         result = sgngam*z;
    3655           0 :         return result;
    3656             :     }
    3657           0 :     z = (double)(1);
    3658           0 :     while(ae_fp_greater_eq(x,(double)(3)))
    3659             :     {
    3660           0 :         x = x-1;
    3661           0 :         z = z*x;
    3662             :     }
    3663           0 :     while(ae_fp_less(x,(double)(0)))
    3664             :     {
    3665           0 :         if( ae_fp_greater(x,-0.000000001) )
    3666             :         {
    3667           0 :             result = z/((1+0.5772156649015329*x)*x);
    3668           0 :             return result;
    3669             :         }
    3670           0 :         z = z/x;
    3671           0 :         x = x+1;
    3672             :     }
    3673           0 :     while(ae_fp_less(x,(double)(2)))
    3674             :     {
    3675           0 :         if( ae_fp_less(x,0.000000001) )
    3676             :         {
    3677           0 :             result = z/((1+0.5772156649015329*x)*x);
    3678           0 :             return result;
    3679             :         }
    3680           0 :         z = z/x;
    3681           0 :         x = x+1.0;
    3682             :     }
    3683           0 :     if( ae_fp_eq(x,(double)(2)) )
    3684             :     {
    3685           0 :         result = z;
    3686           0 :         return result;
    3687             :     }
    3688           0 :     x = x-2.0;
    3689           0 :     pp = 1.60119522476751861407E-4;
    3690           0 :     pp = 1.19135147006586384913E-3+x*pp;
    3691           0 :     pp = 1.04213797561761569935E-2+x*pp;
    3692           0 :     pp = 4.76367800457137231464E-2+x*pp;
    3693           0 :     pp = 2.07448227648435975150E-1+x*pp;
    3694           0 :     pp = 4.94214826801497100753E-1+x*pp;
    3695           0 :     pp = 9.99999999999999996796E-1+x*pp;
    3696           0 :     qq = -2.31581873324120129819E-5;
    3697           0 :     qq = 5.39605580493303397842E-4+x*qq;
    3698           0 :     qq = -4.45641913851797240494E-3+x*qq;
    3699           0 :     qq = 1.18139785222060435552E-2+x*qq;
    3700           0 :     qq = 3.58236398605498653373E-2+x*qq;
    3701           0 :     qq = -2.34591795718243348568E-1+x*qq;
    3702           0 :     qq = 7.14304917030273074085E-2+x*qq;
    3703           0 :     qq = 1.00000000000000000320+x*qq;
    3704           0 :     result = z*pp/qq;
    3705           0 :     return result;
    3706             : #else
    3707             :     return _ialglib_i_gammafunction(x);
    3708             : #endif
    3709             : }
    3710             : 
    3711             : 
    3712             : /*************************************************************************
    3713             : Natural logarithm of gamma function
    3714             : 
    3715             : Input parameters:
    3716             :     X       -   argument
    3717             : 
    3718             : Result:
    3719             :     logarithm of the absolute value of the Gamma(X).
    3720             : 
    3721             : Output parameters:
    3722             :     SgnGam  -   sign(Gamma(X))
    3723             : 
    3724             : Domain:
    3725             :     0 < X < 2.55e305
    3726             :     -2.55e305 < X < 0, X is not an integer.
    3727             : 
    3728             : ACCURACY:
    3729             : arithmetic      domain        # trials     peak         rms
    3730             :    IEEE    0, 3                 28000     5.4e-16     1.1e-16
    3731             :    IEEE    2.718, 2.556e305     40000     3.5e-16     8.3e-17
    3732             : The error criterion was relative when the function magnitude
    3733             : was greater than one but absolute when it was less than one.
    3734             : 
    3735             : The following test used the relative error criterion, though
    3736             : at certain points the relative error could be much higher than
    3737             : indicated.
    3738             :    IEEE    -200, -4             10000     4.8e-16     1.3e-16
    3739             : 
    3740             : Cephes Math Library Release 2.8:  June, 2000
    3741             : Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
    3742             : Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007).
    3743             : *************************************************************************/
    3744           0 : double lngamma(double x, double* sgngam, ae_state *_state)
    3745             : {
    3746             : #ifndef ALGLIB_INTERCEPTS_SPECFUNCS
    3747             :     double a;
    3748             :     double b;
    3749             :     double c;
    3750             :     double p;
    3751             :     double q;
    3752             :     double u;
    3753             :     double w;
    3754             :     double z;
    3755             :     ae_int_t i;
    3756             :     double logpi;
    3757             :     double ls2pi;
    3758             :     double tmp;
    3759             :     double result;
    3760             : 
    3761           0 :     *sgngam = 0;
    3762             : 
    3763           0 :     *sgngam = (double)(1);
    3764           0 :     logpi = 1.14472988584940017414;
    3765           0 :     ls2pi = 0.91893853320467274178;
    3766           0 :     if( ae_fp_less(x,-34.0) )
    3767             :     {
    3768           0 :         q = -x;
    3769           0 :         w = lngamma(q, &tmp, _state);
    3770           0 :         p = (double)(ae_ifloor(q, _state));
    3771           0 :         i = ae_round(p, _state);
    3772           0 :         if( i%2==0 )
    3773             :         {
    3774           0 :             *sgngam = (double)(-1);
    3775             :         }
    3776             :         else
    3777             :         {
    3778           0 :             *sgngam = (double)(1);
    3779             :         }
    3780           0 :         z = q-p;
    3781           0 :         if( ae_fp_greater(z,0.5) )
    3782             :         {
    3783           0 :             p = p+1;
    3784           0 :             z = p-q;
    3785             :         }
    3786           0 :         z = q*ae_sin(ae_pi*z, _state);
    3787           0 :         result = logpi-ae_log(z, _state)-w;
    3788           0 :         return result;
    3789             :     }
    3790           0 :     if( ae_fp_less(x,(double)(13)) )
    3791             :     {
    3792           0 :         z = (double)(1);
    3793           0 :         p = (double)(0);
    3794           0 :         u = x;
    3795           0 :         while(ae_fp_greater_eq(u,(double)(3)))
    3796             :         {
    3797           0 :             p = p-1;
    3798           0 :             u = x+p;
    3799           0 :             z = z*u;
    3800             :         }
    3801           0 :         while(ae_fp_less(u,(double)(2)))
    3802             :         {
    3803           0 :             z = z/u;
    3804           0 :             p = p+1;
    3805           0 :             u = x+p;
    3806             :         }
    3807           0 :         if( ae_fp_less(z,(double)(0)) )
    3808             :         {
    3809           0 :             *sgngam = (double)(-1);
    3810           0 :             z = -z;
    3811             :         }
    3812             :         else
    3813             :         {
    3814           0 :             *sgngam = (double)(1);
    3815             :         }
    3816           0 :         if( ae_fp_eq(u,(double)(2)) )
    3817             :         {
    3818           0 :             result = ae_log(z, _state);
    3819           0 :             return result;
    3820             :         }
    3821           0 :         p = p-2;
    3822           0 :         x = x+p;
    3823           0 :         b = -1378.25152569120859100;
    3824           0 :         b = -38801.6315134637840924+x*b;
    3825           0 :         b = -331612.992738871184744+x*b;
    3826           0 :         b = -1162370.97492762307383+x*b;
    3827           0 :         b = -1721737.00820839662146+x*b;
    3828           0 :         b = -853555.664245765465627+x*b;
    3829           0 :         c = (double)(1);
    3830           0 :         c = -351.815701436523470549+x*c;
    3831           0 :         c = -17064.2106651881159223+x*c;
    3832           0 :         c = -220528.590553854454839+x*c;
    3833           0 :         c = -1139334.44367982507207+x*c;
    3834           0 :         c = -2532523.07177582951285+x*c;
    3835           0 :         c = -2018891.41433532773231+x*c;
    3836           0 :         p = x*b/c;
    3837           0 :         result = ae_log(z, _state)+p;
    3838           0 :         return result;
    3839             :     }
    3840           0 :     q = (x-0.5)*ae_log(x, _state)-x+ls2pi;
    3841           0 :     if( ae_fp_greater(x,(double)(100000000)) )
    3842             :     {
    3843           0 :         result = q;
    3844           0 :         return result;
    3845             :     }
    3846           0 :     p = 1/(x*x);
    3847           0 :     if( ae_fp_greater_eq(x,1000.0) )
    3848             :     {
    3849           0 :         q = q+((7.9365079365079365079365*0.0001*p-2.7777777777777777777778*0.001)*p+0.0833333333333333333333)/x;
    3850             :     }
    3851             :     else
    3852             :     {
    3853           0 :         a = 8.11614167470508450300*0.0001;
    3854           0 :         a = -5.95061904284301438324*0.0001+p*a;
    3855           0 :         a = 7.93650340457716943945*0.0001+p*a;
    3856           0 :         a = -2.77777777730099687205*0.001+p*a;
    3857           0 :         a = 8.33333333333331927722*0.01+p*a;
    3858           0 :         q = q+a/x;
    3859             :     }
    3860           0 :     result = q;
    3861           0 :     return result;
    3862             : #else
    3863             :     return _ialglib_i_lngamma(x, sgngam);
    3864             : #endif
    3865             : }
    3866             : 
    3867             : 
    3868           0 : static double gammafunc_gammastirf(double x, ae_state *_state)
    3869             : {
    3870             :     double y;
    3871             :     double w;
    3872             :     double v;
    3873             :     double stir;
    3874             :     double result;
    3875             : 
    3876             : 
    3877           0 :     w = 1/x;
    3878           0 :     stir = 7.87311395793093628397E-4;
    3879           0 :     stir = -2.29549961613378126380E-4+w*stir;
    3880           0 :     stir = -2.68132617805781232825E-3+w*stir;
    3881           0 :     stir = 3.47222221605458667310E-3+w*stir;
    3882           0 :     stir = 8.33333333333482257126E-2+w*stir;
    3883           0 :     w = 1+w*stir;
    3884           0 :     y = ae_exp(x, _state);
    3885           0 :     if( ae_fp_greater(x,143.01608) )
    3886             :     {
    3887           0 :         v = ae_pow(x, 0.5*x-0.25, _state);
    3888           0 :         y = v*(v/y);
    3889             :     }
    3890             :     else
    3891             :     {
    3892           0 :         y = ae_pow(x, x-0.5, _state)/y;
    3893             :     }
    3894           0 :     result = 2.50662827463100050242*y*w;
    3895           0 :     return result;
    3896             : }
    3897             : 
    3898             : 
    3899             : #endif
    3900             : #if defined(AE_COMPILE_NORMALDISTR) || !defined(AE_PARTIAL_BUILD)
    3901             : 
    3902             : 
    3903             : /*************************************************************************
    3904             : Error function
    3905             : 
    3906             : The integral is
    3907             : 
    3908             :                           x
    3909             :                            -
    3910             :                 2         | |          2
    3911             :   erf(x)  =  --------     |    exp( - t  ) dt.
    3912             :              sqrt(pi)   | |
    3913             :                          -
    3914             :                           0
    3915             : 
    3916             : For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
    3917             : erf(x) = 1 - erfc(x).
    3918             : 
    3919             : 
    3920             : ACCURACY:
    3921             : 
    3922             :                      Relative error:
    3923             : arithmetic   domain     # trials      peak         rms
    3924             :    IEEE      0,1         30000       3.7e-16     1.0e-16
    3925             : 
    3926             : Cephes Math Library Release 2.8:  June, 2000
    3927             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
    3928             : *************************************************************************/
    3929           0 : double errorfunction(double x, ae_state *_state)
    3930             : {
    3931             :     double xsq;
    3932             :     double s;
    3933             :     double p;
    3934             :     double q;
    3935             :     double result;
    3936             : 
    3937             : 
    3938           0 :     s = (double)(ae_sign(x, _state));
    3939           0 :     x = ae_fabs(x, _state);
    3940           0 :     if( ae_fp_less(x,0.5) )
    3941             :     {
    3942           0 :         xsq = x*x;
    3943           0 :         p = 0.007547728033418631287834;
    3944           0 :         p = -0.288805137207594084924010+xsq*p;
    3945           0 :         p = 14.3383842191748205576712+xsq*p;
    3946           0 :         p = 38.0140318123903008244444+xsq*p;
    3947           0 :         p = 3017.82788536507577809226+xsq*p;
    3948           0 :         p = 7404.07142710151470082064+xsq*p;
    3949           0 :         p = 80437.3630960840172832162+xsq*p;
    3950           0 :         q = 0.0;
    3951           0 :         q = 1.00000000000000000000000+xsq*q;
    3952           0 :         q = 38.0190713951939403753468+xsq*q;
    3953           0 :         q = 658.070155459240506326937+xsq*q;
    3954           0 :         q = 6379.60017324428279487120+xsq*q;
    3955           0 :         q = 34216.5257924628539769006+xsq*q;
    3956           0 :         q = 80437.3630960840172826266+xsq*q;
    3957           0 :         result = s*1.1283791670955125738961589031*x*p/q;
    3958           0 :         return result;
    3959             :     }
    3960           0 :     if( ae_fp_greater_eq(x,(double)(10)) )
    3961             :     {
    3962           0 :         result = s;
    3963           0 :         return result;
    3964             :     }
    3965           0 :     result = s*(1-errorfunctionc(x, _state));
    3966           0 :     return result;
    3967             : }
    3968             : 
    3969             : 
    3970             : /*************************************************************************
    3971             : Complementary error function
    3972             : 
    3973             :  1 - erf(x) =
    3974             : 
    3975             :                           inf.
    3976             :                             -
    3977             :                  2         | |          2
    3978             :   erfc(x)  =  --------     |    exp( - t  ) dt
    3979             :               sqrt(pi)   | |
    3980             :                           -
    3981             :                            x
    3982             : 
    3983             : 
    3984             : For small x, erfc(x) = 1 - erf(x); otherwise rational
    3985             : approximations are computed.
    3986             : 
    3987             : 
    3988             : ACCURACY:
    3989             : 
    3990             :                      Relative error:
    3991             : arithmetic   domain     # trials      peak         rms
    3992             :    IEEE      0,26.6417   30000       5.7e-14     1.5e-14
    3993             : 
    3994             : Cephes Math Library Release 2.8:  June, 2000
    3995             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
    3996             : *************************************************************************/
    3997           0 : double errorfunctionc(double x, ae_state *_state)
    3998             : {
    3999             :     double p;
    4000             :     double q;
    4001             :     double result;
    4002             : 
    4003             : 
    4004           0 :     if( ae_fp_less(x,(double)(0)) )
    4005             :     {
    4006           0 :         result = 2-errorfunctionc(-x, _state);
    4007           0 :         return result;
    4008             :     }
    4009           0 :     if( ae_fp_less(x,0.5) )
    4010             :     {
    4011           0 :         result = 1.0-errorfunction(x, _state);
    4012           0 :         return result;
    4013             :     }
    4014           0 :     if( ae_fp_greater_eq(x,(double)(10)) )
    4015             :     {
    4016           0 :         result = (double)(0);
    4017           0 :         return result;
    4018             :     }
    4019           0 :     p = 0.0;
    4020           0 :     p = 0.5641877825507397413087057563+x*p;
    4021           0 :     p = 9.675807882987265400604202961+x*p;
    4022           0 :     p = 77.08161730368428609781633646+x*p;
    4023           0 :     p = 368.5196154710010637133875746+x*p;
    4024           0 :     p = 1143.262070703886173606073338+x*p;
    4025           0 :     p = 2320.439590251635247384768711+x*p;
    4026           0 :     p = 2898.0293292167655611275846+x*p;
    4027           0 :     p = 1826.3348842295112592168999+x*p;
    4028           0 :     q = 1.0;
    4029           0 :     q = 17.14980943627607849376131193+x*q;
    4030           0 :     q = 137.1255960500622202878443578+x*q;
    4031           0 :     q = 661.7361207107653469211984771+x*q;
    4032           0 :     q = 2094.384367789539593790281779+x*q;
    4033           0 :     q = 4429.612803883682726711528526+x*q;
    4034           0 :     q = 6089.5424232724435504633068+x*q;
    4035           0 :     q = 4958.82756472114071495438422+x*q;
    4036           0 :     q = 1826.3348842295112595576438+x*q;
    4037           0 :     result = ae_exp(-ae_sqr(x, _state), _state)*p/q;
    4038           0 :     return result;
    4039             : }
    4040             : 
    4041             : 
    4042             : /*************************************************************************
    4043             : Same as normalcdf(), obsolete name.
    4044             : *************************************************************************/
    4045           0 : double normaldistribution(double x, ae_state *_state)
    4046             : {
    4047             :     double result;
    4048             : 
    4049             : 
    4050           0 :     result = 0.5*(errorfunction(x/1.41421356237309504880, _state)+1);
    4051           0 :     return result;
    4052             : }
    4053             : 
    4054             : 
    4055             : /*************************************************************************
    4056             : Normal distribution PDF
    4057             : 
    4058             : Returns Gaussian probability density function:
    4059             : 
    4060             :                1
    4061             :    f(x)  = --------- * exp(-x^2/2)
    4062             :            sqrt(2pi)
    4063             : 
    4064             : Cephes Math Library Release 2.8:  June, 2000
    4065             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
    4066             : *************************************************************************/
    4067           0 : double normalpdf(double x, ae_state *_state)
    4068             : {
    4069             :     double result;
    4070             : 
    4071             : 
    4072           0 :     ae_assert(ae_isfinite(x, _state), "NormalPDF: X is infinite", _state);
    4073           0 :     result = ae_exp(-x*x/2, _state)/ae_sqrt(2*ae_pi, _state);
    4074           0 :     return result;
    4075             : }
    4076             : 
    4077             : 
    4078             : /*************************************************************************
    4079             : Normal distribution CDF
    4080             : 
    4081             : Returns the area under the Gaussian probability density
    4082             : function, integrated from minus infinity to x:
    4083             : 
    4084             :                            x
    4085             :                             -
    4086             :                   1        | |          2
    4087             :    ndtr(x)  = ---------    |    exp( - t /2 ) dt
    4088             :               sqrt(2pi)  | |
    4089             :                           -
    4090             :                          -inf.
    4091             : 
    4092             :             =  ( 1 + erf(z) ) / 2
    4093             :             =  erfc(z) / 2
    4094             : 
    4095             : where z = x/sqrt(2). Computation is via the functions
    4096             : erf and erfc.
    4097             : 
    4098             : 
    4099             : ACCURACY:
    4100             : 
    4101             :                      Relative error:
    4102             : arithmetic   domain     # trials      peak         rms
    4103             :    IEEE     -13,0        30000       3.4e-14     6.7e-15
    4104             : 
    4105             : Cephes Math Library Release 2.8:  June, 2000
    4106             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
    4107             : *************************************************************************/
    4108           0 : double normalcdf(double x, ae_state *_state)
    4109             : {
    4110             :     double result;
    4111             : 
    4112             : 
    4113           0 :     result = 0.5*(errorfunction(x/1.41421356237309504880, _state)+1);
    4114           0 :     return result;
    4115             : }
    4116             : 
    4117             : 
    4118             : /*************************************************************************
    4119             : Inverse of the error function
    4120             : 
    4121             : Cephes Math Library Release 2.8:  June, 2000
    4122             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
    4123             : *************************************************************************/
    4124           0 : double inverf(double e, ae_state *_state)
    4125             : {
    4126             :     double result;
    4127             : 
    4128             : 
    4129           0 :     result = invnormaldistribution(0.5*(e+1), _state)/ae_sqrt((double)(2), _state);
    4130           0 :     return result;
    4131             : }
    4132             : 
    4133             : 
    4134             : /*************************************************************************
    4135             : Same as invnormalcdf(), deprecated name
    4136             : *************************************************************************/
    4137           0 : double invnormaldistribution(double y0, ae_state *_state)
    4138             : {
    4139             :     double result;
    4140             : 
    4141             : 
    4142           0 :     result = invnormalcdf(y0, _state);
    4143           0 :     return result;
    4144             : }
    4145             : 
    4146             : 
    4147             : /*************************************************************************
    4148             : Inverse of Normal CDF
    4149             : 
    4150             : Returns the argument, x, for which the area under the
    4151             : Gaussian probability density function (integrated from
    4152             : minus infinity to x) is equal to y.
    4153             : 
    4154             : 
    4155             : For small arguments 0 < y < exp(-2), the program computes
    4156             : z = sqrt( -2.0 * log(y) );  then the approximation is
    4157             : x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
    4158             : There are two rational functions P/Q, one for 0 < y < exp(-32)
    4159             : and the other for y up to exp(-2).  For larger arguments,
    4160             : w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
    4161             : 
    4162             : ACCURACY:
    4163             : 
    4164             :                      Relative error:
    4165             : arithmetic   domain        # trials      peak         rms
    4166             :    IEEE     0.125, 1        20000       7.2e-16     1.3e-16
    4167             :    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17
    4168             : 
    4169             : Cephes Math Library Release 2.8:  June, 2000
    4170             : Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
    4171             : *************************************************************************/
    4172           0 : double invnormalcdf(double y0, ae_state *_state)
    4173             : {
    4174             :     double expm2;
    4175             :     double s2pi;
    4176             :     double x;
    4177             :     double y;
    4178             :     double z;
    4179             :     double y2;
    4180             :     double x0;
    4181             :     double x1;
    4182             :     ae_int_t code;
    4183             :     double p0;
    4184             :     double q0;
    4185             :     double p1;
    4186             :     double q1;
    4187             :     double p2;
    4188             :     double q2;
    4189             :     double result;
    4190             : 
    4191             : 
    4192           0 :     expm2 = 0.13533528323661269189;
    4193           0 :     s2pi = 2.50662827463100050242;
    4194           0 :     if( ae_fp_less_eq(y0,(double)(0)) )
    4195             :     {
    4196           0 :         result = -ae_maxrealnumber;
    4197           0 :         return result;
    4198             :     }
    4199           0 :     if( ae_fp_greater_eq(y0,(double)(1)) )
    4200             :     {
    4201           0 :         result = ae_maxrealnumber;
    4202           0 :         return result;
    4203             :     }
    4204           0 :     code = 1;
    4205           0 :     y = y0;
    4206           0 :     if( ae_fp_greater(y,1.0-expm2) )
    4207             :     {
    4208           0 :         y = 1.0-y;
    4209           0 :         code = 0;
    4210             :     }
    4211           0 :     if( ae_fp_greater(y,expm2) )
    4212             :     {
    4213           0 :         y = y-0.5;
    4214           0 :         y2 = y*y;
    4215           0 :         p0 = -59.9633501014107895267;
    4216           0 :         p0 = 98.0010754185999661536+y2*p0;
    4217           0 :         p0 = -56.6762857469070293439+y2*p0;
    4218           0 :         p0 = 13.9312609387279679503+y2*p0;
    4219           0 :         p0 = -1.23916583867381258016+y2*p0;
    4220           0 :         q0 = (double)(1);
    4221           0 :         q0 = 1.95448858338141759834+y2*q0;
    4222           0 :         q0 = 4.67627912898881538453+y2*q0;
    4223           0 :         q0 = 86.3602421390890590575+y2*q0;
    4224           0 :         q0 = -225.462687854119370527+y2*q0;
    4225           0 :         q0 = 200.260212380060660359+y2*q0;
    4226           0 :         q0 = -82.0372256168333339912+y2*q0;
    4227           0 :         q0 = 15.9056225126211695515+y2*q0;
    4228           0 :         q0 = -1.18331621121330003142+y2*q0;
    4229           0 :         x = y+y*y2*p0/q0;
    4230           0 :         x = x*s2pi;
    4231           0 :         result = x;
    4232           0 :         return result;
    4233             :     }
    4234           0 :     x = ae_sqrt(-2.0*ae_log(y, _state), _state);
    4235           0 :     x0 = x-ae_log(x, _state)/x;
    4236           0 :     z = 1.0/x;
    4237           0 :     if( ae_fp_less(x,8.0) )
    4238             :     {
    4239           0 :         p1 = 4.05544892305962419923;
    4240           0 :         p1 = 31.5251094599893866154+z*p1;
    4241           0 :         p1 = 57.1628192246421288162+z*p1;
    4242           0 :         p1 = 44.0805073893200834700+z*p1;
    4243           0 :         p1 = 14.6849561928858024014+z*p1;
    4244           0 :         p1 = 2.18663306850790267539+z*p1;
    4245           0 :         p1 = -1.40256079171354495875*0.1+z*p1;
    4246           0 :         p1 = -3.50424626827848203418*0.01+z*p1;
    4247           0 :         p1 = -8.57456785154685413611*0.0001+z*p1;
    4248           0 :         q1 = (double)(1);
    4249           0 :         q1 = 15.7799883256466749731+z*q1;
    4250           0 :         q1 = 45.3907635128879210584+z*q1;
    4251           0 :         q1 = 41.3172038254672030440+z*q1;
    4252           0 :         q1 = 15.0425385692907503408+z*q1;
    4253           0 :         q1 = 2.50464946208309415979+z*q1;
    4254           0 :         q1 = -1.42182922854787788574*0.1+z*q1;
    4255           0 :         q1 = -3.80806407691578277194*0.01+z*q1;
    4256           0 :         q1 = -9.33259480895457427372*0.0001+z*q1;
    4257           0 :         x1 = z*p1/q1;
    4258             :     }
    4259             :     else
    4260             :     {
    4261           0 :         p2 = 3.23774891776946035970;
    4262           0 :         p2 = 6.91522889068984211695+z*p2;
    4263           0 :         p2 = 3.93881025292474443415+z*p2;
    4264           0 :         p2 = 1.33303460815807542389+z*p2;
    4265           0 :         p2 = 2.01485389549179081538*0.1+z*p2;
    4266           0 :         p2 = 1.23716634817820021358*0.01+z*p2;
    4267           0 :         p2 = 3.01581553508235416007*0.0001+z*p2;
    4268           0 :         p2 = 2.65806974686737550832*0.000001+z*p2;
    4269           0 :         p2 = 6.23974539184983293730*0.000000001+z*p2;
    4270           0 :         q2 = (double)(1);
    4271           0 :         q2 = 6.02427039364742014255+z*q2;
    4272           0 :         q2 = 3.67983563856160859403+z*q2;
    4273           0 :         q2 = 1.37702099489081330271+z*q2;
    4274           0 :         q2 = 2.16236993594496635890*0.1+z*q2;
    4275           0 :         q2 = 1.34204006088543189037*0.01+z*q2;
    4276           0 :         q2 = 3.28014464682127739104*0.0001+z*q2;
    4277           0 :         q2 = 2.89247864745380683936*0.000001+z*q2;
    4278           0 :         q2 = 6.79019408009981274425*0.000000001+z*q2;
    4279           0 :         x1 = z*p2/q2;
    4280             :     }
    4281           0 :     x = x0-x1;
    4282           0 :     if( code!=0 )
    4283             :     {
    4284           0 :         x = -x;
    4285             :     }
    4286           0 :     result = x;
    4287           0 :     return result;
    4288             : }
    4289             : 
    4290             : 
    4291             : /*************************************************************************
    4292             : Bivariate normal PDF
    4293             : 
    4294             : Returns probability density function of the bivariate  Gaussian  with
    4295             : correlation parameter equal to Rho:
    4296             : 
    4297             :                          1              (    x^2 - 2*rho*x*y + y^2  )
    4298             :     f(x,y,rho) = ----------------- * exp( - ----------------------- )
    4299             :                  2pi*sqrt(1-rho^2)      (        2*(1-rho^2)        )
    4300             : 
    4301             : 
    4302             : with -1<rho<+1 and arbitrary x, y.
    4303             : 
    4304             : This function won't fail as long as Rho is in (-1,+1) range.
    4305             : 
    4306             :   -- ALGLIB --
    4307             :      Copyright 15.11.2019 by Bochkanov Sergey
    4308             : *************************************************************************/
    4309           0 : double bivariatenormalpdf(double x,
    4310             :      double y,
    4311             :      double rho,
    4312             :      ae_state *_state)
    4313             : {
    4314             :     double onerho2;
    4315             :     double result;
    4316             : 
    4317             : 
    4318           0 :     ae_assert(ae_isfinite(x, _state), "BivariateNormalCDF: X is infinite", _state);
    4319           0 :     ae_assert(ae_isfinite(y, _state), "BivariateNormalCDF: Y is infinite", _state);
    4320           0 :     ae_assert(ae_isfinite(rho, _state), "BivariateNormalCDF: Rho is infinite", _state);
    4321           0 :     ae_assert(ae_fp_less((double)(-1),rho)&&ae_fp_less(rho,(double)(1)), "BivariateNormalCDF: Rho is not in (-1,+1) range", _state);
    4322           0 :     onerho2 = (1-rho)*(1+rho);
    4323           0 :     result = ae_exp(-(x*x+y*y-2*rho*x*y)/(2*onerho2), _state)/(2*ae_pi*ae_sqrt(onerho2, _state));
    4324           0 :     return result;
    4325             : }
    4326             : 
    4327             : 
    4328             : /*************************************************************************
    4329             : Bivariate normal CDF
    4330             : 
    4331             : Returns the area under the bivariate Gaussian  PDF  with  correlation
    4332             : parameter equal to Rho, integrated from minus infinity to (x,y):
    4333             : 
    4334             : 
    4335             :                                           x      y
    4336             :                                           -      -  
    4337             :                             1            | |    | | 
    4338             :     bvn(x,y,rho) = -------------------   |      |   f(u,v,rho)*du*dv
    4339             :                     2pi*sqrt(1-rho^2)  | |    | |    
    4340             :                                         -      -
    4341             :                                        -INF   -INF
    4342             : 
    4343             :                                        
    4344             : where
    4345             : 
    4346             :                       (    u^2 - 2*rho*u*v + v^2  )
    4347             :     f(u,v,rho)   = exp( - ----------------------- )
    4348             :                       (        2*(1-rho^2)        )
    4349             : 
    4350             : 
    4351             : with -1<rho<+1 and arbitrary x, y.
    4352             : 
    4353             : This subroutine uses high-precision approximation scheme proposed  by
    4354             : Alan Genz in "Numerical  Computation  of  Rectangular  Bivariate  and
    4355             : Trivariate Normal and  t  probabilities",  which  computes  CDF  with
    4356             : absolute error roughly equal to 1e-14.
    4357             : 
    4358             : This function won't fail as long as Rho is in (-1,+1) range.
    4359             : 
    4360             :   -- ALGLIB --
    4361             :      Copyright 15.11.2019 by Bochkanov Sergey
    4362             : *************************************************************************/
    4363           0 : double bivariatenormalcdf(double x,
    4364             :      double y,
    4365             :      double rho,
    4366             :      ae_state *_state)
    4367             : {
    4368             :     double rangea;
    4369             :     double rangeb;
    4370             :     double s;
    4371             :     double v;
    4372             :     double v0;
    4373             :     double v1;
    4374             :     double fxys;
    4375             :     double ta;
    4376             :     double tb;
    4377             :     double tc;
    4378             :     double result;
    4379             : 
    4380             : 
    4381           0 :     ae_assert(ae_isfinite(x, _state), "BivariateNormalCDF: X is infinite", _state);
    4382           0 :     ae_assert(ae_isfinite(y, _state), "BivariateNormalCDF: Y is infinite", _state);
    4383           0 :     ae_assert(ae_isfinite(rho, _state), "BivariateNormalCDF: Rho is infinite", _state);
    4384           0 :     ae_assert(ae_fp_less((double)(-1),rho)&&ae_fp_less(rho,(double)(1)), "BivariateNormalCDF: Rho is not in (-1,+1) range", _state);
    4385           0 :     if( ae_fp_eq(rho,(double)(0)) )
    4386             :     {
    4387           0 :         result = normalcdf(x, _state)*normalcdf(y, _state);
    4388           0 :         return result;
    4389             :     }
    4390           0 :     if( ae_fp_less_eq(ae_fabs(rho, _state),0.8) )
    4391             :     {
    4392             :         
    4393             :         /*
    4394             :          * Rho is small, compute integral using using formula (3) by Alan Genz, integrated
    4395             :          * by means of 10-point Gauss-Legendre quadrature
    4396             :          */
    4397           0 :         rangea = (double)(0);
    4398           0 :         rangeb = ae_asin(rho, _state);
    4399           0 :         v = (double)(0);
    4400           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.2491470458134028, -0.1252334085114689, _state);
    4401           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.2491470458134028, 0.1252334085114689, _state);
    4402           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.2334925365383548, -0.3678314989981802, _state);
    4403           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.2334925365383548, 0.3678314989981802, _state);
    4404           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.2031674267230659, -0.5873179542866175, _state);
    4405           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.2031674267230659, 0.5873179542866175, _state);
    4406           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.1600783285433462, -0.7699026741943047, _state);
    4407           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.1600783285433462, 0.7699026741943047, _state);
    4408           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.1069393259953184, -0.9041172563704749, _state);
    4409           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.1069393259953184, 0.9041172563704749, _state);
    4410           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.0471753363865118, -0.9815606342467192, _state);
    4411           0 :         v = v+normaldistr_bvnintegrate3(rangea, rangeb, x, y, 0.0471753363865118, 0.9815606342467192, _state);
    4412           0 :         v = v*0.5*(rangeb-rangea)/(2*ae_pi);
    4413           0 :         result = normalcdf(x, _state)*normalcdf(y, _state)+v;
    4414             :     }
    4415             :     else
    4416             :     {
    4417             :         
    4418             :         /*
    4419             :          * Rho is large, compute integral using using formula (6) by Alan Genz, integrated
    4420             :          * by means of 20-point Gauss-Legendre quadrature.
    4421             :          */
    4422           0 :         x = -x;
    4423           0 :         y = -y;
    4424           0 :         s = (double)(ae_sign(rho, _state));
    4425           0 :         if( ae_fp_greater(s,(double)(0)) )
    4426             :         {
    4427           0 :             fxys = normalcdf(-ae_maxreal(x, y, _state), _state);
    4428             :         }
    4429             :         else
    4430             :         {
    4431           0 :             fxys = ae_maxreal(0.0, normalcdf(-x, _state)-normalcdf(y, _state), _state);
    4432             :         }
    4433           0 :         rangea = (double)(0);
    4434           0 :         rangeb = ae_sqrt((1-rho)*(1+rho), _state);
    4435             :         
    4436             :         /*
    4437             :          * Compute first term (analytic integral) from formula (6)
    4438             :          */
    4439           0 :         ta = rangeb;
    4440           0 :         tb = ae_fabs(x-s*y, _state);
    4441           0 :         tc = (4-s*x*y)/8;
    4442           0 :         v0 = ta*(1-tc*(tb*tb-ta*ta)/3)*ae_exp(-tb*tb/(2*ta*ta), _state)-tb*(1-tc*tb*tb/3)*ae_sqrt(2*ae_pi, _state)*normalcdf(-tb/ta, _state);
    4443           0 :         v0 = v0*ae_exp(-s*x*y/2, _state)/(2*ae_pi);
    4444             :         
    4445             :         /*
    4446             :          * Compute second term (numerical integral, 20-point Gauss-Legendre rule) from formula (6)
    4447             :          */
    4448           0 :         v1 = (double)(0);
    4449           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1527533871307258, -0.0765265211334973, _state);
    4450           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1527533871307258, 0.0765265211334973, _state);
    4451           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1491729864726037, -0.2277858511416451, _state);
    4452           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1491729864726037, 0.2277858511416451, _state);
    4453           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1420961093183820, -0.3737060887154195, _state);
    4454           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1420961093183820, 0.3737060887154195, _state);
    4455           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1316886384491766, -0.5108670019508271, _state);
    4456           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1316886384491766, 0.5108670019508271, _state);
    4457           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1181945319615184, -0.6360536807265150, _state);
    4458           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1181945319615184, 0.6360536807265150, _state);
    4459           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1019301198172404, -0.7463319064601508, _state);
    4460           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.1019301198172404, 0.7463319064601508, _state);
    4461           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0832767415767048, -0.8391169718222188, _state);
    4462           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0832767415767048, 0.8391169718222188, _state);
    4463           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0626720483341091, -0.9122344282513259, _state);
    4464           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0626720483341091, 0.9122344282513259, _state);
    4465           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0406014298003869, -0.9639719272779138, _state);
    4466           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0406014298003869, 0.9639719272779138, _state);
    4467           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0176140071391521, -0.9931285991850949, _state);
    4468           0 :         v1 = v1+normaldistr_bvnintegrate6(rangea, rangeb, x, y, s, 0.0176140071391521, 0.9931285991850949, _state);
    4469           0 :         v1 = v1*0.5*(rangeb-rangea)/(2*ae_pi);
    4470           0 :         result = fxys-s*(v0+v1);
    4471             :     }
    4472           0 :     result = ae_maxreal(result, (double)(0), _state);
    4473           0 :     result = ae_minreal(result, (double)(1), _state);
    4474           0 :     return result;
    4475             : }
    4476             : 
    4477             : 
    4478             : /*************************************************************************
    4479             : Internal function which computes integrand of  formula  (3)  by  Alan
    4480             : Genz times Gaussian weights (passed by user).
    4481             : 
    4482             :   -- ALGLIB --
    4483             :      Copyright 15.11.2019 by Bochkanov Sergey
    4484             : *************************************************************************/
    4485           0 : static double normaldistr_bvnintegrate3(double rangea,
    4486             :      double rangeb,
    4487             :      double x,
    4488             :      double y,
    4489             :      double gw,
    4490             :      double gx,
    4491             :      ae_state *_state)
    4492             : {
    4493             :     double r;
    4494             :     double t2;
    4495             :     double dd;
    4496             :     double sinr;
    4497             :     double cosr;
    4498             :     double result;
    4499             : 
    4500             : 
    4501           0 :     r = (rangeb-rangea)*0.5*gx+(rangeb+rangea)*0.5;
    4502           0 :     t2 = ae_tan(0.5*r, _state);
    4503           0 :     dd = 1/(1+t2*t2);
    4504           0 :     sinr = 2*t2*dd;
    4505           0 :     cosr = (1-t2*t2)*dd;
    4506           0 :     result = gw*ae_exp(-(x*x+y*y-2*x*y*sinr)/(2*cosr*cosr), _state);
    4507           0 :     return result;
    4508             : }
    4509             : 
    4510             : 
    4511             : /*************************************************************************
    4512             : Internal function which computes integrand of  formula  (6)  by  Alan
    4513             : Genz times Gaussian weights (passed by user).
    4514             : 
    4515             :   -- ALGLIB --
    4516             :      Copyright 15.11.2019 by Bochkanov Sergey
    4517             : *************************************************************************/
    4518           0 : static double normaldistr_bvnintegrate6(double rangea,
    4519             :      double rangeb,
    4520             :      double x,
    4521             :      double y,
    4522             :      double s,
    4523             :      double gw,
    4524             :      double gx,
    4525             :      ae_state *_state)
    4526             : {
    4527             :     double r;
    4528             :     double exphsk22x2;
    4529             :     double exphsk2;
    4530             :     double sqrt1x2;
    4531             :     double exphsk1sqrt1x2;
    4532             :     double result;
    4533             : 
    4534             : 
    4535           0 :     r = (rangeb-rangea)*0.5*gx+(rangeb+rangea)*0.5;
    4536           0 :     exphsk22x2 = ae_exp(-(x-s*y)*(x-s*y)/(2*r*r), _state);
    4537           0 :     exphsk2 = ae_exp(-x*s*y/2, _state);
    4538           0 :     sqrt1x2 = ae_sqrt((1-r)*(1+r), _state);
    4539           0 :     exphsk1sqrt1x2 = ae_exp(-x*s*y/(1+sqrt1x2), _state);
    4540           0 :     result = gw*exphsk22x2*(exphsk1sqrt1x2/sqrt1x2-exphsk2*(1+(4-x*y*s)*r*r/8));
    4541           0 :     return result;
    4542             : }
    4543             : 
    4544             : 
    4545             : #endif
    4546             : #if defined(AE_COMPILE_IGAMMAF) || !defined(AE_PARTIAL_BUILD)
    4547             : 
    4548             : 
    4549             : /*************************************************************************
    4550             : Incomplete gamma integral
    4551             : 
    4552             : The function is defined by
    4553             : 
    4554             :                           x
    4555             :                            -
    4556             :                   1       | |  -t  a-1
    4557             :  igam(a,x)  =   -----     |   e   t   dt.
    4558             :                  -      | |
    4559             :                 | (a)    -
    4560             :                           0
    4561             : 
    4562             : 
    4563             : In this implementation both arguments must be positive.
    4564             : The integral is evaluated by either a power series or
    4565             : continued fraction expansion, depending on the relative
    4566             : values of a and x.
    4567             : 
    4568             : ACCURACY:
    4569             : 
    4570             :                      Relative error:
    4571             : arithmetic   domain     # trials      peak         rms
    4572             :    IEEE      0,30       200000       3.6e-14     2.9e-15
    4573             :    IEEE      0,100      300000       9.9e-14     1.5e-14
    4574             : 
    4575             : Cephes Math Library Release 2.8:  June, 2000
    4576             : Copyright 1985, 1987, 2000 by Stephen L. Moshier
    4577             : *************************************************************************/
    4578           0 : double incompletegamma(double a, double x, ae_state *_state)
    4579             : {
    4580             :     double igammaepsilon;
    4581             :     double ans;
    4582             :     double ax;
    4583             :     double c;
    4584             :     double r;
    4585             :     double tmp;
    4586             :     double result;
    4587             : 
    4588             : 
    4589           0 :     igammaepsilon = 0.000000000000001;
    4590           0 :     if( ae_fp_less_eq(x,(double)(0))||ae_fp_less_eq(a,(double)(0)) )
    4591             :     {
    4592           0 :         result = (double)(0);
    4593           0 :         return result;
    4594             :     }
    4595           0 :     if( ae_fp_greater(x,(double)(1))&&ae_fp_greater(x,a) )
    4596             :     {
    4597           0 :         result = 1-incompletegammac(a, x, _state);
    4598           0 :         return result;
    4599             :     }
    4600           0 :     ax = a*ae_log(x, _state)-x-lngamma(a, &tmp, _state);
    4601           0 :     if( ae_fp_less(ax,-709.78271289338399) )
    4602             :     {
    4603           0 :         result = (double)(0);
    4604           0 :         return result;
    4605             :     }
    4606           0 :     ax = ae_exp(ax, _state);
    4607           0 :     r = a;
    4608           0 :     c = (double)(1);
    4609           0 :     ans = (double)(1);
    4610             :     do
    4611             :     {
    4612           0 :         r = r+1;
    4613           0 :         c = c*x/r;
    4614           0 :         ans = ans+c;
    4615             :     }
    4616           0 :     while(ae_fp_greater(c/ans,igammaepsilon));
    4617           0 :     result = ans*ax/a;
    4618           0 :     return result;
    4619             : }
    4620             : 
    4621             : 
    4622             : /*************************************************************************
    4623             : Complemented incomplete gamma integral
    4624             : 
    4625             : The function is defined by
    4626             : 
    4627             : 
    4628             :  igamc(a,x)   =   1 - igam(a,x)
    4629             : 
    4630             :                            inf.
    4631             :                              -
    4632             :                     1       | |  -t  a-1
    4633             :               =   -----     |   e   t   dt.
    4634             :                    -      | |
    4635             :                   | (a)    -
    4636             :                             x
    4637             : 
    4638             : 
    4639             : In this implementation both arguments must be positive.
    4640             : The integral is evaluated by either a power series or
    4641             : continued fraction expansion, depending on the relative
    4642             : values of a and x.
    4643             : 
    4644             : ACCURACY:
    4645             : 
    4646             : Tested at random a, x.
    4647             :                a         x                      Relative error:
    4648             : arithmetic   domain   domain     # trials      peak         rms
    4649             :    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15
    4650             :    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15
    4651             : 
    4652             : Cephes Math Library Release 2.8:  June, 2000
    4653             : Copyright 1985, 1987, 2000 by Stephen L. Moshier
    4654             : *************************************************************************/
    4655           0 : double incompletegammac(double a, double x, ae_state *_state)
    4656             : {
    4657             :     double igammaepsilon;
    4658             :     double igammabignumber;
    4659             :     double igammabignumberinv;
    4660             :     double ans;
    4661             :     double ax;
    4662             :     double c;
    4663             :     double yc;
    4664             :     double r;
    4665             :     double t;
    4666             :     double y;
    4667             :     double z;
    4668             :     double pk;
    4669             :     double pkm1;
    4670             :     double pkm2;
    4671             :     double qk;
    4672             :     double qkm1;
    4673             :     double qkm2;
    4674             :     double tmp;
    4675             :     double result;
    4676             : 
    4677             : 
    4678           0 :     igammaepsilon = 0.000000000000001;
    4679           0 :     igammabignumber = 4503599627370496.0;
    4680           0 :     igammabignumberinv = 2.22044604925031308085*0.0000000000000001;
    4681           0 :     if( ae_fp_less_eq(x,(double)(0))||ae_fp_less_eq(a,(double)(0)) )
    4682             :     {
    4683           0 :         result = (double)(1);
    4684           0 :         return result;
    4685             :     }
    4686           0 :     if( ae_fp_less(x,(double)(1))||ae_fp_less(x,a) )
    4687             :     {
    4688           0 :         result = 1-incompletegamma(a, x, _state);
    4689           0 :         return result;
    4690             :     }
    4691           0 :     ax = a*ae_log(x, _state)-x-lngamma(a, &tmp, _state);
    4692           0 :     if( ae_fp_less(ax,-709.78271289338399) )
    4693             :     {
    4694           0 :         result = (double)(0);
    4695           0 :         return result;
    4696             :     }
    4697           0 :     ax = ae_exp(ax, _state);
    4698           0 :     y = 1-a;
    4699           0 :     z = x+y+1;
    4700           0 :     c = (double)(0);
    4701           0 :     pkm2 = (double)(1);
    4702           0 :     qkm2 = x;
    4703           0 :     pkm1 = x+1;
    4704           0 :     qkm1 = z*x;
    4705           0 :     ans = pkm1/qkm1;
    4706             :     do
    4707             :     {
    4708           0 :         c = c+1;
    4709           0 :         y = y+1;
    4710           0 :         z = z+2;
    4711           0 :         yc = y*c;
    4712           0 :         pk = pkm1*z-pkm2*yc;
    4713           0 :         qk = qkm1*z-qkm2*yc;
    4714           0 :         if( ae_fp_neq(qk,(double)(0)) )
    4715             :         {
    4716           0 :             r = pk/qk;
    4717           0 :             t = ae_fabs((ans-r)/r, _state);
    4718           0 :             ans = r;
    4719             :         }
    4720             :         else
    4721             :         {
    4722           0 :             t = (double)(1);
    4723             :         }
    4724           0 :         pkm2 = pkm1;
    4725           0 :         pkm1 = pk;
    4726           0 :         qkm2 = qkm1;
    4727           0 :         qkm1 = qk;
    4728           0 :         if( ae_fp_greater(ae_fabs(pk, _state),igammabignumber) )
    4729             :         {
    4730           0 :             pkm2 = pkm2*igammabignumberinv;
    4731           0 :             pkm1 = pkm1*igammabignumberinv;
    4732           0 :             qkm2 = qkm2*igammabignumberinv;
    4733           0 :             qkm1 = qkm1*igammabignumberinv;
    4734             :         }
    4735             :     }
    4736           0 :     while(ae_fp_greater(t,igammaepsilon));
    4737           0 :     result = ans*ax;
    4738           0 :     return result;
    4739             : }
    4740             : 
    4741             : 
    4742             : /*************************************************************************
    4743             : Inverse of complemented imcomplete gamma integral
    4744             : 
    4745             : Given p, the function finds x such that
    4746             : 
    4747             :  igamc( a, x ) = p.
    4748             : 
    4749             : Starting with the approximate value
    4750             : 
    4751             :         3
    4752             :  x = a t
    4753             : 
    4754             :  where
    4755             : 
    4756             :  t = 1 - d - ndtri(p) sqrt(d)
    4757             : 
    4758             : and
    4759             : 
    4760             :  d = 1/9a,
    4761             : 
    4762             : the routine performs up to 10 Newton iterations to find the
    4763             : root of igamc(a,x) - p = 0.
    4764             : 
    4765             : ACCURACY:
    4766             : 
    4767             : Tested at random a, p in the intervals indicated.
    4768             : 
    4769             :                a        p                      Relative error:
    4770             : arithmetic   domain   domain     # trials      peak         rms
    4771             :    IEEE     0.5,100   0,0.5       100000       1.0e-14     1.7e-15
    4772             :    IEEE     0.01,0.5  0,0.5       100000       9.0e-14     3.4e-15
    4773             :    IEEE    0.5,10000  0,0.5        20000       2.3e-13     3.8e-14
    4774             : 
    4775             : Cephes Math Library Release 2.8:  June, 2000
    4776             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    4777             : *************************************************************************/
    4778           0 : double invincompletegammac(double a, double y0, ae_state *_state)
    4779             : {
    4780             :     double igammaepsilon;
    4781             :     double iinvgammabignumber;
    4782             :     double x0;
    4783             :     double x1;
    4784             :     double x;
    4785             :     double yl;
    4786             :     double yh;
    4787             :     double y;
    4788             :     double d;
    4789             :     double lgm;
    4790             :     double dithresh;
    4791             :     ae_int_t i;
    4792             :     ae_int_t dir;
    4793             :     double tmp;
    4794             :     double result;
    4795             : 
    4796             : 
    4797           0 :     igammaepsilon = 0.000000000000001;
    4798           0 :     iinvgammabignumber = 4503599627370496.0;
    4799           0 :     x0 = iinvgammabignumber;
    4800           0 :     yl = (double)(0);
    4801           0 :     x1 = (double)(0);
    4802           0 :     yh = (double)(1);
    4803           0 :     dithresh = 5*igammaepsilon;
    4804           0 :     d = 1/(9*a);
    4805           0 :     y = 1-d-invnormaldistribution(y0, _state)*ae_sqrt(d, _state);
    4806           0 :     x = a*y*y*y;
    4807           0 :     lgm = lngamma(a, &tmp, _state);
    4808           0 :     i = 0;
    4809           0 :     while(i<10)
    4810             :     {
    4811           0 :         if( ae_fp_greater(x,x0)||ae_fp_less(x,x1) )
    4812             :         {
    4813           0 :             d = 0.0625;
    4814           0 :             break;
    4815             :         }
    4816           0 :         y = incompletegammac(a, x, _state);
    4817           0 :         if( ae_fp_less(y,yl)||ae_fp_greater(y,yh) )
    4818             :         {
    4819           0 :             d = 0.0625;
    4820           0 :             break;
    4821             :         }
    4822           0 :         if( ae_fp_less(y,y0) )
    4823             :         {
    4824           0 :             x0 = x;
    4825           0 :             yl = y;
    4826             :         }
    4827             :         else
    4828             :         {
    4829           0 :             x1 = x;
    4830           0 :             yh = y;
    4831             :         }
    4832           0 :         d = (a-1)*ae_log(x, _state)-x-lgm;
    4833           0 :         if( ae_fp_less(d,-709.78271289338399) )
    4834             :         {
    4835           0 :             d = 0.0625;
    4836           0 :             break;
    4837             :         }
    4838           0 :         d = -ae_exp(d, _state);
    4839           0 :         d = (y-y0)/d;
    4840           0 :         if( ae_fp_less(ae_fabs(d/x, _state),igammaepsilon) )
    4841             :         {
    4842           0 :             result = x;
    4843           0 :             return result;
    4844             :         }
    4845           0 :         x = x-d;
    4846           0 :         i = i+1;
    4847             :     }
    4848           0 :     if( ae_fp_eq(x0,iinvgammabignumber) )
    4849             :     {
    4850           0 :         if( ae_fp_less_eq(x,(double)(0)) )
    4851             :         {
    4852           0 :             x = (double)(1);
    4853             :         }
    4854           0 :         while(ae_fp_eq(x0,iinvgammabignumber))
    4855             :         {
    4856           0 :             x = (1+d)*x;
    4857           0 :             y = incompletegammac(a, x, _state);
    4858           0 :             if( ae_fp_less(y,y0) )
    4859             :             {
    4860           0 :                 x0 = x;
    4861           0 :                 yl = y;
    4862           0 :                 break;
    4863             :             }
    4864           0 :             d = d+d;
    4865             :         }
    4866             :     }
    4867           0 :     d = 0.5;
    4868           0 :     dir = 0;
    4869           0 :     i = 0;
    4870           0 :     while(i<400)
    4871             :     {
    4872           0 :         x = x1+d*(x0-x1);
    4873           0 :         y = incompletegammac(a, x, _state);
    4874           0 :         lgm = (x0-x1)/(x1+x0);
    4875           0 :         if( ae_fp_less(ae_fabs(lgm, _state),dithresh) )
    4876             :         {
    4877           0 :             break;
    4878             :         }
    4879           0 :         lgm = (y-y0)/y0;
    4880           0 :         if( ae_fp_less(ae_fabs(lgm, _state),dithresh) )
    4881             :         {
    4882           0 :             break;
    4883             :         }
    4884           0 :         if( ae_fp_less_eq(x,0.0) )
    4885             :         {
    4886           0 :             break;
    4887             :         }
    4888           0 :         if( ae_fp_greater_eq(y,y0) )
    4889             :         {
    4890           0 :             x1 = x;
    4891           0 :             yh = y;
    4892           0 :             if( dir<0 )
    4893             :             {
    4894           0 :                 dir = 0;
    4895           0 :                 d = 0.5;
    4896             :             }
    4897             :             else
    4898             :             {
    4899           0 :                 if( dir>1 )
    4900             :                 {
    4901           0 :                     d = 0.5*d+0.5;
    4902             :                 }
    4903             :                 else
    4904             :                 {
    4905           0 :                     d = (y0-yl)/(yh-yl);
    4906             :                 }
    4907             :             }
    4908           0 :             dir = dir+1;
    4909             :         }
    4910             :         else
    4911             :         {
    4912           0 :             x0 = x;
    4913           0 :             yl = y;
    4914           0 :             if( dir>0 )
    4915             :             {
    4916           0 :                 dir = 0;
    4917           0 :                 d = 0.5;
    4918             :             }
    4919             :             else
    4920             :             {
    4921           0 :                 if( dir<-1 )
    4922             :                 {
    4923           0 :                     d = 0.5*d;
    4924             :                 }
    4925             :                 else
    4926             :                 {
    4927           0 :                     d = (y0-yl)/(yh-yl);
    4928             :                 }
    4929             :             }
    4930           0 :             dir = dir-1;
    4931             :         }
    4932           0 :         i = i+1;
    4933             :     }
    4934           0 :     result = x;
    4935           0 :     return result;
    4936             : }
    4937             : 
    4938             : 
    4939             : #endif
    4940             : #if defined(AE_COMPILE_ELLIPTIC) || !defined(AE_PARTIAL_BUILD)
    4941             : 
    4942             : 
    4943             : /*************************************************************************
    4944             : Complete elliptic integral of the first kind
    4945             : 
    4946             : Approximates the integral
    4947             : 
    4948             : 
    4949             : 
    4950             :            pi/2
    4951             :             -
    4952             :            | |
    4953             :            |           dt
    4954             : K(m)  =    |    ------------------
    4955             :            |                   2
    4956             :          | |    sqrt( 1 - m sin t )
    4957             :           -
    4958             :            0
    4959             : 
    4960             : using the approximation
    4961             : 
    4962             :     P(x)  -  log x Q(x).
    4963             : 
    4964             : ACCURACY:
    4965             : 
    4966             :                      Relative error:
    4967             : arithmetic   domain     # trials      peak         rms
    4968             :    IEEE       0,1        30000       2.5e-16     6.8e-17
    4969             : 
    4970             : Cephes Math Library, Release 2.8:  June, 2000
    4971             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    4972             : *************************************************************************/
    4973           0 : double ellipticintegralk(double m, ae_state *_state)
    4974             : {
    4975             :     double result;
    4976             : 
    4977             : 
    4978           0 :     result = ellipticintegralkhighprecision(1.0-m, _state);
    4979           0 :     return result;
    4980             : }
    4981             : 
    4982             : 
    4983             : /*************************************************************************
    4984             : Complete elliptic integral of the first kind
    4985             : 
    4986             : Approximates the integral
    4987             : 
    4988             : 
    4989             : 
    4990             :            pi/2
    4991             :             -
    4992             :            | |
    4993             :            |           dt
    4994             : K(m)  =    |    ------------------
    4995             :            |                   2
    4996             :          | |    sqrt( 1 - m sin t )
    4997             :           -
    4998             :            0
    4999             : 
    5000             : where m = 1 - m1, using the approximation
    5001             : 
    5002             :     P(x)  -  log x Q(x).
    5003             : 
    5004             : The argument m1 is used rather than m so that the logarithmic
    5005             : singularity at m = 1 will be shifted to the origin; this
    5006             : preserves maximum accuracy.
    5007             : 
    5008             : K(0) = pi/2.
    5009             : 
    5010             : ACCURACY:
    5011             : 
    5012             :                      Relative error:
    5013             : arithmetic   domain     # trials      peak         rms
    5014             :    IEEE       0,1        30000       2.5e-16     6.8e-17
    5015             : 
    5016             : Cephes Math Library, Release 2.8:  June, 2000
    5017             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    5018             : *************************************************************************/
    5019           0 : double ellipticintegralkhighprecision(double m1, ae_state *_state)
    5020             : {
    5021             :     double p;
    5022             :     double q;
    5023             :     double result;
    5024             : 
    5025             : 
    5026           0 :     if( ae_fp_less_eq(m1,ae_machineepsilon) )
    5027             :     {
    5028           0 :         result = 1.3862943611198906188E0-0.5*ae_log(m1, _state);
    5029             :     }
    5030             :     else
    5031             :     {
    5032           0 :         p = 1.37982864606273237150E-4;
    5033           0 :         p = p*m1+2.28025724005875567385E-3;
    5034           0 :         p = p*m1+7.97404013220415179367E-3;
    5035           0 :         p = p*m1+9.85821379021226008714E-3;
    5036           0 :         p = p*m1+6.87489687449949877925E-3;
    5037           0 :         p = p*m1+6.18901033637687613229E-3;
    5038           0 :         p = p*m1+8.79078273952743772254E-3;
    5039           0 :         p = p*m1+1.49380448916805252718E-2;
    5040           0 :         p = p*m1+3.08851465246711995998E-2;
    5041           0 :         p = p*m1+9.65735902811690126535E-2;
    5042           0 :         p = p*m1+1.38629436111989062502E0;
    5043           0 :         q = 2.94078955048598507511E-5;
    5044           0 :         q = q*m1+9.14184723865917226571E-4;
    5045           0 :         q = q*m1+5.94058303753167793257E-3;
    5046           0 :         q = q*m1+1.54850516649762399335E-2;
    5047           0 :         q = q*m1+2.39089602715924892727E-2;
    5048           0 :         q = q*m1+3.01204715227604046988E-2;
    5049           0 :         q = q*m1+3.73774314173823228969E-2;
    5050           0 :         q = q*m1+4.88280347570998239232E-2;
    5051           0 :         q = q*m1+7.03124996963957469739E-2;
    5052           0 :         q = q*m1+1.24999999999870820058E-1;
    5053           0 :         q = q*m1+4.99999999999999999821E-1;
    5054           0 :         result = p-q*ae_log(m1, _state);
    5055             :     }
    5056           0 :     return result;
    5057             : }
    5058             : 
    5059             : 
    5060             : /*************************************************************************
    5061             : Incomplete elliptic integral of the first kind F(phi|m)
    5062             : 
    5063             : Approximates the integral
    5064             : 
    5065             : 
    5066             : 
    5067             :                phi
    5068             :                 -
    5069             :                | |
    5070             :                |           dt
    5071             : F(phi_\m)  =    |    ------------------
    5072             :                |                   2
    5073             :              | |    sqrt( 1 - m sin t )
    5074             :               -
    5075             :                0
    5076             : 
    5077             : of amplitude phi and modulus m, using the arithmetic -
    5078             : geometric mean algorithm.
    5079             : 
    5080             : 
    5081             : 
    5082             : 
    5083             : ACCURACY:
    5084             : 
    5085             : Tested at random points with m in [0, 1] and phi as indicated.
    5086             : 
    5087             :                      Relative error:
    5088             : arithmetic   domain     # trials      peak         rms
    5089             :    IEEE     -10,10       200000      7.4e-16     1.0e-16
    5090             : 
    5091             : Cephes Math Library Release 2.8:  June, 2000
    5092             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    5093             : *************************************************************************/
    5094           0 : double incompleteellipticintegralk(double phi, double m, ae_state *_state)
    5095             : {
    5096             :     double a;
    5097             :     double b;
    5098             :     double c;
    5099             :     double e;
    5100             :     double temp;
    5101             :     double pio2;
    5102             :     double t;
    5103             :     double k;
    5104             :     ae_int_t d;
    5105             :     ae_int_t md;
    5106             :     ae_int_t s;
    5107             :     ae_int_t npio2;
    5108             :     double result;
    5109             : 
    5110             : 
    5111           0 :     pio2 = 1.57079632679489661923;
    5112           0 :     if( ae_fp_eq(m,(double)(0)) )
    5113             :     {
    5114           0 :         result = phi;
    5115           0 :         return result;
    5116             :     }
    5117           0 :     a = 1-m;
    5118           0 :     if( ae_fp_eq(a,(double)(0)) )
    5119             :     {
    5120           0 :         result = ae_log(ae_tan(0.5*(pio2+phi), _state), _state);
    5121           0 :         return result;
    5122             :     }
    5123           0 :     npio2 = ae_ifloor(phi/pio2, _state);
    5124           0 :     if( npio2%2!=0 )
    5125             :     {
    5126           0 :         npio2 = npio2+1;
    5127             :     }
    5128           0 :     if( npio2!=0 )
    5129             :     {
    5130           0 :         k = ellipticintegralk(1-a, _state);
    5131           0 :         phi = phi-npio2*pio2;
    5132             :     }
    5133             :     else
    5134             :     {
    5135           0 :         k = (double)(0);
    5136             :     }
    5137           0 :     if( ae_fp_less(phi,(double)(0)) )
    5138             :     {
    5139           0 :         phi = -phi;
    5140           0 :         s = -1;
    5141             :     }
    5142             :     else
    5143             :     {
    5144           0 :         s = 0;
    5145             :     }
    5146           0 :     b = ae_sqrt(a, _state);
    5147           0 :     t = ae_tan(phi, _state);
    5148           0 :     if( ae_fp_greater(ae_fabs(t, _state),(double)(10)) )
    5149             :     {
    5150           0 :         e = 1.0/(b*t);
    5151           0 :         if( ae_fp_less(ae_fabs(e, _state),(double)(10)) )
    5152             :         {
    5153           0 :             e = ae_atan(e, _state);
    5154           0 :             if( npio2==0 )
    5155             :             {
    5156           0 :                 k = ellipticintegralk(1-a, _state);
    5157             :             }
    5158           0 :             temp = k-incompleteellipticintegralk(e, m, _state);
    5159           0 :             if( s<0 )
    5160             :             {
    5161           0 :                 temp = -temp;
    5162             :             }
    5163           0 :             result = temp+npio2*k;
    5164           0 :             return result;
    5165             :         }
    5166             :     }
    5167           0 :     a = 1.0;
    5168           0 :     c = ae_sqrt(m, _state);
    5169           0 :     d = 1;
    5170           0 :     md = 0;
    5171           0 :     while(ae_fp_greater(ae_fabs(c/a, _state),ae_machineepsilon))
    5172             :     {
    5173           0 :         temp = b/a;
    5174           0 :         phi = phi+ae_atan(t*temp, _state)+md*ae_pi;
    5175           0 :         md = ae_trunc((phi+pio2)/ae_pi, _state);
    5176           0 :         t = t*(1.0+temp)/(1.0-temp*t*t);
    5177           0 :         c = 0.5*(a-b);
    5178           0 :         temp = ae_sqrt(a*b, _state);
    5179           0 :         a = 0.5*(a+b);
    5180           0 :         b = temp;
    5181           0 :         d = d+d;
    5182             :     }
    5183           0 :     temp = (ae_atan(t, _state)+md*ae_pi)/(d*a);
    5184           0 :     if( s<0 )
    5185             :     {
    5186           0 :         temp = -temp;
    5187             :     }
    5188           0 :     result = temp+npio2*k;
    5189           0 :     return result;
    5190             : }
    5191             : 
    5192             : 
    5193             : /*************************************************************************
    5194             : Complete elliptic integral of the second kind
    5195             : 
    5196             : Approximates the integral
    5197             : 
    5198             : 
    5199             :            pi/2
    5200             :             -
    5201             :            | |                 2
    5202             : E(m)  =    |    sqrt( 1 - m sin t ) dt
    5203             :          | |
    5204             :           -
    5205             :            0
    5206             : 
    5207             : using the approximation
    5208             : 
    5209             :      P(x)  -  x log x Q(x).
    5210             : 
    5211             : ACCURACY:
    5212             : 
    5213             :                      Relative error:
    5214             : arithmetic   domain     # trials      peak         rms
    5215             :    IEEE       0, 1       10000       2.1e-16     7.3e-17
    5216             : 
    5217             : Cephes Math Library, Release 2.8: June, 2000
    5218             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    5219             : *************************************************************************/
    5220           0 : double ellipticintegrale(double m, ae_state *_state)
    5221             : {
    5222             :     double p;
    5223             :     double q;
    5224             :     double result;
    5225             : 
    5226             : 
    5227           0 :     ae_assert(ae_fp_greater_eq(m,(double)(0))&&ae_fp_less_eq(m,(double)(1)), "Domain error in EllipticIntegralE: m<0 or m>1", _state);
    5228           0 :     m = 1-m;
    5229           0 :     if( ae_fp_eq(m,(double)(0)) )
    5230             :     {
    5231           0 :         result = (double)(1);
    5232           0 :         return result;
    5233             :     }
    5234           0 :     p = 1.53552577301013293365E-4;
    5235           0 :     p = p*m+2.50888492163602060990E-3;
    5236           0 :     p = p*m+8.68786816565889628429E-3;
    5237           0 :     p = p*m+1.07350949056076193403E-2;
    5238           0 :     p = p*m+7.77395492516787092951E-3;
    5239           0 :     p = p*m+7.58395289413514708519E-3;
    5240           0 :     p = p*m+1.15688436810574127319E-2;
    5241           0 :     p = p*m+2.18317996015557253103E-2;
    5242           0 :     p = p*m+5.68051945617860553470E-2;
    5243           0 :     p = p*m+4.43147180560990850618E-1;
    5244           0 :     p = p*m+1.00000000000000000299E0;
    5245           0 :     q = 3.27954898576485872656E-5;
    5246           0 :     q = q*m+1.00962792679356715133E-3;
    5247           0 :     q = q*m+6.50609489976927491433E-3;
    5248           0 :     q = q*m+1.68862163993311317300E-2;
    5249           0 :     q = q*m+2.61769742454493659583E-2;
    5250           0 :     q = q*m+3.34833904888224918614E-2;
    5251           0 :     q = q*m+4.27180926518931511717E-2;
    5252           0 :     q = q*m+5.85936634471101055642E-2;
    5253           0 :     q = q*m+9.37499997197644278445E-2;
    5254           0 :     q = q*m+2.49999999999888314361E-1;
    5255           0 :     result = p-q*m*ae_log(m, _state);
    5256           0 :     return result;
    5257             : }
    5258             : 
    5259             : 
    5260             : /*************************************************************************
    5261             : Incomplete elliptic integral of the second kind
    5262             : 
    5263             : Approximates the integral
    5264             : 
    5265             : 
    5266             :                phi
    5267             :                 -
    5268             :                | |
    5269             :                |                   2
    5270             : E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
    5271             :                |
    5272             :              | |
    5273             :               -
    5274             :                0
    5275             : 
    5276             : of amplitude phi and modulus m, using the arithmetic -
    5277             : geometric mean algorithm.
    5278             : 
    5279             : ACCURACY:
    5280             : 
    5281             : Tested at random arguments with phi in [-10, 10] and m in
    5282             : [0, 1].
    5283             :                      Relative error:
    5284             : arithmetic   domain     # trials      peak         rms
    5285             :    IEEE     -10,10      150000       3.3e-15     1.4e-16
    5286             : 
    5287             : Cephes Math Library Release 2.8:  June, 2000
    5288             : Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
    5289             : *************************************************************************/
    5290           0 : double incompleteellipticintegrale(double phi, double m, ae_state *_state)
    5291             : {
    5292             :     double pio2;
    5293             :     double a;
    5294             :     double b;
    5295             :     double c;
    5296             :     double e;
    5297             :     double temp;
    5298             :     double lphi;
    5299             :     double t;
    5300             :     double ebig;
    5301             :     ae_int_t d;
    5302             :     ae_int_t md;
    5303             :     ae_int_t npio2;
    5304             :     ae_int_t s;
    5305             :     double result;
    5306             : 
    5307             : 
    5308           0 :     pio2 = 1.57079632679489661923;
    5309           0 :     if( ae_fp_eq(m,(double)(0)) )
    5310             :     {
    5311           0 :         result = phi;
    5312           0 :         return result;
    5313             :     }
    5314           0 :     lphi = phi;
    5315           0 :     npio2 = ae_ifloor(lphi/pio2, _state);
    5316           0 :     if( npio2%2!=0 )
    5317             :     {
    5318           0 :         npio2 = npio2+1;
    5319             :     }
    5320           0 :     lphi = lphi-npio2*pio2;
    5321           0 :     if( ae_fp_less(lphi,(double)(0)) )
    5322             :     {
    5323           0 :         lphi = -lphi;
    5324           0 :         s = -1;
    5325             :     }
    5326             :     else
    5327             :     {
    5328           0 :         s = 1;
    5329             :     }
    5330           0 :     a = 1.0-m;
    5331           0 :     ebig = ellipticintegrale(m, _state);
    5332           0 :     if( ae_fp_eq(a,(double)(0)) )
    5333             :     {
    5334           0 :         temp = ae_sin(lphi, _state);
    5335           0 :         if( s<0 )
    5336             :         {
    5337           0 :             temp = -temp;
    5338             :         }
    5339           0 :         result = temp+npio2*ebig;
    5340           0 :         return result;
    5341             :     }
    5342           0 :     t = ae_tan(lphi, _state);
    5343           0 :     b = ae_sqrt(a, _state);
    5344             :     
    5345             :     /*
    5346             :      * Thanks to Brian Fitzgerald <fitzgb@mml0.meche.rpi.edu>
    5347             :      * for pointing out an instability near odd multiples of pi/2
    5348             :      */
    5349           0 :     if( ae_fp_greater(ae_fabs(t, _state),(double)(10)) )
    5350             :     {
    5351             :         
    5352             :         /*
    5353             :          * Transform the amplitude
    5354             :          */
    5355           0 :         e = 1.0/(b*t);
    5356             :         
    5357             :         /*
    5358             :          * ... but avoid multiple recursions.
    5359             :          */
    5360           0 :         if( ae_fp_less(ae_fabs(e, _state),(double)(10)) )
    5361             :         {
    5362           0 :             e = ae_atan(e, _state);
    5363           0 :             temp = ebig+m*ae_sin(lphi, _state)*ae_sin(e, _state)-incompleteellipticintegrale(e, m, _state);
    5364           0 :             if( s<0 )
    5365             :             {
    5366           0 :                 temp = -temp;
    5367             :             }
    5368           0 :             result = temp+npio2*ebig;
    5369           0 :             return result;
    5370             :         }
    5371             :     }
    5372           0 :     c = ae_sqrt(m, _state);
    5373           0 :     a = 1.0;
    5374           0 :     d = 1;
    5375           0 :     e = 0.0;
    5376           0 :     md = 0;
    5377           0 :     while(ae_fp_greater(ae_fabs(c/a, _state),ae_machineepsilon))
    5378             :     {
    5379           0 :         temp = b/a;
    5380           0 :         lphi = lphi+ae_atan(t*temp, _state)+md*ae_pi;
    5381           0 :         md = ae_trunc((lphi+pio2)/ae_pi, _state);
    5382           0 :         t = t*(1.0+temp)/(1.0-temp*t*t);
    5383           0 :         c = 0.5*(a-b);
    5384           0 :         temp = ae_sqrt(a*b, _state);
    5385           0 :         a = 0.5*(a+b);
    5386           0 :         b = temp;
    5387           0 :         d = d+d;
    5388           0 :         e = e+c*ae_sin(lphi, _state);
    5389             :     }
    5390           0 :     temp = ebig/ellipticintegralk(m, _state);
    5391           0 :     temp = temp*((ae_atan(t, _state)+md*ae_pi)/(d*a));
    5392           0 :     temp = temp+e;
    5393           0 :     if( s<0 )
    5394             :     {
    5395           0 :         temp = -temp;
    5396             :     }
    5397           0 :     result = temp+npio2*ebig;
    5398           0 :     return result;
    5399             : }
    5400             : 
    5401             : 
    5402             : #endif
    5403             : #if defined(AE_COMPILE_HERMITE) || !defined(AE_PARTIAL_BUILD)
    5404             : 
    5405             : 
    5406             : /*************************************************************************
    5407             : Calculation of the value of the Hermite polynomial.
    5408             : 
    5409             : Parameters:
    5410             :     n   -   degree, n>=0
    5411             :     x   -   argument
    5412             : 
    5413             : Result:
    5414             :     the value of the Hermite polynomial Hn at x
    5415             : *************************************************************************/
    5416           0 : double hermitecalculate(ae_int_t n, double x, ae_state *_state)
    5417             : {
    5418             :     ae_int_t i;
    5419             :     double a;
    5420             :     double b;
    5421             :     double result;
    5422             : 
    5423             : 
    5424           0 :     result = (double)(0);
    5425             :     
    5426             :     /*
    5427             :      * Prepare A and B
    5428             :      */
    5429           0 :     a = (double)(1);
    5430           0 :     b = 2*x;
    5431             :     
    5432             :     /*
    5433             :      * Special cases: N=0 or N=1
    5434             :      */
    5435           0 :     if( n==0 )
    5436             :     {
    5437           0 :         result = a;
    5438           0 :         return result;
    5439             :     }
    5440           0 :     if( n==1 )
    5441             :     {
    5442           0 :         result = b;
    5443           0 :         return result;
    5444             :     }
    5445             :     
    5446             :     /*
    5447             :      * General case: N>=2
    5448             :      */
    5449           0 :     for(i=2; i<=n; i++)
    5450             :     {
    5451           0 :         result = 2*x*b-2*(i-1)*a;
    5452           0 :         a = b;
    5453           0 :         b = result;
    5454             :     }
    5455           0 :     return result;
    5456             : }
    5457             : 
    5458             : 
    5459             : /*************************************************************************
    5460             : Summation of Hermite polynomials using Clenshaw's recurrence formula.
    5461             : 
    5462             : This routine calculates
    5463             :     c[0]*H0(x) + c[1]*H1(x) + ... + c[N]*HN(x)
    5464             : 
    5465             : Parameters:
    5466             :     n   -   degree, n>=0
    5467             :     x   -   argument
    5468             : 
    5469             : Result:
    5470             :     the value of the Hermite polynomial at x
    5471             : *************************************************************************/
    5472           0 : double hermitesum(/* Real    */ ae_vector* c,
    5473             :      ae_int_t n,
    5474             :      double x,
    5475             :      ae_state *_state)
    5476             : {
    5477             :     double b1;
    5478             :     double b2;
    5479             :     ae_int_t i;
    5480             :     double result;
    5481             : 
    5482             : 
    5483           0 :     b1 = (double)(0);
    5484           0 :     b2 = (double)(0);
    5485           0 :     result = (double)(0);
    5486           0 :     for(i=n; i>=0; i--)
    5487             :     {
    5488           0 :         result = 2*(x*b1-(i+1)*b2)+c->ptr.p_double[i];
    5489           0 :         b2 = b1;
    5490           0 :         b1 = result;
    5491             :     }
    5492           0 :     return result;
    5493             : }
    5494             : 
    5495             : 
    5496             : /*************************************************************************
    5497             : Representation of Hn as C[0] + C[1]*X + ... + C[N]*X^N
    5498             : 
    5499             : Input parameters:
    5500             :     N   -   polynomial degree, n>=0
    5501             : 
    5502             : Output parameters:
    5503             :     C   -   coefficients
    5504             : *************************************************************************/
    5505           0 : void hermitecoefficients(ae_int_t n,
    5506             :      /* Real    */ ae_vector* c,
    5507             :      ae_state *_state)
    5508             : {
    5509             :     ae_int_t i;
    5510             : 
    5511           0 :     ae_vector_clear(c);
    5512             : 
    5513           0 :     ae_vector_set_length(c, n+1, _state);
    5514           0 :     for(i=0; i<=n; i++)
    5515             :     {
    5516           0 :         c->ptr.p_double[i] = (double)(0);
    5517             :     }
    5518           0 :     c->ptr.p_double[n] = ae_exp(n*ae_log((double)(2), _state), _state);
    5519           0 :     for(i=0; i<=n/2-1; i++)
    5520             :     {
    5521           0 :         c->ptr.p_double[n-2*(i+1)] = -c->ptr.p_double[n-2*i]*(n-2*i)*(n-2*i-1)/4/(i+1);
    5522             :     }
    5523           0 : }
    5524             : 
    5525             : 
    5526             : #endif
    5527             : #if defined(AE_COMPILE_DAWSON) || !defined(AE_PARTIAL_BUILD)
    5528             : 
    5529             : 
    5530             : /*************************************************************************
    5531             : Dawson's Integral
    5532             : 
    5533             : Approximates the integral
    5534             : 
    5535             :                             x
    5536             :                             -
    5537             :                      2     | |        2
    5538             :  dawsn(x)  =  exp( -x  )   |    exp( t  ) dt
    5539             :                          | |
    5540             :                           -
    5541             :                           0
    5542             : 
    5543             : Three different rational approximations are employed, for
    5544             : the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
    5545             : 
    5546             : ACCURACY:
    5547             : 
    5548             :                      Relative error:
    5549             : arithmetic   domain     # trials      peak         rms
    5550             :    IEEE      0,10        10000       6.9e-16     1.0e-16
    5551             : 
    5552             : Cephes Math Library Release 2.8:  June, 2000
    5553             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    5554             : *************************************************************************/
    5555           0 : double dawsonintegral(double x, ae_state *_state)
    5556             : {
    5557             :     double x2;
    5558             :     double y;
    5559             :     ae_int_t sg;
    5560             :     double an;
    5561             :     double ad;
    5562             :     double bn;
    5563             :     double bd;
    5564             :     double cn;
    5565             :     double cd;
    5566             :     double result;
    5567             : 
    5568             : 
    5569           0 :     sg = 1;
    5570           0 :     if( ae_fp_less(x,(double)(0)) )
    5571             :     {
    5572           0 :         sg = -1;
    5573           0 :         x = -x;
    5574             :     }
    5575           0 :     if( ae_fp_less(x,3.25) )
    5576             :     {
    5577           0 :         x2 = x*x;
    5578           0 :         an = 1.13681498971755972054E-11;
    5579           0 :         an = an*x2+8.49262267667473811108E-10;
    5580           0 :         an = an*x2+1.94434204175553054283E-8;
    5581           0 :         an = an*x2+9.53151741254484363489E-7;
    5582           0 :         an = an*x2+3.07828309874913200438E-6;
    5583           0 :         an = an*x2+3.52513368520288738649E-4;
    5584           0 :         an = an*x2+(-8.50149846724410912031E-4);
    5585           0 :         an = an*x2+4.22618223005546594270E-2;
    5586           0 :         an = an*x2+(-9.17480371773452345351E-2);
    5587           0 :         an = an*x2+9.99999999999999994612E-1;
    5588           0 :         ad = 2.40372073066762605484E-11;
    5589           0 :         ad = ad*x2+1.48864681368493396752E-9;
    5590           0 :         ad = ad*x2+5.21265281010541664570E-8;
    5591           0 :         ad = ad*x2+1.27258478273186970203E-6;
    5592           0 :         ad = ad*x2+2.32490249820789513991E-5;
    5593           0 :         ad = ad*x2+3.25524741826057911661E-4;
    5594           0 :         ad = ad*x2+3.48805814657162590916E-3;
    5595           0 :         ad = ad*x2+2.79448531198828973716E-2;
    5596           0 :         ad = ad*x2+1.58874241960120565368E-1;
    5597           0 :         ad = ad*x2+5.74918629489320327824E-1;
    5598           0 :         ad = ad*x2+1.00000000000000000539E0;
    5599           0 :         y = x*an/ad;
    5600           0 :         result = sg*y;
    5601           0 :         return result;
    5602             :     }
    5603           0 :     x2 = 1.0/(x*x);
    5604           0 :     if( ae_fp_less(x,6.25) )
    5605             :     {
    5606           0 :         bn = 5.08955156417900903354E-1;
    5607           0 :         bn = bn*x2-2.44754418142697847934E-1;
    5608           0 :         bn = bn*x2+9.41512335303534411857E-2;
    5609           0 :         bn = bn*x2-2.18711255142039025206E-2;
    5610           0 :         bn = bn*x2+3.66207612329569181322E-3;
    5611           0 :         bn = bn*x2-4.23209114460388756528E-4;
    5612           0 :         bn = bn*x2+3.59641304793896631888E-5;
    5613           0 :         bn = bn*x2-2.14640351719968974225E-6;
    5614           0 :         bn = bn*x2+9.10010780076391431042E-8;
    5615           0 :         bn = bn*x2-2.40274520828250956942E-9;
    5616           0 :         bn = bn*x2+3.59233385440928410398E-11;
    5617           0 :         bd = 1.00000000000000000000E0;
    5618           0 :         bd = bd*x2-6.31839869873368190192E-1;
    5619           0 :         bd = bd*x2+2.36706788228248691528E-1;
    5620           0 :         bd = bd*x2-5.31806367003223277662E-2;
    5621           0 :         bd = bd*x2+8.48041718586295374409E-3;
    5622           0 :         bd = bd*x2-9.47996768486665330168E-4;
    5623           0 :         bd = bd*x2+7.81025592944552338085E-5;
    5624           0 :         bd = bd*x2-4.55875153252442634831E-6;
    5625           0 :         bd = bd*x2+1.89100358111421846170E-7;
    5626           0 :         bd = bd*x2-4.91324691331920606875E-9;
    5627           0 :         bd = bd*x2+7.18466403235734541950E-11;
    5628           0 :         y = 1.0/x+x2*bn/(bd*x);
    5629           0 :         result = sg*0.5*y;
    5630           0 :         return result;
    5631             :     }
    5632           0 :     if( ae_fp_greater(x,1.0E9) )
    5633             :     {
    5634           0 :         result = sg*0.5/x;
    5635           0 :         return result;
    5636             :     }
    5637           0 :     cn = -5.90592860534773254987E-1;
    5638           0 :     cn = cn*x2+6.29235242724368800674E-1;
    5639           0 :     cn = cn*x2-1.72858975380388136411E-1;
    5640           0 :     cn = cn*x2+1.64837047825189632310E-2;
    5641           0 :     cn = cn*x2-4.86827613020462700845E-4;
    5642           0 :     cd = 1.00000000000000000000E0;
    5643           0 :     cd = cd*x2-2.69820057197544900361E0;
    5644           0 :     cd = cd*x2+1.73270799045947845857E0;
    5645           0 :     cd = cd*x2-3.93708582281939493482E-1;
    5646           0 :     cd = cd*x2+3.44278924041233391079E-2;
    5647           0 :     cd = cd*x2-9.73655226040941223894E-4;
    5648           0 :     y = 1.0/x+x2*cn/(cd*x);
    5649           0 :     result = sg*0.5*y;
    5650           0 :     return result;
    5651             : }
    5652             : 
    5653             : 
    5654             : #endif
    5655             : #if defined(AE_COMPILE_TRIGINTEGRALS) || !defined(AE_PARTIAL_BUILD)
    5656             : 
    5657             : 
    5658             : /*************************************************************************
    5659             : Sine and cosine integrals
    5660             : 
    5661             : Evaluates the integrals
    5662             : 
    5663             :                          x
    5664             :                          -
    5665             :                         |  cos t - 1
    5666             :   Ci(x) = eul + ln x +  |  --------- dt,
    5667             :                         |      t
    5668             :                        -
    5669             :                         0
    5670             :             x
    5671             :             -
    5672             :            |  sin t
    5673             :   Si(x) =  |  ----- dt
    5674             :            |    t
    5675             :           -
    5676             :            0
    5677             : 
    5678             : where eul = 0.57721566490153286061 is Euler's constant.
    5679             : The integrals are approximated by rational functions.
    5680             : For x > 8 auxiliary functions f(x) and g(x) are employed
    5681             : such that
    5682             : 
    5683             : Ci(x) = f(x) sin(x) - g(x) cos(x)
    5684             : Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x)
    5685             : 
    5686             : 
    5687             : ACCURACY:
    5688             :    Test interval = [0,50].
    5689             : Absolute error, except relative when > 1:
    5690             : arithmetic   function   # trials      peak         rms
    5691             :    IEEE        Si        30000       4.4e-16     7.3e-17
    5692             :    IEEE        Ci        30000       6.9e-16     5.1e-17
    5693             : 
    5694             : Cephes Math Library Release 2.1:  January, 1989
    5695             : Copyright 1984, 1987, 1989 by Stephen L. Moshier
    5696             : *************************************************************************/
    5697           0 : void sinecosineintegrals(double x,
    5698             :      double* si,
    5699             :      double* ci,
    5700             :      ae_state *_state)
    5701             : {
    5702             :     double z;
    5703             :     double c;
    5704             :     double s;
    5705             :     double f;
    5706             :     double g;
    5707             :     ae_int_t sg;
    5708             :     double sn;
    5709             :     double sd;
    5710             :     double cn;
    5711             :     double cd;
    5712             :     double fn;
    5713             :     double fd;
    5714             :     double gn;
    5715             :     double gd;
    5716             : 
    5717           0 :     *si = 0;
    5718           0 :     *ci = 0;
    5719             : 
    5720           0 :     if( ae_fp_less(x,(double)(0)) )
    5721             :     {
    5722           0 :         sg = -1;
    5723           0 :         x = -x;
    5724             :     }
    5725             :     else
    5726             :     {
    5727           0 :         sg = 0;
    5728             :     }
    5729           0 :     if( ae_fp_eq(x,(double)(0)) )
    5730             :     {
    5731           0 :         *si = (double)(0);
    5732           0 :         *ci = -ae_maxrealnumber;
    5733           0 :         return;
    5734             :     }
    5735           0 :     if( ae_fp_greater(x,1.0E9) )
    5736             :     {
    5737           0 :         *si = 1.570796326794896619-ae_cos(x, _state)/x;
    5738           0 :         *ci = ae_sin(x, _state)/x;
    5739           0 :         return;
    5740             :     }
    5741           0 :     if( ae_fp_less_eq(x,(double)(4)) )
    5742             :     {
    5743           0 :         z = x*x;
    5744           0 :         sn = -8.39167827910303881427E-11;
    5745           0 :         sn = sn*z+4.62591714427012837309E-8;
    5746           0 :         sn = sn*z-9.75759303843632795789E-6;
    5747           0 :         sn = sn*z+9.76945438170435310816E-4;
    5748           0 :         sn = sn*z-4.13470316229406538752E-2;
    5749           0 :         sn = sn*z+1.00000000000000000302E0;
    5750           0 :         sd = 2.03269266195951942049E-12;
    5751           0 :         sd = sd*z+1.27997891179943299903E-9;
    5752           0 :         sd = sd*z+4.41827842801218905784E-7;
    5753           0 :         sd = sd*z+9.96412122043875552487E-5;
    5754           0 :         sd = sd*z+1.42085239326149893930E-2;
    5755           0 :         sd = sd*z+9.99999999999999996984E-1;
    5756           0 :         s = x*sn/sd;
    5757           0 :         cn = 2.02524002389102268789E-11;
    5758           0 :         cn = cn*z-1.35249504915790756375E-8;
    5759           0 :         cn = cn*z+3.59325051419993077021E-6;
    5760           0 :         cn = cn*z-4.74007206873407909465E-4;
    5761           0 :         cn = cn*z+2.89159652607555242092E-2;
    5762           0 :         cn = cn*z-1.00000000000000000080E0;
    5763           0 :         cd = 4.07746040061880559506E-12;
    5764           0 :         cd = cd*z+3.06780997581887812692E-9;
    5765           0 :         cd = cd*z+1.23210355685883423679E-6;
    5766           0 :         cd = cd*z+3.17442024775032769882E-4;
    5767           0 :         cd = cd*z+5.10028056236446052392E-2;
    5768           0 :         cd = cd*z+4.00000000000000000080E0;
    5769           0 :         c = z*cn/cd;
    5770           0 :         if( sg!=0 )
    5771             :         {
    5772           0 :             s = -s;
    5773             :         }
    5774           0 :         *si = s;
    5775           0 :         *ci = 0.57721566490153286061+ae_log(x, _state)+c;
    5776           0 :         return;
    5777             :     }
    5778           0 :     s = ae_sin(x, _state);
    5779           0 :     c = ae_cos(x, _state);
    5780           0 :     z = 1.0/(x*x);
    5781           0 :     if( ae_fp_less(x,(double)(8)) )
    5782             :     {
    5783           0 :         fn = 4.23612862892216586994E0;
    5784           0 :         fn = fn*z+5.45937717161812843388E0;
    5785           0 :         fn = fn*z+1.62083287701538329132E0;
    5786           0 :         fn = fn*z+1.67006611831323023771E-1;
    5787           0 :         fn = fn*z+6.81020132472518137426E-3;
    5788           0 :         fn = fn*z+1.08936580650328664411E-4;
    5789           0 :         fn = fn*z+5.48900223421373614008E-7;
    5790           0 :         fd = 1.00000000000000000000E0;
    5791           0 :         fd = fd*z+8.16496634205391016773E0;
    5792           0 :         fd = fd*z+7.30828822505564552187E0;
    5793           0 :         fd = fd*z+1.86792257950184183883E0;
    5794           0 :         fd = fd*z+1.78792052963149907262E-1;
    5795           0 :         fd = fd*z+7.01710668322789753610E-3;
    5796           0 :         fd = fd*z+1.10034357153915731354E-4;
    5797           0 :         fd = fd*z+5.48900252756255700982E-7;
    5798           0 :         f = fn/(x*fd);
    5799           0 :         gn = 8.71001698973114191777E-2;
    5800           0 :         gn = gn*z+6.11379109952219284151E-1;
    5801           0 :         gn = gn*z+3.97180296392337498885E-1;
    5802           0 :         gn = gn*z+7.48527737628469092119E-2;
    5803           0 :         gn = gn*z+5.38868681462177273157E-3;
    5804           0 :         gn = gn*z+1.61999794598934024525E-4;
    5805           0 :         gn = gn*z+1.97963874140963632189E-6;
    5806           0 :         gn = gn*z+7.82579040744090311069E-9;
    5807           0 :         gd = 1.00000000000000000000E0;
    5808           0 :         gd = gd*z+1.64402202413355338886E0;
    5809           0 :         gd = gd*z+6.66296701268987968381E-1;
    5810           0 :         gd = gd*z+9.88771761277688796203E-2;
    5811           0 :         gd = gd*z+6.22396345441768420760E-3;
    5812           0 :         gd = gd*z+1.73221081474177119497E-4;
    5813           0 :         gd = gd*z+2.02659182086343991969E-6;
    5814           0 :         gd = gd*z+7.82579218933534490868E-9;
    5815           0 :         g = z*gn/gd;
    5816             :     }
    5817             :     else
    5818             :     {
    5819           0 :         fn = 4.55880873470465315206E-1;
    5820           0 :         fn = fn*z+7.13715274100146711374E-1;
    5821           0 :         fn = fn*z+1.60300158222319456320E-1;
    5822           0 :         fn = fn*z+1.16064229408124407915E-2;
    5823           0 :         fn = fn*z+3.49556442447859055605E-4;
    5824           0 :         fn = fn*z+4.86215430826454749482E-6;
    5825           0 :         fn = fn*z+3.20092790091004902806E-8;
    5826           0 :         fn = fn*z+9.41779576128512936592E-11;
    5827           0 :         fn = fn*z+9.70507110881952024631E-14;
    5828           0 :         fd = 1.00000000000000000000E0;
    5829           0 :         fd = fd*z+9.17463611873684053703E-1;
    5830           0 :         fd = fd*z+1.78685545332074536321E-1;
    5831           0 :         fd = fd*z+1.22253594771971293032E-2;
    5832           0 :         fd = fd*z+3.58696481881851580297E-4;
    5833           0 :         fd = fd*z+4.92435064317881464393E-6;
    5834           0 :         fd = fd*z+3.21956939101046018377E-8;
    5835           0 :         fd = fd*z+9.43720590350276732376E-11;
    5836           0 :         fd = fd*z+9.70507110881952025725E-14;
    5837           0 :         f = fn/(x*fd);
    5838           0 :         gn = 6.97359953443276214934E-1;
    5839           0 :         gn = gn*z+3.30410979305632063225E-1;
    5840           0 :         gn = gn*z+3.84878767649974295920E-2;
    5841           0 :         gn = gn*z+1.71718239052347903558E-3;
    5842           0 :         gn = gn*z+3.48941165502279436777E-5;
    5843           0 :         gn = gn*z+3.47131167084116673800E-7;
    5844           0 :         gn = gn*z+1.70404452782044526189E-9;
    5845           0 :         gn = gn*z+3.85945925430276600453E-12;
    5846           0 :         gn = gn*z+3.14040098946363334640E-15;
    5847           0 :         gd = 1.00000000000000000000E0;
    5848           0 :         gd = gd*z+1.68548898811011640017E0;
    5849           0 :         gd = gd*z+4.87852258695304967486E-1;
    5850           0 :         gd = gd*z+4.67913194259625806320E-2;
    5851           0 :         gd = gd*z+1.90284426674399523638E-3;
    5852           0 :         gd = gd*z+3.68475504442561108162E-5;
    5853           0 :         gd = gd*z+3.57043223443740838771E-7;
    5854           0 :         gd = gd*z+1.72693748966316146736E-9;
    5855           0 :         gd = gd*z+3.87830166023954706752E-12;
    5856           0 :         gd = gd*z+3.14040098946363335242E-15;
    5857           0 :         g = z*gn/gd;
    5858             :     }
    5859           0 :     *si = 1.570796326794896619-f*c-g*s;
    5860           0 :     if( sg!=0 )
    5861             :     {
    5862           0 :         *si = -*si;
    5863             :     }
    5864           0 :     *ci = f*s-g*c;
    5865             : }
    5866             : 
    5867             : 
    5868             : /*************************************************************************
    5869             : Hyperbolic sine and cosine integrals
    5870             : 
    5871             : Approximates the integrals
    5872             : 
    5873             :                            x
    5874             :                            -
    5875             :                           | |   cosh t - 1
    5876             :   Chi(x) = eul + ln x +   |    -----------  dt,
    5877             :                         | |          t
    5878             :                          -
    5879             :                          0
    5880             : 
    5881             :               x
    5882             :               -
    5883             :              | |  sinh t
    5884             :   Shi(x) =   |    ------  dt
    5885             :            | |       t
    5886             :             -
    5887             :             0
    5888             : 
    5889             : where eul = 0.57721566490153286061 is Euler's constant.
    5890             : The integrals are evaluated by power series for x < 8
    5891             : and by Chebyshev expansions for x between 8 and 88.
    5892             : For large x, both functions approach exp(x)/2x.
    5893             : Arguments greater than 88 in magnitude return MAXNUM.
    5894             : 
    5895             : 
    5896             : ACCURACY:
    5897             : 
    5898             : Test interval 0 to 88.
    5899             :                      Relative error:
    5900             : arithmetic   function  # trials      peak         rms
    5901             :    IEEE         Shi      30000       6.9e-16     1.6e-16
    5902             :        Absolute error, except relative when |Chi| > 1:
    5903             :    IEEE         Chi      30000       8.4e-16     1.4e-16
    5904             : 
    5905             : Cephes Math Library Release 2.8:  June, 2000
    5906             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    5907             : *************************************************************************/
    5908           0 : void hyperbolicsinecosineintegrals(double x,
    5909             :      double* shi,
    5910             :      double* chi,
    5911             :      ae_state *_state)
    5912             : {
    5913             :     double k;
    5914             :     double z;
    5915             :     double c;
    5916             :     double s;
    5917             :     double a;
    5918             :     ae_int_t sg;
    5919             :     double b0;
    5920             :     double b1;
    5921             :     double b2;
    5922             : 
    5923           0 :     *shi = 0;
    5924           0 :     *chi = 0;
    5925             : 
    5926           0 :     if( ae_fp_less(x,(double)(0)) )
    5927             :     {
    5928           0 :         sg = -1;
    5929           0 :         x = -x;
    5930             :     }
    5931             :     else
    5932             :     {
    5933           0 :         sg = 0;
    5934             :     }
    5935           0 :     if( ae_fp_eq(x,(double)(0)) )
    5936             :     {
    5937           0 :         *shi = (double)(0);
    5938           0 :         *chi = -ae_maxrealnumber;
    5939           0 :         return;
    5940             :     }
    5941           0 :     if( ae_fp_less(x,8.0) )
    5942             :     {
    5943           0 :         z = x*x;
    5944           0 :         a = 1.0;
    5945           0 :         s = 1.0;
    5946           0 :         c = 0.0;
    5947           0 :         k = 2.0;
    5948             :         do
    5949             :         {
    5950           0 :             a = a*z/k;
    5951           0 :             c = c+a/k;
    5952           0 :             k = k+1.0;
    5953           0 :             a = a/k;
    5954           0 :             s = s+a/k;
    5955           0 :             k = k+1.0;
    5956             :         }
    5957           0 :         while(ae_fp_greater_eq(ae_fabs(a/s, _state),ae_machineepsilon));
    5958           0 :         s = s*x;
    5959             :     }
    5960             :     else
    5961             :     {
    5962           0 :         if( ae_fp_less(x,18.0) )
    5963             :         {
    5964           0 :             a = (576.0/x-52.0)/10.0;
    5965           0 :             k = ae_exp(x, _state)/x;
    5966           0 :             b0 = 1.83889230173399459482E-17;
    5967           0 :             b1 = 0.0;
    5968           0 :             trigintegrals_chebiterationshichi(a, -9.55485532279655569575E-17, &b0, &b1, &b2, _state);
    5969           0 :             trigintegrals_chebiterationshichi(a, 2.04326105980879882648E-16, &b0, &b1, &b2, _state);
    5970           0 :             trigintegrals_chebiterationshichi(a, 1.09896949074905343022E-15, &b0, &b1, &b2, _state);
    5971           0 :             trigintegrals_chebiterationshichi(a, -1.31313534344092599234E-14, &b0, &b1, &b2, _state);
    5972           0 :             trigintegrals_chebiterationshichi(a, 5.93976226264314278932E-14, &b0, &b1, &b2, _state);
    5973           0 :             trigintegrals_chebiterationshichi(a, -3.47197010497749154755E-14, &b0, &b1, &b2, _state);
    5974           0 :             trigintegrals_chebiterationshichi(a, -1.40059764613117131000E-12, &b0, &b1, &b2, _state);
    5975           0 :             trigintegrals_chebiterationshichi(a, 9.49044626224223543299E-12, &b0, &b1, &b2, _state);
    5976           0 :             trigintegrals_chebiterationshichi(a, -1.61596181145435454033E-11, &b0, &b1, &b2, _state);
    5977           0 :             trigintegrals_chebiterationshichi(a, -1.77899784436430310321E-10, &b0, &b1, &b2, _state);
    5978           0 :             trigintegrals_chebiterationshichi(a, 1.35455469767246947469E-9, &b0, &b1, &b2, _state);
    5979           0 :             trigintegrals_chebiterationshichi(a, -1.03257121792819495123E-9, &b0, &b1, &b2, _state);
    5980           0 :             trigintegrals_chebiterationshichi(a, -3.56699611114982536845E-8, &b0, &b1, &b2, _state);
    5981           0 :             trigintegrals_chebiterationshichi(a, 1.44818877384267342057E-7, &b0, &b1, &b2, _state);
    5982           0 :             trigintegrals_chebiterationshichi(a, 7.82018215184051295296E-7, &b0, &b1, &b2, _state);
    5983           0 :             trigintegrals_chebiterationshichi(a, -5.39919118403805073710E-6, &b0, &b1, &b2, _state);
    5984           0 :             trigintegrals_chebiterationshichi(a, -3.12458202168959833422E-5, &b0, &b1, &b2, _state);
    5985           0 :             trigintegrals_chebiterationshichi(a, 8.90136741950727517826E-5, &b0, &b1, &b2, _state);
    5986           0 :             trigintegrals_chebiterationshichi(a, 2.02558474743846862168E-3, &b0, &b1, &b2, _state);
    5987           0 :             trigintegrals_chebiterationshichi(a, 2.96064440855633256972E-2, &b0, &b1, &b2, _state);
    5988           0 :             trigintegrals_chebiterationshichi(a, 1.11847751047257036625E0, &b0, &b1, &b2, _state);
    5989           0 :             s = k*0.5*(b0-b2);
    5990           0 :             b0 = -8.12435385225864036372E-18;
    5991           0 :             b1 = 0.0;
    5992           0 :             trigintegrals_chebiterationshichi(a, 2.17586413290339214377E-17, &b0, &b1, &b2, _state);
    5993           0 :             trigintegrals_chebiterationshichi(a, 5.22624394924072204667E-17, &b0, &b1, &b2, _state);
    5994           0 :             trigintegrals_chebiterationshichi(a, -9.48812110591690559363E-16, &b0, &b1, &b2, _state);
    5995           0 :             trigintegrals_chebiterationshichi(a, 5.35546311647465209166E-15, &b0, &b1, &b2, _state);
    5996           0 :             trigintegrals_chebiterationshichi(a, -1.21009970113732918701E-14, &b0, &b1, &b2, _state);
    5997           0 :             trigintegrals_chebiterationshichi(a, -6.00865178553447437951E-14, &b0, &b1, &b2, _state);
    5998           0 :             trigintegrals_chebiterationshichi(a, 7.16339649156028587775E-13, &b0, &b1, &b2, _state);
    5999           0 :             trigintegrals_chebiterationshichi(a, -2.93496072607599856104E-12, &b0, &b1, &b2, _state);
    6000           0 :             trigintegrals_chebiterationshichi(a, -1.40359438136491256904E-12, &b0, &b1, &b2, _state);
    6001           0 :             trigintegrals_chebiterationshichi(a, 8.76302288609054966081E-11, &b0, &b1, &b2, _state);
    6002           0 :             trigintegrals_chebiterationshichi(a, -4.40092476213282340617E-10, &b0, &b1, &b2, _state);
    6003           0 :             trigintegrals_chebiterationshichi(a, -1.87992075640569295479E-10, &b0, &b1, &b2, _state);
    6004           0 :             trigintegrals_chebiterationshichi(a, 1.31458150989474594064E-8, &b0, &b1, &b2, _state);
    6005           0 :             trigintegrals_chebiterationshichi(a, -4.75513930924765465590E-8, &b0, &b1, &b2, _state);
    6006           0 :             trigintegrals_chebiterationshichi(a, -2.21775018801848880741E-7, &b0, &b1, &b2, _state);
    6007           0 :             trigintegrals_chebiterationshichi(a, 1.94635531373272490962E-6, &b0, &b1, &b2, _state);
    6008           0 :             trigintegrals_chebiterationshichi(a, 4.33505889257316408893E-6, &b0, &b1, &b2, _state);
    6009           0 :             trigintegrals_chebiterationshichi(a, -6.13387001076494349496E-5, &b0, &b1, &b2, _state);
    6010           0 :             trigintegrals_chebiterationshichi(a, -3.13085477492997465138E-4, &b0, &b1, &b2, _state);
    6011           0 :             trigintegrals_chebiterationshichi(a, 4.97164789823116062801E-4, &b0, &b1, &b2, _state);
    6012           0 :             trigintegrals_chebiterationshichi(a, 2.64347496031374526641E-2, &b0, &b1, &b2, _state);
    6013           0 :             trigintegrals_chebiterationshichi(a, 1.11446150876699213025E0, &b0, &b1, &b2, _state);
    6014           0 :             c = k*0.5*(b0-b2);
    6015             :         }
    6016             :         else
    6017             :         {
    6018           0 :             if( ae_fp_less_eq(x,88.0) )
    6019             :             {
    6020           0 :                 a = (6336.0/x-212.0)/70.0;
    6021           0 :                 k = ae_exp(x, _state)/x;
    6022           0 :                 b0 = -1.05311574154850938805E-17;
    6023           0 :                 b1 = 0.0;
    6024           0 :                 trigintegrals_chebiterationshichi(a, 2.62446095596355225821E-17, &b0, &b1, &b2, _state);
    6025           0 :                 trigintegrals_chebiterationshichi(a, 8.82090135625368160657E-17, &b0, &b1, &b2, _state);
    6026           0 :                 trigintegrals_chebiterationshichi(a, -3.38459811878103047136E-16, &b0, &b1, &b2, _state);
    6027           0 :                 trigintegrals_chebiterationshichi(a, -8.30608026366935789136E-16, &b0, &b1, &b2, _state);
    6028           0 :                 trigintegrals_chebiterationshichi(a, 3.93397875437050071776E-15, &b0, &b1, &b2, _state);
    6029           0 :                 trigintegrals_chebiterationshichi(a, 1.01765565969729044505E-14, &b0, &b1, &b2, _state);
    6030           0 :                 trigintegrals_chebiterationshichi(a, -4.21128170307640802703E-14, &b0, &b1, &b2, _state);
    6031           0 :                 trigintegrals_chebiterationshichi(a, -1.60818204519802480035E-13, &b0, &b1, &b2, _state);
    6032           0 :                 trigintegrals_chebiterationshichi(a, 3.34714954175994481761E-13, &b0, &b1, &b2, _state);
    6033           0 :                 trigintegrals_chebiterationshichi(a, 2.72600352129153073807E-12, &b0, &b1, &b2, _state);
    6034           0 :                 trigintegrals_chebiterationshichi(a, 1.66894954752839083608E-12, &b0, &b1, &b2, _state);
    6035           0 :                 trigintegrals_chebiterationshichi(a, -3.49278141024730899554E-11, &b0, &b1, &b2, _state);
    6036           0 :                 trigintegrals_chebiterationshichi(a, -1.58580661666482709598E-10, &b0, &b1, &b2, _state);
    6037           0 :                 trigintegrals_chebiterationshichi(a, -1.79289437183355633342E-10, &b0, &b1, &b2, _state);
    6038           0 :                 trigintegrals_chebiterationshichi(a, 1.76281629144264523277E-9, &b0, &b1, &b2, _state);
    6039           0 :                 trigintegrals_chebiterationshichi(a, 1.69050228879421288846E-8, &b0, &b1, &b2, _state);
    6040           0 :                 trigintegrals_chebiterationshichi(a, 1.25391771228487041649E-7, &b0, &b1, &b2, _state);
    6041           0 :                 trigintegrals_chebiterationshichi(a, 1.16229947068677338732E-6, &b0, &b1, &b2, _state);
    6042           0 :                 trigintegrals_chebiterationshichi(a, 1.61038260117376323993E-5, &b0, &b1, &b2, _state);
    6043           0 :                 trigintegrals_chebiterationshichi(a, 3.49810375601053973070E-4, &b0, &b1, &b2, _state);
    6044           0 :                 trigintegrals_chebiterationshichi(a, 1.28478065259647610779E-2, &b0, &b1, &b2, _state);
    6045           0 :                 trigintegrals_chebiterationshichi(a, 1.03665722588798326712E0, &b0, &b1, &b2, _state);
    6046           0 :                 s = k*0.5*(b0-b2);
    6047           0 :                 b0 = 8.06913408255155572081E-18;
    6048           0 :                 b1 = 0.0;
    6049           0 :                 trigintegrals_chebiterationshichi(a, -2.08074168180148170312E-17, &b0, &b1, &b2, _state);
    6050           0 :                 trigintegrals_chebiterationshichi(a, -5.98111329658272336816E-17, &b0, &b1, &b2, _state);
    6051           0 :                 trigintegrals_chebiterationshichi(a, 2.68533951085945765591E-16, &b0, &b1, &b2, _state);
    6052           0 :                 trigintegrals_chebiterationshichi(a, 4.52313941698904694774E-16, &b0, &b1, &b2, _state);
    6053           0 :                 trigintegrals_chebiterationshichi(a, -3.10734917335299464535E-15, &b0, &b1, &b2, _state);
    6054           0 :                 trigintegrals_chebiterationshichi(a, -4.42823207332531972288E-15, &b0, &b1, &b2, _state);
    6055           0 :                 trigintegrals_chebiterationshichi(a, 3.49639695410806959872E-14, &b0, &b1, &b2, _state);
    6056           0 :                 trigintegrals_chebiterationshichi(a, 6.63406731718911586609E-14, &b0, &b1, &b2, _state);
    6057           0 :                 trigintegrals_chebiterationshichi(a, -3.71902448093119218395E-13, &b0, &b1, &b2, _state);
    6058           0 :                 trigintegrals_chebiterationshichi(a, -1.27135418132338309016E-12, &b0, &b1, &b2, _state);
    6059           0 :                 trigintegrals_chebiterationshichi(a, 2.74851141935315395333E-12, &b0, &b1, &b2, _state);
    6060           0 :                 trigintegrals_chebiterationshichi(a, 2.33781843985453438400E-11, &b0, &b1, &b2, _state);
    6061           0 :                 trigintegrals_chebiterationshichi(a, 2.71436006377612442764E-11, &b0, &b1, &b2, _state);
    6062           0 :                 trigintegrals_chebiterationshichi(a, -2.56600180000355990529E-10, &b0, &b1, &b2, _state);
    6063           0 :                 trigintegrals_chebiterationshichi(a, -1.61021375163803438552E-9, &b0, &b1, &b2, _state);
    6064           0 :                 trigintegrals_chebiterationshichi(a, -4.72543064876271773512E-9, &b0, &b1, &b2, _state);
    6065           0 :                 trigintegrals_chebiterationshichi(a, -3.00095178028681682282E-9, &b0, &b1, &b2, _state);
    6066           0 :                 trigintegrals_chebiterationshichi(a, 7.79387474390914922337E-8, &b0, &b1, &b2, _state);
    6067           0 :                 trigintegrals_chebiterationshichi(a, 1.06942765566401507066E-6, &b0, &b1, &b2, _state);
    6068           0 :                 trigintegrals_chebiterationshichi(a, 1.59503164802313196374E-5, &b0, &b1, &b2, _state);
    6069           0 :                 trigintegrals_chebiterationshichi(a, 3.49592575153777996871E-4, &b0, &b1, &b2, _state);
    6070           0 :                 trigintegrals_chebiterationshichi(a, 1.28475387530065247392E-2, &b0, &b1, &b2, _state);
    6071           0 :                 trigintegrals_chebiterationshichi(a, 1.03665693917934275131E0, &b0, &b1, &b2, _state);
    6072           0 :                 c = k*0.5*(b0-b2);
    6073             :             }
    6074             :             else
    6075             :             {
    6076           0 :                 if( sg!=0 )
    6077             :                 {
    6078           0 :                     *shi = -ae_maxrealnumber;
    6079             :                 }
    6080             :                 else
    6081             :                 {
    6082           0 :                     *shi = ae_maxrealnumber;
    6083             :                 }
    6084           0 :                 *chi = ae_maxrealnumber;
    6085           0 :                 return;
    6086             :             }
    6087             :         }
    6088             :     }
    6089           0 :     if( sg!=0 )
    6090             :     {
    6091           0 :         s = -s;
    6092             :     }
    6093           0 :     *shi = s;
    6094           0 :     *chi = 0.57721566490153286061+ae_log(x, _state)+c;
    6095             : }
    6096             : 
    6097             : 
    6098           0 : static void trigintegrals_chebiterationshichi(double x,
    6099             :      double c,
    6100             :      double* b0,
    6101             :      double* b1,
    6102             :      double* b2,
    6103             :      ae_state *_state)
    6104             : {
    6105             : 
    6106             : 
    6107           0 :     *b2 = *b1;
    6108           0 :     *b1 = *b0;
    6109           0 :     *b0 = x*(*b1)-(*b2)+c;
    6110           0 : }
    6111             : 
    6112             : 
    6113             : #endif
    6114             : #if defined(AE_COMPILE_POISSONDISTR) || !defined(AE_PARTIAL_BUILD)
    6115             : 
    6116             : 
    6117             : /*************************************************************************
    6118             : Poisson distribution
    6119             : 
    6120             : Returns the sum of the first k+1 terms of the Poisson
    6121             : distribution:
    6122             : 
    6123             :   k         j
    6124             :   --   -m  m
    6125             :   >   e    --
    6126             :   --       j!
    6127             :  j=0
    6128             : 
    6129             : The terms are not summed directly; instead the incomplete
    6130             : gamma integral is employed, according to the relation
    6131             : 
    6132             : y = pdtr( k, m ) = igamc( k+1, m ).
    6133             : 
    6134             : The arguments must both be positive.
    6135             : ACCURACY:
    6136             : 
    6137             : See incomplete gamma function
    6138             : 
    6139             : Cephes Math Library Release 2.8:  June, 2000
    6140             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    6141             : *************************************************************************/
    6142           0 : double poissondistribution(ae_int_t k, double m, ae_state *_state)
    6143             : {
    6144             :     double result;
    6145             : 
    6146             : 
    6147           0 :     ae_assert(k>=0&&ae_fp_greater(m,(double)(0)), "Domain error in PoissonDistribution", _state);
    6148           0 :     result = incompletegammac((double)(k+1), m, _state);
    6149           0 :     return result;
    6150             : }
    6151             : 
    6152             : 
    6153             : /*************************************************************************
    6154             : Complemented Poisson distribution
    6155             : 
    6156             : Returns the sum of the terms k+1 to infinity of the Poisson
    6157             : distribution:
    6158             : 
    6159             :  inf.       j
    6160             :   --   -m  m
    6161             :   >   e    --
    6162             :   --       j!
    6163             :  j=k+1
    6164             : 
    6165             : The terms are not summed directly; instead the incomplete
    6166             : gamma integral is employed, according to the formula
    6167             : 
    6168             : y = pdtrc( k, m ) = igam( k+1, m ).
    6169             : 
    6170             : The arguments must both be positive.
    6171             : 
    6172             : ACCURACY:
    6173             : 
    6174             : See incomplete gamma function
    6175             : 
    6176             : Cephes Math Library Release 2.8:  June, 2000
    6177             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    6178             : *************************************************************************/
    6179           0 : double poissoncdistribution(ae_int_t k, double m, ae_state *_state)
    6180             : {
    6181             :     double result;
    6182             : 
    6183             : 
    6184           0 :     ae_assert(k>=0&&ae_fp_greater(m,(double)(0)), "Domain error in PoissonDistributionC", _state);
    6185           0 :     result = incompletegamma((double)(k+1), m, _state);
    6186           0 :     return result;
    6187             : }
    6188             : 
    6189             : 
    6190             : /*************************************************************************
    6191             : Inverse Poisson distribution
    6192             : 
    6193             : Finds the Poisson variable x such that the integral
    6194             : from 0 to x of the Poisson density is equal to the
    6195             : given probability y.
    6196             : 
    6197             : This is accomplished using the inverse gamma integral
    6198             : function and the relation
    6199             : 
    6200             :    m = igami( k+1, y ).
    6201             : 
    6202             : ACCURACY:
    6203             : 
    6204             : See inverse incomplete gamma function
    6205             : 
    6206             : Cephes Math Library Release 2.8:  June, 2000
    6207             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    6208             : *************************************************************************/
    6209           0 : double invpoissondistribution(ae_int_t k, double y, ae_state *_state)
    6210             : {
    6211             :     double result;
    6212             : 
    6213             : 
    6214           0 :     ae_assert((k>=0&&ae_fp_greater_eq(y,(double)(0)))&&ae_fp_less(y,(double)(1)), "Domain error in InvPoissonDistribution", _state);
    6215           0 :     result = invincompletegammac((double)(k+1), y, _state);
    6216           0 :     return result;
    6217             : }
    6218             : 
    6219             : 
    6220             : #endif
    6221             : #if defined(AE_COMPILE_BESSEL) || !defined(AE_PARTIAL_BUILD)
    6222             : 
    6223             : 
    6224             : /*************************************************************************
    6225             : Bessel function of order zero
    6226             : 
    6227             : Returns Bessel function of order zero of the argument.
    6228             : 
    6229             : The domain is divided into the intervals [0, 5] and
    6230             : (5, infinity). In the first interval the following rational
    6231             : approximation is used:
    6232             : 
    6233             : 
    6234             :        2         2
    6235             : (w - r  ) (w - r  ) P (w) / Q (w)
    6236             :       1         2    3       8
    6237             : 
    6238             :            2
    6239             : where w = x  and the two r's are zeros of the function.
    6240             : 
    6241             : In the second interval, the Hankel asymptotic expansion
    6242             : is employed with two rational functions of degree 6/6
    6243             : and 7/7.
    6244             : 
    6245             : ACCURACY:
    6246             : 
    6247             :                      Absolute error:
    6248             : arithmetic   domain     # trials      peak         rms
    6249             :    IEEE      0, 30       60000       4.2e-16     1.1e-16
    6250             : 
    6251             : Cephes Math Library Release 2.8:  June, 2000
    6252             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    6253             : *************************************************************************/
    6254           0 : double besselj0(double x, ae_state *_state)
    6255             : {
    6256             :     double xsq;
    6257             :     double nn;
    6258             :     double pzero;
    6259             :     double qzero;
    6260             :     double p1;
    6261             :     double q1;
    6262             :     double result;
    6263             : 
    6264             : 
    6265           0 :     if( ae_fp_less(x,(double)(0)) )
    6266             :     {
    6267           0 :         x = -x;
    6268             :     }
    6269           0 :     if( ae_fp_greater(x,8.0) )
    6270             :     {
    6271           0 :         bessel_besselasympt0(x, &pzero, &qzero, _state);
    6272           0 :         nn = x-ae_pi/4;
    6273           0 :         result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_cos(nn, _state)-qzero*ae_sin(nn, _state));
    6274           0 :         return result;
    6275             :     }
    6276           0 :     xsq = ae_sqr(x, _state);
    6277           0 :     p1 = 26857.86856980014981415848441;
    6278           0 :     p1 = -40504123.71833132706360663322+xsq*p1;
    6279           0 :     p1 = 25071582855.36881945555156435+xsq*p1;
    6280           0 :     p1 = -8085222034853.793871199468171+xsq*p1;
    6281           0 :     p1 = 1434354939140344.111664316553+xsq*p1;
    6282           0 :     p1 = -136762035308817138.6865416609+xsq*p1;
    6283           0 :     p1 = 6382059341072356562.289432465+xsq*p1;
    6284           0 :     p1 = -117915762910761053603.8440800+xsq*p1;
    6285           0 :     p1 = 493378725179413356181.6813446+xsq*p1;
    6286           0 :     q1 = 1.0;
    6287           0 :     q1 = 1363.063652328970604442810507+xsq*q1;
    6288           0 :     q1 = 1114636.098462985378182402543+xsq*q1;
    6289           0 :     q1 = 669998767.2982239671814028660+xsq*q1;
    6290           0 :     q1 = 312304311494.1213172572469442+xsq*q1;
    6291           0 :     q1 = 112775673967979.8507056031594+xsq*q1;
    6292           0 :     q1 = 30246356167094626.98627330784+xsq*q1;
    6293           0 :     q1 = 5428918384092285160.200195092+xsq*q1;
    6294           0 :     q1 = 493378725179413356211.3278438+xsq*q1;
    6295           0 :     result = p1/q1;
    6296           0 :     return result;
    6297             : }
    6298             : 
    6299             : 
    6300             : /*************************************************************************
    6301             : Bessel function of order one
    6302             : 
    6303             : Returns Bessel function of order one of the argument.
    6304             : 
    6305             : The domain is divided into the intervals [0, 8] and
    6306             : (8, infinity). In the first interval a 24 term Chebyshev
    6307             : expansion is used. In the second, the asymptotic
    6308             : trigonometric representation is employed using two
    6309             : rational functions of degree 5/5.
    6310             : 
    6311             : ACCURACY:
    6312             : 
    6313             :                      Absolute error:
    6314             : arithmetic   domain      # trials      peak         rms
    6315             :    IEEE      0, 30       30000       2.6e-16     1.1e-16
    6316             : 
    6317             : Cephes Math Library Release 2.8:  June, 2000
    6318             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    6319             : *************************************************************************/
    6320           0 : double besselj1(double x, ae_state *_state)
    6321             : {
    6322             :     double s;
    6323             :     double xsq;
    6324             :     double nn;
    6325             :     double pzero;
    6326             :     double qzero;
    6327             :     double p1;
    6328             :     double q1;
    6329             :     double result;
    6330             : 
    6331             : 
    6332           0 :     s = (double)(ae_sign(x, _state));
    6333           0 :     if( ae_fp_less(x,(double)(0)) )
    6334             :     {
    6335           0 :         x = -x;
    6336             :     }
    6337           0 :     if( ae_fp_greater(x,8.0) )
    6338             :     {
    6339           0 :         bessel_besselasympt1(x, &pzero, &qzero, _state);
    6340           0 :         nn = x-3*ae_pi/4;
    6341           0 :         result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_cos(nn, _state)-qzero*ae_sin(nn, _state));
    6342           0 :         if( ae_fp_less(s,(double)(0)) )
    6343             :         {
    6344           0 :             result = -result;
    6345             :         }
    6346           0 :         return result;
    6347             :     }
    6348           0 :     xsq = ae_sqr(x, _state);
    6349           0 :     p1 = 2701.122710892323414856790990;
    6350           0 :     p1 = -4695753.530642995859767162166+xsq*p1;
    6351           0 :     p1 = 3413234182.301700539091292655+xsq*p1;
    6352           0 :     p1 = -1322983480332.126453125473247+xsq*p1;
    6353           0 :     p1 = 290879526383477.5409737601689+xsq*p1;
    6354           0 :     p1 = -35888175699101060.50743641413+xsq*p1;
    6355           0 :     p1 = 2316433580634002297.931815435+xsq*p1;
    6356           0 :     p1 = -66721065689249162980.20941484+xsq*p1;
    6357           0 :     p1 = 581199354001606143928.050809+xsq*p1;
    6358           0 :     q1 = 1.0;
    6359           0 :     q1 = 1606.931573481487801970916749+xsq*q1;
    6360           0 :     q1 = 1501793.594998585505921097578+xsq*q1;
    6361           0 :     q1 = 1013863514.358673989967045588+xsq*q1;
    6362           0 :     q1 = 524371026216.7649715406728642+xsq*q1;
    6363           0 :     q1 = 208166122130760.7351240184229+xsq*q1;
    6364           0 :     q1 = 60920613989175217.46105196863+xsq*q1;
    6365           0 :     q1 = 11857707121903209998.37113348+xsq*q1;
    6366           0 :     q1 = 1162398708003212287858.529400+xsq*q1;
    6367           0 :     result = s*x*p1/q1;
    6368           0 :     return result;
    6369             : }
    6370             : 
    6371             : 
    6372             : /*************************************************************************
    6373             : Bessel function of integer order
    6374             : 
    6375             : Returns Bessel function of order n, where n is a
    6376             : (possibly negative) integer.
    6377             : 
    6378             : The ratio of jn(x) to j0(x) is computed by backward
    6379             : recurrence.  First the ratio jn/jn-1 is found by a
    6380             : continued fraction expansion.  Then the recurrence
    6381             : relating successive orders is applied until j0 or j1 is
    6382             : reached.
    6383             : 
    6384             : If n = 0 or 1 the routine for j0 or j1 is called
    6385             : directly.
    6386             : 
    6387             : ACCURACY:
    6388             : 
    6389             :                      Absolute error:
    6390             : arithmetic   range      # trials      peak         rms
    6391             :    IEEE      0, 30        5000       4.4e-16     7.9e-17
    6392             : 
    6393             : 
    6394             : Not suitable for large n or x. Use jv() (fractional order) instead.
    6395             : 
    6396             : Cephes Math Library Release 2.8:  June, 2000
    6397             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    6398             : *************************************************************************/
    6399           0 : double besseljn(ae_int_t n, double x, ae_state *_state)
    6400             : {
    6401             :     double pkm2;
    6402             :     double pkm1;
    6403             :     double pk;
    6404             :     double xk;
    6405             :     double r;
    6406             :     double ans;
    6407             :     ae_int_t k;
    6408             :     ae_int_t sg;
    6409             :     double result;
    6410             : 
    6411             : 
    6412           0 :     if( n<0 )
    6413             :     {
    6414           0 :         n = -n;
    6415           0 :         if( n%2==0 )
    6416             :         {
    6417           0 :             sg = 1;
    6418             :         }
    6419             :         else
    6420             :         {
    6421           0 :             sg = -1;
    6422             :         }
    6423             :     }
    6424             :     else
    6425             :     {
    6426           0 :         sg = 1;
    6427             :     }
    6428           0 :     if( ae_fp_less(x,(double)(0)) )
    6429             :     {
    6430           0 :         if( n%2!=0 )
    6431             :         {
    6432           0 :             sg = -sg;
    6433             :         }
    6434           0 :         x = -x;
    6435             :     }
    6436           0 :     if( n==0 )
    6437             :     {
    6438           0 :         result = sg*besselj0(x, _state);
    6439           0 :         return result;
    6440             :     }
    6441           0 :     if( n==1 )
    6442             :     {
    6443           0 :         result = sg*besselj1(x, _state);
    6444           0 :         return result;
    6445             :     }
    6446           0 :     if( n==2 )
    6447             :     {
    6448           0 :         if( ae_fp_eq(x,(double)(0)) )
    6449             :         {
    6450           0 :             result = (double)(0);
    6451             :         }
    6452             :         else
    6453             :         {
    6454           0 :             result = sg*(2.0*besselj1(x, _state)/x-besselj0(x, _state));
    6455             :         }
    6456           0 :         return result;
    6457             :     }
    6458           0 :     if( ae_fp_less(x,ae_machineepsilon) )
    6459             :     {
    6460           0 :         result = (double)(0);
    6461           0 :         return result;
    6462             :     }
    6463           0 :     k = 53;
    6464           0 :     pk = (double)(2*(n+k));
    6465           0 :     ans = pk;
    6466           0 :     xk = x*x;
    6467             :     do
    6468             :     {
    6469           0 :         pk = pk-2.0;
    6470           0 :         ans = pk-xk/ans;
    6471           0 :         k = k-1;
    6472             :     }
    6473           0 :     while(k!=0);
    6474           0 :     ans = x/ans;
    6475           0 :     pk = 1.0;
    6476           0 :     pkm1 = 1.0/ans;
    6477           0 :     k = n-1;
    6478           0 :     r = (double)(2*k);
    6479             :     do
    6480             :     {
    6481           0 :         pkm2 = (pkm1*r-pk*x)/x;
    6482           0 :         pk = pkm1;
    6483           0 :         pkm1 = pkm2;
    6484           0 :         r = r-2.0;
    6485           0 :         k = k-1;
    6486             :     }
    6487           0 :     while(k!=0);
    6488           0 :     if( ae_fp_greater(ae_fabs(pk, _state),ae_fabs(pkm1, _state)) )
    6489             :     {
    6490           0 :         ans = besselj1(x, _state)/pk;
    6491             :     }
    6492             :     else
    6493             :     {
    6494           0 :         ans = besselj0(x, _state)/pkm1;
    6495             :     }
    6496           0 :     result = sg*ans;
    6497           0 :     return result;
    6498             : }
    6499             : 
    6500             : 
    6501             : /*************************************************************************
    6502             : Bessel function of the second kind, order zero
    6503             : 
    6504             : Returns Bessel function of the second kind, of order
    6505             : zero, of the argument.
    6506             : 
    6507             : The domain is divided into the intervals [0, 5] and
    6508             : (5, infinity). In the first interval a rational approximation
    6509             : R(x) is employed to compute
    6510             :   y0(x)  = R(x)  +   2 * log(x) * j0(x) / PI.
    6511             : Thus a call to j0() is required.
    6512             : 
    6513             : In the second interval, the Hankel asymptotic expansion
    6514             : is employed with two rational functions of degree 6/6
    6515             : and 7/7.
    6516             : 
    6517             : 
    6518             : 
    6519             : ACCURACY:
    6520             : 
    6521             :  Absolute error, when y0(x) < 1; else relative error:
    6522             : 
    6523             : arithmetic   domain     # trials      peak         rms
    6524             :    IEEE      0, 30       30000       1.3e-15     1.6e-16
    6525             : 
    6526             : Cephes Math Library Release 2.8:  June, 2000
    6527             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    6528             : *************************************************************************/
    6529           0 : double bessely0(double x, ae_state *_state)
    6530             : {
    6531             :     double nn;
    6532             :     double xsq;
    6533             :     double pzero;
    6534             :     double qzero;
    6535             :     double p4;
    6536             :     double q4;
    6537             :     double result;
    6538             : 
    6539             : 
    6540           0 :     if( ae_fp_greater(x,8.0) )
    6541             :     {
    6542           0 :         bessel_besselasympt0(x, &pzero, &qzero, _state);
    6543           0 :         nn = x-ae_pi/4;
    6544           0 :         result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_sin(nn, _state)+qzero*ae_cos(nn, _state));
    6545           0 :         return result;
    6546             :     }
    6547           0 :     xsq = ae_sqr(x, _state);
    6548           0 :     p4 = -41370.35497933148554125235152;
    6549           0 :     p4 = 59152134.65686889654273830069+xsq*p4;
    6550           0 :     p4 = -34363712229.79040378171030138+xsq*p4;
    6551           0 :     p4 = 10255208596863.94284509167421+xsq*p4;
    6552           0 :     p4 = -1648605817185729.473122082537+xsq*p4;
    6553           0 :     p4 = 137562431639934407.8571335453+xsq*p4;
    6554           0 :     p4 = -5247065581112764941.297350814+xsq*p4;
    6555           0 :     p4 = 65874732757195549259.99402049+xsq*p4;
    6556           0 :     p4 = -27502866786291095837.01933175+xsq*p4;
    6557           0 :     q4 = 1.0;
    6558           0 :     q4 = 1282.452772478993804176329391+xsq*q4;
    6559           0 :     q4 = 1001702.641288906265666651753+xsq*q4;
    6560           0 :     q4 = 579512264.0700729537480087915+xsq*q4;
    6561           0 :     q4 = 261306575504.1081249568482092+xsq*q4;
    6562           0 :     q4 = 91620380340751.85262489147968+xsq*q4;
    6563           0 :     q4 = 23928830434997818.57439356652+xsq*q4;
    6564           0 :     q4 = 4192417043410839973.904769661+xsq*q4;
    6565           0 :     q4 = 372645883898616588198.9980+xsq*q4;
    6566           0 :     result = p4/q4+2/ae_pi*besselj0(x, _state)*ae_log(x, _state);
    6567           0 :     return result;
    6568             : }
    6569             : 
    6570             : 
    6571             : /*************************************************************************
    6572             : Bessel function of second kind of order one
    6573             : 
    6574             : Returns Bessel function of the second kind of order one
    6575             : of the argument.
    6576             : 
    6577             : The domain is divided into the intervals [0, 8] and
    6578             : (8, infinity). In the first interval a 25 term Chebyshev
    6579             : expansion is used, and a call to j1() is required.
    6580             : In the second, the asymptotic trigonometric representation
    6581             : is employed using two rational functions of degree 5/5.
    6582             : 
    6583             : ACCURACY:
    6584             : 
    6585             :                      Absolute error:
    6586             : arithmetic   domain      # trials      peak         rms
    6587             :    IEEE      0, 30       30000       1.0e-15     1.3e-16
    6588             : 
    6589             : Cephes Math Library Release 2.8:  June, 2000
    6590             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    6591             : *************************************************************************/
    6592           0 : double bessely1(double x, ae_state *_state)
    6593             : {
    6594             :     double nn;
    6595             :     double xsq;
    6596             :     double pzero;
    6597             :     double qzero;
    6598             :     double p4;
    6599             :     double q4;
    6600             :     double result;
    6601             : 
    6602             : 
    6603           0 :     if( ae_fp_greater(x,8.0) )
    6604             :     {
    6605           0 :         bessel_besselasympt1(x, &pzero, &qzero, _state);
    6606           0 :         nn = x-3*ae_pi/4;
    6607           0 :         result = ae_sqrt(2/ae_pi/x, _state)*(pzero*ae_sin(nn, _state)+qzero*ae_cos(nn, _state));
    6608           0 :         return result;
    6609             :     }
    6610           0 :     xsq = ae_sqr(x, _state);
    6611           0 :     p4 = -2108847.540133123652824139923;
    6612           0 :     p4 = 3639488548.124002058278999428+xsq*p4;
    6613           0 :     p4 = -2580681702194.450950541426399+xsq*p4;
    6614           0 :     p4 = 956993023992168.3481121552788+xsq*p4;
    6615           0 :     p4 = -196588746272214065.8820322248+xsq*p4;
    6616           0 :     p4 = 21931073399177975921.11427556+xsq*p4;
    6617           0 :     p4 = -1212297555414509577913.561535+xsq*p4;
    6618           0 :     p4 = 26554738314348543268942.48968+xsq*p4;
    6619           0 :     p4 = -99637534243069222259967.44354+xsq*p4;
    6620           0 :     q4 = 1.0;
    6621           0 :     q4 = 1612.361029677000859332072312+xsq*q4;
    6622           0 :     q4 = 1563282.754899580604737366452+xsq*q4;
    6623           0 :     q4 = 1128686837.169442121732366891+xsq*q4;
    6624           0 :     q4 = 646534088126.5275571961681500+xsq*q4;
    6625           0 :     q4 = 297663212564727.6729292742282+xsq*q4;
    6626           0 :     q4 = 108225825940881955.2553850180+xsq*q4;
    6627           0 :     q4 = 29549879358971486742.90758119+xsq*q4;
    6628           0 :     q4 = 5435310377188854170800.653097+xsq*q4;
    6629           0 :     q4 = 508206736694124324531442.4152+xsq*q4;
    6630           0 :     result = x*p4/q4+2/ae_pi*(besselj1(x, _state)*ae_log(x, _state)-1/x);
    6631           0 :     return result;
    6632             : }
    6633             : 
    6634             : 
    6635             : /*************************************************************************
    6636             : Bessel function of second kind of integer order
    6637             : 
    6638             : Returns Bessel function of order n, where n is a
    6639             : (possibly negative) integer.
    6640             : 
    6641             : The function is evaluated by forward recurrence on
    6642             : n, starting with values computed by the routines
    6643             : y0() and y1().
    6644             : 
    6645             : If n = 0 or 1 the routine for y0 or y1 is called
    6646             : directly.
    6647             : 
    6648             : ACCURACY:
    6649             :                      Absolute error, except relative
    6650             :                      when y > 1:
    6651             : arithmetic   domain     # trials      peak         rms
    6652             :    IEEE      0, 30       30000       3.4e-15     4.3e-16
    6653             : 
    6654             : Cephes Math Library Release 2.8:  June, 2000
    6655             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    6656             : *************************************************************************/
    6657           0 : double besselyn(ae_int_t n, double x, ae_state *_state)
    6658             : {
    6659             :     ae_int_t i;
    6660             :     double a;
    6661             :     double b;
    6662             :     double tmp;
    6663             :     double s;
    6664             :     double result;
    6665             : 
    6666             : 
    6667           0 :     s = (double)(1);
    6668           0 :     if( n<0 )
    6669             :     {
    6670           0 :         n = -n;
    6671           0 :         if( n%2!=0 )
    6672             :         {
    6673           0 :             s = (double)(-1);
    6674             :         }
    6675             :     }
    6676           0 :     if( n==0 )
    6677             :     {
    6678           0 :         result = bessely0(x, _state);
    6679           0 :         return result;
    6680             :     }
    6681           0 :     if( n==1 )
    6682             :     {
    6683           0 :         result = s*bessely1(x, _state);
    6684           0 :         return result;
    6685             :     }
    6686           0 :     a = bessely0(x, _state);
    6687           0 :     b = bessely1(x, _state);
    6688           0 :     for(i=1; i<=n-1; i++)
    6689             :     {
    6690           0 :         tmp = b;
    6691           0 :         b = 2*i/x*b-a;
    6692           0 :         a = tmp;
    6693             :     }
    6694           0 :     result = s*b;
    6695           0 :     return result;
    6696             : }
    6697             : 
    6698             : 
    6699             : /*************************************************************************
    6700             : Modified Bessel function of order zero
    6701             : 
    6702             : Returns modified Bessel function of order zero of the
    6703             : argument.
    6704             : 
    6705             : The function is defined as i0(x) = j0( ix ).
    6706             : 
    6707             : The range is partitioned into the two intervals [0,8] and
    6708             : (8, infinity).  Chebyshev polynomial expansions are employed
    6709             : in each interval.
    6710             : 
    6711             : ACCURACY:
    6712             : 
    6713             :                      Relative error:
    6714             : arithmetic   domain     # trials      peak         rms
    6715             :    IEEE      0,30        30000       5.8e-16     1.4e-16
    6716             : 
    6717             : Cephes Math Library Release 2.8:  June, 2000
    6718             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    6719             : *************************************************************************/
    6720           0 : double besseli0(double x, ae_state *_state)
    6721             : {
    6722             :     double y;
    6723             :     double v;
    6724             :     double z;
    6725             :     double b0;
    6726             :     double b1;
    6727             :     double b2;
    6728             :     double result;
    6729             : 
    6730             : 
    6731           0 :     if( ae_fp_less(x,(double)(0)) )
    6732             :     {
    6733           0 :         x = -x;
    6734             :     }
    6735           0 :     if( ae_fp_less_eq(x,8.0) )
    6736             :     {
    6737           0 :         y = x/2.0-2.0;
    6738           0 :         bessel_besselmfirstcheb(-4.41534164647933937950E-18, &b0, &b1, &b2, _state);
    6739           0 :         bessel_besselmnextcheb(y, 3.33079451882223809783E-17, &b0, &b1, &b2, _state);
    6740           0 :         bessel_besselmnextcheb(y, -2.43127984654795469359E-16, &b0, &b1, &b2, _state);
    6741           0 :         bessel_besselmnextcheb(y, 1.71539128555513303061E-15, &b0, &b1, &b2, _state);
    6742           0 :         bessel_besselmnextcheb(y, -1.16853328779934516808E-14, &b0, &b1, &b2, _state);
    6743           0 :         bessel_besselmnextcheb(y, 7.67618549860493561688E-14, &b0, &b1, &b2, _state);
    6744           0 :         bessel_besselmnextcheb(y, -4.85644678311192946090E-13, &b0, &b1, &b2, _state);
    6745           0 :         bessel_besselmnextcheb(y, 2.95505266312963983461E-12, &b0, &b1, &b2, _state);
    6746           0 :         bessel_besselmnextcheb(y, -1.72682629144155570723E-11, &b0, &b1, &b2, _state);
    6747           0 :         bessel_besselmnextcheb(y, 9.67580903537323691224E-11, &b0, &b1, &b2, _state);
    6748           0 :         bessel_besselmnextcheb(y, -5.18979560163526290666E-10, &b0, &b1, &b2, _state);
    6749           0 :         bessel_besselmnextcheb(y, 2.65982372468238665035E-9, &b0, &b1, &b2, _state);
    6750           0 :         bessel_besselmnextcheb(y, -1.30002500998624804212E-8, &b0, &b1, &b2, _state);
    6751           0 :         bessel_besselmnextcheb(y, 6.04699502254191894932E-8, &b0, &b1, &b2, _state);
    6752           0 :         bessel_besselmnextcheb(y, -2.67079385394061173391E-7, &b0, &b1, &b2, _state);
    6753           0 :         bessel_besselmnextcheb(y, 1.11738753912010371815E-6, &b0, &b1, &b2, _state);
    6754           0 :         bessel_besselmnextcheb(y, -4.41673835845875056359E-6, &b0, &b1, &b2, _state);
    6755           0 :         bessel_besselmnextcheb(y, 1.64484480707288970893E-5, &b0, &b1, &b2, _state);
    6756           0 :         bessel_besselmnextcheb(y, -5.75419501008210370398E-5, &b0, &b1, &b2, _state);
    6757           0 :         bessel_besselmnextcheb(y, 1.88502885095841655729E-4, &b0, &b1, &b2, _state);
    6758           0 :         bessel_besselmnextcheb(y, -5.76375574538582365885E-4, &b0, &b1, &b2, _state);
    6759           0 :         bessel_besselmnextcheb(y, 1.63947561694133579842E-3, &b0, &b1, &b2, _state);
    6760           0 :         bessel_besselmnextcheb(y, -4.32430999505057594430E-3, &b0, &b1, &b2, _state);
    6761           0 :         bessel_besselmnextcheb(y, 1.05464603945949983183E-2, &b0, &b1, &b2, _state);
    6762           0 :         bessel_besselmnextcheb(y, -2.37374148058994688156E-2, &b0, &b1, &b2, _state);
    6763           0 :         bessel_besselmnextcheb(y, 4.93052842396707084878E-2, &b0, &b1, &b2, _state);
    6764           0 :         bessel_besselmnextcheb(y, -9.49010970480476444210E-2, &b0, &b1, &b2, _state);
    6765           0 :         bessel_besselmnextcheb(y, 1.71620901522208775349E-1, &b0, &b1, &b2, _state);
    6766           0 :         bessel_besselmnextcheb(y, -3.04682672343198398683E-1, &b0, &b1, &b2, _state);
    6767           0 :         bessel_besselmnextcheb(y, 6.76795274409476084995E-1, &b0, &b1, &b2, _state);
    6768           0 :         v = 0.5*(b0-b2);
    6769           0 :         result = ae_exp(x, _state)*v;
    6770           0 :         return result;
    6771             :     }
    6772           0 :     z = 32.0/x-2.0;
    6773           0 :     bessel_besselmfirstcheb(-7.23318048787475395456E-18, &b0, &b1, &b2, _state);
    6774           0 :     bessel_besselmnextcheb(z, -4.83050448594418207126E-18, &b0, &b1, &b2, _state);
    6775           0 :     bessel_besselmnextcheb(z, 4.46562142029675999901E-17, &b0, &b1, &b2, _state);
    6776           0 :     bessel_besselmnextcheb(z, 3.46122286769746109310E-17, &b0, &b1, &b2, _state);
    6777           0 :     bessel_besselmnextcheb(z, -2.82762398051658348494E-16, &b0, &b1, &b2, _state);
    6778           0 :     bessel_besselmnextcheb(z, -3.42548561967721913462E-16, &b0, &b1, &b2, _state);
    6779           0 :     bessel_besselmnextcheb(z, 1.77256013305652638360E-15, &b0, &b1, &b2, _state);
    6780           0 :     bessel_besselmnextcheb(z, 3.81168066935262242075E-15, &b0, &b1, &b2, _state);
    6781           0 :     bessel_besselmnextcheb(z, -9.55484669882830764870E-15, &b0, &b1, &b2, _state);
    6782           0 :     bessel_besselmnextcheb(z, -4.15056934728722208663E-14, &b0, &b1, &b2, _state);
    6783           0 :     bessel_besselmnextcheb(z, 1.54008621752140982691E-14, &b0, &b1, &b2, _state);
    6784           0 :     bessel_besselmnextcheb(z, 3.85277838274214270114E-13, &b0, &b1, &b2, _state);
    6785           0 :     bessel_besselmnextcheb(z, 7.18012445138366623367E-13, &b0, &b1, &b2, _state);
    6786           0 :     bessel_besselmnextcheb(z, -1.79417853150680611778E-12, &b0, &b1, &b2, _state);
    6787           0 :     bessel_besselmnextcheb(z, -1.32158118404477131188E-11, &b0, &b1, &b2, _state);
    6788           0 :     bessel_besselmnextcheb(z, -3.14991652796324136454E-11, &b0, &b1, &b2, _state);
    6789           0 :     bessel_besselmnextcheb(z, 1.18891471078464383424E-11, &b0, &b1, &b2, _state);
    6790           0 :     bessel_besselmnextcheb(z, 4.94060238822496958910E-10, &b0, &b1, &b2, _state);
    6791           0 :     bessel_besselmnextcheb(z, 3.39623202570838634515E-9, &b0, &b1, &b2, _state);
    6792           0 :     bessel_besselmnextcheb(z, 2.26666899049817806459E-8, &b0, &b1, &b2, _state);
    6793           0 :     bessel_besselmnextcheb(z, 2.04891858946906374183E-7, &b0, &b1, &b2, _state);
    6794           0 :     bessel_besselmnextcheb(z, 2.89137052083475648297E-6, &b0, &b1, &b2, _state);
    6795           0 :     bessel_besselmnextcheb(z, 6.88975834691682398426E-5, &b0, &b1, &b2, _state);
    6796           0 :     bessel_besselmnextcheb(z, 3.36911647825569408990E-3, &b0, &b1, &b2, _state);
    6797           0 :     bessel_besselmnextcheb(z, 8.04490411014108831608E-1, &b0, &b1, &b2, _state);
    6798           0 :     v = 0.5*(b0-b2);
    6799           0 :     result = ae_exp(x, _state)*v/ae_sqrt(x, _state);
    6800           0 :     return result;
    6801             : }
    6802             : 
    6803             : 
    6804             : /*************************************************************************
    6805             : Modified Bessel function of order one
    6806             : 
    6807             : Returns modified Bessel function of order one of the
    6808             : argument.
    6809             : 
    6810             : The function is defined as i1(x) = -i j1( ix ).
    6811             : 
    6812             : The range is partitioned into the two intervals [0,8] and
    6813             : (8, infinity).  Chebyshev polynomial expansions are employed
    6814             : in each interval.
    6815             : 
    6816             : ACCURACY:
    6817             : 
    6818             :                      Relative error:
    6819             : arithmetic   domain     # trials      peak         rms
    6820             :    IEEE      0, 30       30000       1.9e-15     2.1e-16
    6821             : 
    6822             : Cephes Math Library Release 2.8:  June, 2000
    6823             : Copyright 1985, 1987, 2000 by Stephen L. Moshier
    6824             : *************************************************************************/
    6825           0 : double besseli1(double x, ae_state *_state)
    6826             : {
    6827             :     double y;
    6828             :     double z;
    6829             :     double v;
    6830             :     double b0;
    6831             :     double b1;
    6832             :     double b2;
    6833             :     double result;
    6834             : 
    6835             : 
    6836           0 :     z = ae_fabs(x, _state);
    6837           0 :     if( ae_fp_less_eq(z,8.0) )
    6838             :     {
    6839           0 :         y = z/2.0-2.0;
    6840           0 :         bessel_besselm1firstcheb(2.77791411276104639959E-18, &b0, &b1, &b2, _state);
    6841           0 :         bessel_besselm1nextcheb(y, -2.11142121435816608115E-17, &b0, &b1, &b2, _state);
    6842           0 :         bessel_besselm1nextcheb(y, 1.55363195773620046921E-16, &b0, &b1, &b2, _state);
    6843           0 :         bessel_besselm1nextcheb(y, -1.10559694773538630805E-15, &b0, &b1, &b2, _state);
    6844           0 :         bessel_besselm1nextcheb(y, 7.60068429473540693410E-15, &b0, &b1, &b2, _state);
    6845           0 :         bessel_besselm1nextcheb(y, -5.04218550472791168711E-14, &b0, &b1, &b2, _state);
    6846           0 :         bessel_besselm1nextcheb(y, 3.22379336594557470981E-13, &b0, &b1, &b2, _state);
    6847           0 :         bessel_besselm1nextcheb(y, -1.98397439776494371520E-12, &b0, &b1, &b2, _state);
    6848           0 :         bessel_besselm1nextcheb(y, 1.17361862988909016308E-11, &b0, &b1, &b2, _state);
    6849           0 :         bessel_besselm1nextcheb(y, -6.66348972350202774223E-11, &b0, &b1, &b2, _state);
    6850           0 :         bessel_besselm1nextcheb(y, 3.62559028155211703701E-10, &b0, &b1, &b2, _state);
    6851           0 :         bessel_besselm1nextcheb(y, -1.88724975172282928790E-9, &b0, &b1, &b2, _state);
    6852           0 :         bessel_besselm1nextcheb(y, 9.38153738649577178388E-9, &b0, &b1, &b2, _state);
    6853           0 :         bessel_besselm1nextcheb(y, -4.44505912879632808065E-8, &b0, &b1, &b2, _state);
    6854           0 :         bessel_besselm1nextcheb(y, 2.00329475355213526229E-7, &b0, &b1, &b2, _state);
    6855           0 :         bessel_besselm1nextcheb(y, -8.56872026469545474066E-7, &b0, &b1, &b2, _state);
    6856           0 :         bessel_besselm1nextcheb(y, 3.47025130813767847674E-6, &b0, &b1, &b2, _state);
    6857           0 :         bessel_besselm1nextcheb(y, -1.32731636560394358279E-5, &b0, &b1, &b2, _state);
    6858           0 :         bessel_besselm1nextcheb(y, 4.78156510755005422638E-5, &b0, &b1, &b2, _state);
    6859           0 :         bessel_besselm1nextcheb(y, -1.61760815825896745588E-4, &b0, &b1, &b2, _state);
    6860           0 :         bessel_besselm1nextcheb(y, 5.12285956168575772895E-4, &b0, &b1, &b2, _state);
    6861           0 :         bessel_besselm1nextcheb(y, -1.51357245063125314899E-3, &b0, &b1, &b2, _state);
    6862           0 :         bessel_besselm1nextcheb(y, 4.15642294431288815669E-3, &b0, &b1, &b2, _state);
    6863           0 :         bessel_besselm1nextcheb(y, -1.05640848946261981558E-2, &b0, &b1, &b2, _state);
    6864           0 :         bessel_besselm1nextcheb(y, 2.47264490306265168283E-2, &b0, &b1, &b2, _state);
    6865           0 :         bessel_besselm1nextcheb(y, -5.29459812080949914269E-2, &b0, &b1, &b2, _state);
    6866           0 :         bessel_besselm1nextcheb(y, 1.02643658689847095384E-1, &b0, &b1, &b2, _state);
    6867           0 :         bessel_besselm1nextcheb(y, -1.76416518357834055153E-1, &b0, &b1, &b2, _state);
    6868           0 :         bessel_besselm1nextcheb(y, 2.52587186443633654823E-1, &b0, &b1, &b2, _state);
    6869           0 :         v = 0.5*(b0-b2);
    6870           0 :         z = v*z*ae_exp(z, _state);
    6871             :     }
    6872             :     else
    6873             :     {
    6874           0 :         y = 32.0/z-2.0;
    6875           0 :         bessel_besselm1firstcheb(7.51729631084210481353E-18, &b0, &b1, &b2, _state);
    6876           0 :         bessel_besselm1nextcheb(y, 4.41434832307170791151E-18, &b0, &b1, &b2, _state);
    6877           0 :         bessel_besselm1nextcheb(y, -4.65030536848935832153E-17, &b0, &b1, &b2, _state);
    6878           0 :         bessel_besselm1nextcheb(y, -3.20952592199342395980E-17, &b0, &b1, &b2, _state);
    6879           0 :         bessel_besselm1nextcheb(y, 2.96262899764595013876E-16, &b0, &b1, &b2, _state);
    6880           0 :         bessel_besselm1nextcheb(y, 3.30820231092092828324E-16, &b0, &b1, &b2, _state);
    6881           0 :         bessel_besselm1nextcheb(y, -1.88035477551078244854E-15, &b0, &b1, &b2, _state);
    6882           0 :         bessel_besselm1nextcheb(y, -3.81440307243700780478E-15, &b0, &b1, &b2, _state);
    6883           0 :         bessel_besselm1nextcheb(y, 1.04202769841288027642E-14, &b0, &b1, &b2, _state);
    6884           0 :         bessel_besselm1nextcheb(y, 4.27244001671195135429E-14, &b0, &b1, &b2, _state);
    6885           0 :         bessel_besselm1nextcheb(y, -2.10154184277266431302E-14, &b0, &b1, &b2, _state);
    6886           0 :         bessel_besselm1nextcheb(y, -4.08355111109219731823E-13, &b0, &b1, &b2, _state);
    6887           0 :         bessel_besselm1nextcheb(y, -7.19855177624590851209E-13, &b0, &b1, &b2, _state);
    6888           0 :         bessel_besselm1nextcheb(y, 2.03562854414708950722E-12, &b0, &b1, &b2, _state);
    6889           0 :         bessel_besselm1nextcheb(y, 1.41258074366137813316E-11, &b0, &b1, &b2, _state);
    6890           0 :         bessel_besselm1nextcheb(y, 3.25260358301548823856E-11, &b0, &b1, &b2, _state);
    6891           0 :         bessel_besselm1nextcheb(y, -1.89749581235054123450E-11, &b0, &b1, &b2, _state);
    6892           0 :         bessel_besselm1nextcheb(y, -5.58974346219658380687E-10, &b0, &b1, &b2, _state);
    6893           0 :         bessel_besselm1nextcheb(y, -3.83538038596423702205E-9, &b0, &b1, &b2, _state);
    6894           0 :         bessel_besselm1nextcheb(y, -2.63146884688951950684E-8, &b0, &b1, &b2, _state);
    6895           0 :         bessel_besselm1nextcheb(y, -2.51223623787020892529E-7, &b0, &b1, &b2, _state);
    6896           0 :         bessel_besselm1nextcheb(y, -3.88256480887769039346E-6, &b0, &b1, &b2, _state);
    6897           0 :         bessel_besselm1nextcheb(y, -1.10588938762623716291E-4, &b0, &b1, &b2, _state);
    6898           0 :         bessel_besselm1nextcheb(y, -9.76109749136146840777E-3, &b0, &b1, &b2, _state);
    6899           0 :         bessel_besselm1nextcheb(y, 7.78576235018280120474E-1, &b0, &b1, &b2, _state);
    6900           0 :         v = 0.5*(b0-b2);
    6901           0 :         z = v*ae_exp(z, _state)/ae_sqrt(z, _state);
    6902             :     }
    6903           0 :     if( ae_fp_less(x,(double)(0)) )
    6904             :     {
    6905           0 :         z = -z;
    6906             :     }
    6907           0 :     result = z;
    6908           0 :     return result;
    6909             : }
    6910             : 
    6911             : 
    6912             : /*************************************************************************
    6913             : Modified Bessel function, second kind, order zero
    6914             : 
    6915             : Returns modified Bessel function of the second kind
    6916             : of order zero of the argument.
    6917             : 
    6918             : The range is partitioned into the two intervals [0,8] and
    6919             : (8, infinity).  Chebyshev polynomial expansions are employed
    6920             : in each interval.
    6921             : 
    6922             : ACCURACY:
    6923             : 
    6924             : Tested at 2000 random points between 0 and 8.  Peak absolute
    6925             : error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
    6926             :                      Relative error:
    6927             : arithmetic   domain     # trials      peak         rms
    6928             :    IEEE      0, 30       30000       1.2e-15     1.6e-16
    6929             : 
    6930             : Cephes Math Library Release 2.8:  June, 2000
    6931             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    6932             : *************************************************************************/
    6933           0 : double besselk0(double x, ae_state *_state)
    6934             : {
    6935             :     double y;
    6936             :     double z;
    6937             :     double v;
    6938             :     double b0;
    6939             :     double b1;
    6940             :     double b2;
    6941             :     double result;
    6942             : 
    6943             : 
    6944           0 :     ae_assert(ae_fp_greater(x,(double)(0)), "Domain error in BesselK0: x<=0", _state);
    6945           0 :     if( ae_fp_less_eq(x,(double)(2)) )
    6946             :     {
    6947           0 :         y = x*x-2.0;
    6948           0 :         bessel_besselmfirstcheb(1.37446543561352307156E-16, &b0, &b1, &b2, _state);
    6949           0 :         bessel_besselmnextcheb(y, 4.25981614279661018399E-14, &b0, &b1, &b2, _state);
    6950           0 :         bessel_besselmnextcheb(y, 1.03496952576338420167E-11, &b0, &b1, &b2, _state);
    6951           0 :         bessel_besselmnextcheb(y, 1.90451637722020886025E-9, &b0, &b1, &b2, _state);
    6952           0 :         bessel_besselmnextcheb(y, 2.53479107902614945675E-7, &b0, &b1, &b2, _state);
    6953           0 :         bessel_besselmnextcheb(y, 2.28621210311945178607E-5, &b0, &b1, &b2, _state);
    6954           0 :         bessel_besselmnextcheb(y, 1.26461541144692592338E-3, &b0, &b1, &b2, _state);
    6955           0 :         bessel_besselmnextcheb(y, 3.59799365153615016266E-2, &b0, &b1, &b2, _state);
    6956           0 :         bessel_besselmnextcheb(y, 3.44289899924628486886E-1, &b0, &b1, &b2, _state);
    6957           0 :         bessel_besselmnextcheb(y, -5.35327393233902768720E-1, &b0, &b1, &b2, _state);
    6958           0 :         v = 0.5*(b0-b2);
    6959           0 :         v = v-ae_log(0.5*x, _state)*besseli0(x, _state);
    6960             :     }
    6961             :     else
    6962             :     {
    6963           0 :         z = 8.0/x-2.0;
    6964           0 :         bessel_besselmfirstcheb(5.30043377268626276149E-18, &b0, &b1, &b2, _state);
    6965           0 :         bessel_besselmnextcheb(z, -1.64758043015242134646E-17, &b0, &b1, &b2, _state);
    6966           0 :         bessel_besselmnextcheb(z, 5.21039150503902756861E-17, &b0, &b1, &b2, _state);
    6967           0 :         bessel_besselmnextcheb(z, -1.67823109680541210385E-16, &b0, &b1, &b2, _state);
    6968           0 :         bessel_besselmnextcheb(z, 5.51205597852431940784E-16, &b0, &b1, &b2, _state);
    6969           0 :         bessel_besselmnextcheb(z, -1.84859337734377901440E-15, &b0, &b1, &b2, _state);
    6970           0 :         bessel_besselmnextcheb(z, 6.34007647740507060557E-15, &b0, &b1, &b2, _state);
    6971           0 :         bessel_besselmnextcheb(z, -2.22751332699166985548E-14, &b0, &b1, &b2, _state);
    6972           0 :         bessel_besselmnextcheb(z, 8.03289077536357521100E-14, &b0, &b1, &b2, _state);
    6973           0 :         bessel_besselmnextcheb(z, -2.98009692317273043925E-13, &b0, &b1, &b2, _state);
    6974           0 :         bessel_besselmnextcheb(z, 1.14034058820847496303E-12, &b0, &b1, &b2, _state);
    6975           0 :         bessel_besselmnextcheb(z, -4.51459788337394416547E-12, &b0, &b1, &b2, _state);
    6976           0 :         bessel_besselmnextcheb(z, 1.85594911495471785253E-11, &b0, &b1, &b2, _state);
    6977           0 :         bessel_besselmnextcheb(z, -7.95748924447710747776E-11, &b0, &b1, &b2, _state);
    6978           0 :         bessel_besselmnextcheb(z, 3.57739728140030116597E-10, &b0, &b1, &b2, _state);
    6979           0 :         bessel_besselmnextcheb(z, -1.69753450938905987466E-9, &b0, &b1, &b2, _state);
    6980           0 :         bessel_besselmnextcheb(z, 8.57403401741422608519E-9, &b0, &b1, &b2, _state);
    6981           0 :         bessel_besselmnextcheb(z, -4.66048989768794782956E-8, &b0, &b1, &b2, _state);
    6982           0 :         bessel_besselmnextcheb(z, 2.76681363944501510342E-7, &b0, &b1, &b2, _state);
    6983           0 :         bessel_besselmnextcheb(z, -1.83175552271911948767E-6, &b0, &b1, &b2, _state);
    6984           0 :         bessel_besselmnextcheb(z, 1.39498137188764993662E-5, &b0, &b1, &b2, _state);
    6985           0 :         bessel_besselmnextcheb(z, -1.28495495816278026384E-4, &b0, &b1, &b2, _state);
    6986           0 :         bessel_besselmnextcheb(z, 1.56988388573005337491E-3, &b0, &b1, &b2, _state);
    6987           0 :         bessel_besselmnextcheb(z, -3.14481013119645005427E-2, &b0, &b1, &b2, _state);
    6988           0 :         bessel_besselmnextcheb(z, 2.44030308206595545468E0, &b0, &b1, &b2, _state);
    6989           0 :         v = 0.5*(b0-b2);
    6990           0 :         v = v*ae_exp(-x, _state)/ae_sqrt(x, _state);
    6991             :     }
    6992           0 :     result = v;
    6993           0 :     return result;
    6994             : }
    6995             : 
    6996             : 
    6997             : /*************************************************************************
    6998             : Modified Bessel function, second kind, order one
    6999             : 
    7000             : Computes the modified Bessel function of the second kind
    7001             : of order one of the argument.
    7002             : 
    7003             : The range is partitioned into the two intervals [0,2] and
    7004             : (2, infinity).  Chebyshev polynomial expansions are employed
    7005             : in each interval.
    7006             : 
    7007             : ACCURACY:
    7008             : 
    7009             :                      Relative error:
    7010             : arithmetic   domain     # trials      peak         rms
    7011             :    IEEE      0, 30       30000       1.2e-15     1.6e-16
    7012             : 
    7013             : Cephes Math Library Release 2.8:  June, 2000
    7014             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    7015             : *************************************************************************/
    7016           0 : double besselk1(double x, ae_state *_state)
    7017             : {
    7018             :     double y;
    7019             :     double z;
    7020             :     double v;
    7021             :     double b0;
    7022             :     double b1;
    7023             :     double b2;
    7024             :     double result;
    7025             : 
    7026             : 
    7027           0 :     z = 0.5*x;
    7028           0 :     ae_assert(ae_fp_greater(z,(double)(0)), "Domain error in K1", _state);
    7029           0 :     if( ae_fp_less_eq(x,(double)(2)) )
    7030             :     {
    7031           0 :         y = x*x-2.0;
    7032           0 :         bessel_besselm1firstcheb(-7.02386347938628759343E-18, &b0, &b1, &b2, _state);
    7033           0 :         bessel_besselm1nextcheb(y, -2.42744985051936593393E-15, &b0, &b1, &b2, _state);
    7034           0 :         bessel_besselm1nextcheb(y, -6.66690169419932900609E-13, &b0, &b1, &b2, _state);
    7035           0 :         bessel_besselm1nextcheb(y, -1.41148839263352776110E-10, &b0, &b1, &b2, _state);
    7036           0 :         bessel_besselm1nextcheb(y, -2.21338763073472585583E-8, &b0, &b1, &b2, _state);
    7037           0 :         bessel_besselm1nextcheb(y, -2.43340614156596823496E-6, &b0, &b1, &b2, _state);
    7038           0 :         bessel_besselm1nextcheb(y, -1.73028895751305206302E-4, &b0, &b1, &b2, _state);
    7039           0 :         bessel_besselm1nextcheb(y, -6.97572385963986435018E-3, &b0, &b1, &b2, _state);
    7040           0 :         bessel_besselm1nextcheb(y, -1.22611180822657148235E-1, &b0, &b1, &b2, _state);
    7041           0 :         bessel_besselm1nextcheb(y, -3.53155960776544875667E-1, &b0, &b1, &b2, _state);
    7042           0 :         bessel_besselm1nextcheb(y, 1.52530022733894777053E0, &b0, &b1, &b2, _state);
    7043           0 :         v = 0.5*(b0-b2);
    7044           0 :         result = ae_log(z, _state)*besseli1(x, _state)+v/x;
    7045             :     }
    7046             :     else
    7047             :     {
    7048           0 :         y = 8.0/x-2.0;
    7049           0 :         bessel_besselm1firstcheb(-5.75674448366501715755E-18, &b0, &b1, &b2, _state);
    7050           0 :         bessel_besselm1nextcheb(y, 1.79405087314755922667E-17, &b0, &b1, &b2, _state);
    7051           0 :         bessel_besselm1nextcheb(y, -5.68946255844285935196E-17, &b0, &b1, &b2, _state);
    7052           0 :         bessel_besselm1nextcheb(y, 1.83809354436663880070E-16, &b0, &b1, &b2, _state);
    7053           0 :         bessel_besselm1nextcheb(y, -6.05704724837331885336E-16, &b0, &b1, &b2, _state);
    7054           0 :         bessel_besselm1nextcheb(y, 2.03870316562433424052E-15, &b0, &b1, &b2, _state);
    7055           0 :         bessel_besselm1nextcheb(y, -7.01983709041831346144E-15, &b0, &b1, &b2, _state);
    7056           0 :         bessel_besselm1nextcheb(y, 2.47715442448130437068E-14, &b0, &b1, &b2, _state);
    7057           0 :         bessel_besselm1nextcheb(y, -8.97670518232499435011E-14, &b0, &b1, &b2, _state);
    7058           0 :         bessel_besselm1nextcheb(y, 3.34841966607842919884E-13, &b0, &b1, &b2, _state);
    7059           0 :         bessel_besselm1nextcheb(y, -1.28917396095102890680E-12, &b0, &b1, &b2, _state);
    7060           0 :         bessel_besselm1nextcheb(y, 5.13963967348173025100E-12, &b0, &b1, &b2, _state);
    7061           0 :         bessel_besselm1nextcheb(y, -2.12996783842756842877E-11, &b0, &b1, &b2, _state);
    7062           0 :         bessel_besselm1nextcheb(y, 9.21831518760500529508E-11, &b0, &b1, &b2, _state);
    7063           0 :         bessel_besselm1nextcheb(y, -4.19035475934189648750E-10, &b0, &b1, &b2, _state);
    7064           0 :         bessel_besselm1nextcheb(y, 2.01504975519703286596E-9, &b0, &b1, &b2, _state);
    7065           0 :         bessel_besselm1nextcheb(y, -1.03457624656780970260E-8, &b0, &b1, &b2, _state);
    7066           0 :         bessel_besselm1nextcheb(y, 5.74108412545004946722E-8, &b0, &b1, &b2, _state);
    7067           0 :         bessel_besselm1nextcheb(y, -3.50196060308781257119E-7, &b0, &b1, &b2, _state);
    7068           0 :         bessel_besselm1nextcheb(y, 2.40648494783721712015E-6, &b0, &b1, &b2, _state);
    7069           0 :         bessel_besselm1nextcheb(y, -1.93619797416608296024E-5, &b0, &b1, &b2, _state);
    7070           0 :         bessel_besselm1nextcheb(y, 1.95215518471351631108E-4, &b0, &b1, &b2, _state);
    7071           0 :         bessel_besselm1nextcheb(y, -2.85781685962277938680E-3, &b0, &b1, &b2, _state);
    7072           0 :         bessel_besselm1nextcheb(y, 1.03923736576817238437E-1, &b0, &b1, &b2, _state);
    7073           0 :         bessel_besselm1nextcheb(y, 2.72062619048444266945E0, &b0, &b1, &b2, _state);
    7074           0 :         v = 0.5*(b0-b2);
    7075           0 :         result = ae_exp(-x, _state)*v/ae_sqrt(x, _state);
    7076             :     }
    7077           0 :     return result;
    7078             : }
    7079             : 
    7080             : 
    7081             : /*************************************************************************
    7082             : Modified Bessel function, second kind, integer order
    7083             : 
    7084             : Returns modified Bessel function of the second kind
    7085             : of order n of the argument.
    7086             : 
    7087             : The range is partitioned into the two intervals [0,9.55] and
    7088             : (9.55, infinity).  An ascending power series is used in the
    7089             : low range, and an asymptotic expansion in the high range.
    7090             : 
    7091             : ACCURACY:
    7092             : 
    7093             :                      Relative error:
    7094             : arithmetic   domain     # trials      peak         rms
    7095             :    IEEE      0,30        90000       1.8e-8      3.0e-10
    7096             : 
    7097             : Error is high only near the crossover point x = 9.55
    7098             : between the two expansions used.
    7099             : 
    7100             : Cephes Math Library Release 2.8:  June, 2000
    7101             : Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
    7102             : *************************************************************************/
    7103           0 : double besselkn(ae_int_t nn, double x, ae_state *_state)
    7104             : {
    7105             :     double k;
    7106             :     double kf;
    7107             :     double nk1f;
    7108             :     double nkf;
    7109             :     double zn;
    7110             :     double t;
    7111             :     double s;
    7112             :     double z0;
    7113             :     double z;
    7114             :     double ans;
    7115             :     double fn;
    7116             :     double pn;
    7117             :     double pk;
    7118             :     double zmn;
    7119             :     double tlg;
    7120             :     double tox;
    7121             :     ae_int_t i;
    7122             :     ae_int_t n;
    7123             :     double eul;
    7124             :     double result;
    7125             : 
    7126             : 
    7127           0 :     eul = 5.772156649015328606065e-1;
    7128           0 :     if( nn<0 )
    7129             :     {
    7130           0 :         n = -nn;
    7131             :     }
    7132             :     else
    7133             :     {
    7134           0 :         n = nn;
    7135             :     }
    7136           0 :     ae_assert(n<=31, "Overflow in BesselKN", _state);
    7137           0 :     ae_assert(ae_fp_greater(x,(double)(0)), "Domain error in BesselKN", _state);
    7138           0 :     if( ae_fp_less_eq(x,9.55) )
    7139             :     {
    7140           0 :         ans = 0.0;
    7141           0 :         z0 = 0.25*x*x;
    7142           0 :         fn = 1.0;
    7143           0 :         pn = 0.0;
    7144           0 :         zmn = 1.0;
    7145           0 :         tox = 2.0/x;
    7146           0 :         if( n>0 )
    7147             :         {
    7148           0 :             pn = -eul;
    7149           0 :             k = 1.0;
    7150           0 :             for(i=1; i<=n-1; i++)
    7151             :             {
    7152           0 :                 pn = pn+1.0/k;
    7153           0 :                 k = k+1.0;
    7154           0 :                 fn = fn*k;
    7155             :             }
    7156           0 :             zmn = tox;
    7157           0 :             if( n==1 )
    7158             :             {
    7159           0 :                 ans = 1.0/x;
    7160             :             }
    7161             :             else
    7162             :             {
    7163           0 :                 nk1f = fn/n;
    7164           0 :                 kf = 1.0;
    7165           0 :                 s = nk1f;
    7166           0 :                 z = -z0;
    7167           0 :                 zn = 1.0;
    7168           0 :                 for(i=1; i<=n-1; i++)
    7169             :                 {
    7170           0 :                     nk1f = nk1f/(n-i);
    7171           0 :                     kf = kf*i;
    7172           0 :                     zn = zn*z;
    7173           0 :                     t = nk1f*zn/kf;
    7174           0 :                     s = s+t;
    7175           0 :                     ae_assert(ae_fp_greater(ae_maxrealnumber-ae_fabs(t, _state),ae_fabs(s, _state)), "Overflow in BesselKN", _state);
    7176           0 :                     ae_assert(!(ae_fp_greater(tox,1.0)&&ae_fp_less(ae_maxrealnumber/tox,zmn)), "Overflow in BesselKN", _state);
    7177           0 :                     zmn = zmn*tox;
    7178             :                 }
    7179           0 :                 s = s*0.5;
    7180           0 :                 t = ae_fabs(s, _state);
    7181           0 :                 ae_assert(!(ae_fp_greater(zmn,1.0)&&ae_fp_less(ae_maxrealnumber/zmn,t)), "Overflow in BesselKN", _state);
    7182           0 :                 ae_assert(!(ae_fp_greater(t,1.0)&&ae_fp_less(ae_maxrealnumber/t,zmn)), "Overflow in BesselKN", _state);
    7183           0 :                 ans = s*zmn;
    7184             :             }
    7185             :         }
    7186           0 :         tlg = 2.0*ae_log(0.5*x, _state);
    7187           0 :         pk = -eul;
    7188           0 :         if( n==0 )
    7189             :         {
    7190           0 :             pn = pk;
    7191           0 :             t = 1.0;
    7192             :         }
    7193             :         else
    7194             :         {
    7195           0 :             pn = pn+1.0/n;
    7196           0 :             t = 1.0/fn;
    7197             :         }
    7198           0 :         s = (pk+pn-tlg)*t;
    7199           0 :         k = 1.0;
    7200             :         do
    7201             :         {
    7202           0 :             t = t*(z0/(k*(k+n)));
    7203           0 :             pk = pk+1.0/k;
    7204           0 :             pn = pn+1.0/(k+n);
    7205           0 :             s = s+(pk+pn-tlg)*t;
    7206           0 :             k = k+1.0;
    7207             :         }
    7208           0 :         while(ae_fp_greater(ae_fabs(t/s, _state),ae_machineepsilon));
    7209           0 :         s = 0.5*s/zmn;
    7210           0 :         if( n%2!=0 )
    7211             :         {
    7212           0 :             s = -s;
    7213             :         }
    7214           0 :         ans = ans+s;
    7215           0 :         result = ans;
    7216           0 :         return result;
    7217             :     }
    7218           0 :     if( ae_fp_greater(x,ae_log(ae_maxrealnumber, _state)) )
    7219             :     {
    7220           0 :         result = (double)(0);
    7221           0 :         return result;
    7222             :     }
    7223           0 :     k = (double)(n);
    7224           0 :     pn = 4.0*k*k;
    7225           0 :     pk = 1.0;
    7226           0 :     z0 = 8.0*x;
    7227           0 :     fn = 1.0;
    7228           0 :     t = 1.0;
    7229           0 :     s = t;
    7230           0 :     nkf = ae_maxrealnumber;
    7231           0 :     i = 0;
    7232             :     do
    7233             :     {
    7234           0 :         z = pn-pk*pk;
    7235           0 :         t = t*z/(fn*z0);
    7236           0 :         nk1f = ae_fabs(t, _state);
    7237           0 :         if( i>=n&&ae_fp_greater(nk1f,nkf) )
    7238             :         {
    7239           0 :             break;
    7240             :         }
    7241           0 :         nkf = nk1f;
    7242           0 :         s = s+t;
    7243           0 :         fn = fn+1.0;
    7244           0 :         pk = pk+2.0;
    7245           0 :         i = i+1;
    7246             :     }
    7247           0 :     while(ae_fp_greater(ae_fabs(t/s, _state),ae_machineepsilon));
    7248           0 :     result = ae_exp(-x, _state)*ae_sqrt(ae_pi/(2.0*x), _state)*s;
    7249           0 :     return result;
    7250             : }
    7251             : 
    7252             : 
    7253             : /*************************************************************************
    7254             : Internal subroutine
    7255             : 
    7256             : Cephes Math Library Release 2.8:  June, 2000
    7257             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    7258             : *************************************************************************/
    7259           0 : static void bessel_besselmfirstcheb(double c,
    7260             :      double* b0,
    7261             :      double* b1,
    7262             :      double* b2,
    7263             :      ae_state *_state)
    7264             : {
    7265             : 
    7266             : 
    7267           0 :     *b0 = c;
    7268           0 :     *b1 = 0.0;
    7269           0 :     *b2 = 0.0;
    7270           0 : }
    7271             : 
    7272             : 
    7273             : /*************************************************************************
    7274             : Internal subroutine
    7275             : 
    7276             : Cephes Math Library Release 2.8:  June, 2000
    7277             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    7278             : *************************************************************************/
    7279           0 : static void bessel_besselmnextcheb(double x,
    7280             :      double c,
    7281             :      double* b0,
    7282             :      double* b1,
    7283             :      double* b2,
    7284             :      ae_state *_state)
    7285             : {
    7286             : 
    7287             : 
    7288           0 :     *b2 = *b1;
    7289           0 :     *b1 = *b0;
    7290           0 :     *b0 = x*(*b1)-(*b2)+c;
    7291           0 : }
    7292             : 
    7293             : 
    7294             : /*************************************************************************
    7295             : Internal subroutine
    7296             : 
    7297             : Cephes Math Library Release 2.8:  June, 2000
    7298             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    7299             : *************************************************************************/
    7300           0 : static void bessel_besselm1firstcheb(double c,
    7301             :      double* b0,
    7302             :      double* b1,
    7303             :      double* b2,
    7304             :      ae_state *_state)
    7305             : {
    7306             : 
    7307             : 
    7308           0 :     *b0 = c;
    7309           0 :     *b1 = 0.0;
    7310           0 :     *b2 = 0.0;
    7311           0 : }
    7312             : 
    7313             : 
    7314             : /*************************************************************************
    7315             : Internal subroutine
    7316             : 
    7317             : Cephes Math Library Release 2.8:  June, 2000
    7318             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    7319             : *************************************************************************/
    7320           0 : static void bessel_besselm1nextcheb(double x,
    7321             :      double c,
    7322             :      double* b0,
    7323             :      double* b1,
    7324             :      double* b2,
    7325             :      ae_state *_state)
    7326             : {
    7327             : 
    7328             : 
    7329           0 :     *b2 = *b1;
    7330           0 :     *b1 = *b0;
    7331           0 :     *b0 = x*(*b1)-(*b2)+c;
    7332           0 : }
    7333             : 
    7334             : 
    7335           0 : static void bessel_besselasympt0(double x,
    7336             :      double* pzero,
    7337             :      double* qzero,
    7338             :      ae_state *_state)
    7339             : {
    7340             :     double xsq;
    7341             :     double p2;
    7342             :     double q2;
    7343             :     double p3;
    7344             :     double q3;
    7345             : 
    7346           0 :     *pzero = 0;
    7347           0 :     *qzero = 0;
    7348             : 
    7349           0 :     xsq = 64.0/(x*x);
    7350           0 :     p2 = 0.0;
    7351           0 :     p2 = 2485.271928957404011288128951+xsq*p2;
    7352           0 :     p2 = 153982.6532623911470917825993+xsq*p2;
    7353           0 :     p2 = 2016135.283049983642487182349+xsq*p2;
    7354           0 :     p2 = 8413041.456550439208464315611+xsq*p2;
    7355           0 :     p2 = 12332384.76817638145232406055+xsq*p2;
    7356           0 :     p2 = 5393485.083869438325262122897+xsq*p2;
    7357           0 :     q2 = 1.0;
    7358           0 :     q2 = 2615.700736920839685159081813+xsq*q2;
    7359           0 :     q2 = 156001.7276940030940592769933+xsq*q2;
    7360           0 :     q2 = 2025066.801570134013891035236+xsq*q2;
    7361           0 :     q2 = 8426449.050629797331554404810+xsq*q2;
    7362           0 :     q2 = 12338310.22786324960844856182+xsq*q2;
    7363           0 :     q2 = 5393485.083869438325560444960+xsq*q2;
    7364           0 :     p3 = -0.0;
    7365           0 :     p3 = -4.887199395841261531199129300+xsq*p3;
    7366           0 :     p3 = -226.2630641933704113967255053+xsq*p3;
    7367           0 :     p3 = -2365.956170779108192723612816+xsq*p3;
    7368           0 :     p3 = -8239.066313485606568803548860+xsq*p3;
    7369           0 :     p3 = -10381.41698748464093880530341+xsq*p3;
    7370           0 :     p3 = -3984.617357595222463506790588+xsq*p3;
    7371           0 :     q3 = 1.0;
    7372           0 :     q3 = 408.7714673983499223402830260+xsq*q3;
    7373           0 :     q3 = 15704.89191515395519392882766+xsq*q3;
    7374           0 :     q3 = 156021.3206679291652539287109+xsq*q3;
    7375           0 :     q3 = 533291.3634216897168722255057+xsq*q3;
    7376           0 :     q3 = 666745.4239319826986004038103+xsq*q3;
    7377           0 :     q3 = 255015.5108860942382983170882+xsq*q3;
    7378           0 :     *pzero = p2/q2;
    7379           0 :     *qzero = 8*p3/q3/x;
    7380           0 : }
    7381             : 
    7382             : 
    7383           0 : static void bessel_besselasympt1(double x,
    7384             :      double* pzero,
    7385             :      double* qzero,
    7386             :      ae_state *_state)
    7387             : {
    7388             :     double xsq;
    7389             :     double p2;
    7390             :     double q2;
    7391             :     double p3;
    7392             :     double q3;
    7393             : 
    7394           0 :     *pzero = 0;
    7395           0 :     *qzero = 0;
    7396             : 
    7397           0 :     xsq = 64.0/(x*x);
    7398           0 :     p2 = -1611.616644324610116477412898;
    7399           0 :     p2 = -109824.0554345934672737413139+xsq*p2;
    7400           0 :     p2 = -1523529.351181137383255105722+xsq*p2;
    7401           0 :     p2 = -6603373.248364939109255245434+xsq*p2;
    7402           0 :     p2 = -9942246.505077641195658377899+xsq*p2;
    7403           0 :     p2 = -4435757.816794127857114720794+xsq*p2;
    7404           0 :     q2 = 1.0;
    7405           0 :     q2 = -1455.009440190496182453565068+xsq*q2;
    7406           0 :     q2 = -107263.8599110382011903063867+xsq*q2;
    7407           0 :     q2 = -1511809.506634160881644546358+xsq*q2;
    7408           0 :     q2 = -6585339.479723087072826915069+xsq*q2;
    7409           0 :     q2 = -9934124.389934585658967556309+xsq*q2;
    7410           0 :     q2 = -4435757.816794127856828016962+xsq*q2;
    7411           0 :     p3 = 35.26513384663603218592175580;
    7412           0 :     p3 = 1706.375429020768002061283546+xsq*p3;
    7413           0 :     p3 = 18494.26287322386679652009819+xsq*p3;
    7414           0 :     p3 = 66178.83658127083517939992166+xsq*p3;
    7415           0 :     p3 = 85145.16067533570196555001171+xsq*p3;
    7416           0 :     p3 = 33220.91340985722351859704442+xsq*p3;
    7417           0 :     q3 = 1.0;
    7418           0 :     q3 = 863.8367769604990967475517183+xsq*q3;
    7419           0 :     q3 = 37890.22974577220264142952256+xsq*q3;
    7420           0 :     q3 = 400294.4358226697511708610813+xsq*q3;
    7421           0 :     q3 = 1419460.669603720892855755253+xsq*q3;
    7422           0 :     q3 = 1819458.042243997298924553839+xsq*q3;
    7423           0 :     q3 = 708712.8194102874357377502472+xsq*q3;
    7424           0 :     *pzero = p2/q2;
    7425           0 :     *qzero = 8*p3/q3/x;
    7426           0 : }
    7427             : 
    7428             : 
    7429             : #endif
    7430             : #if defined(AE_COMPILE_IBETAF) || !defined(AE_PARTIAL_BUILD)
    7431             : 
    7432             : 
    7433             : /*************************************************************************
    7434             : Incomplete beta integral
    7435             : 
    7436             : Returns incomplete beta integral of the arguments, evaluated
    7437             : from zero to x.  The function is defined as
    7438             : 
    7439             :                  x
    7440             :     -            -
    7441             :    | (a+b)      | |  a-1     b-1
    7442             :  -----------    |   t   (1-t)   dt.
    7443             :   -     -     | |
    7444             :  | (a) | (b)   -
    7445             :                 0
    7446             : 
    7447             : The domain of definition is 0 <= x <= 1.  In this
    7448             : implementation a and b are restricted to positive values.
    7449             : The integral from x to 1 may be obtained by the symmetry
    7450             : relation
    7451             : 
    7452             :    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).
    7453             : 
    7454             : The integral is evaluated by a continued fraction expansion
    7455             : or, when b*x is small, by a power series.
    7456             : 
    7457             : ACCURACY:
    7458             : 
    7459             : Tested at uniformly distributed random points (a,b,x) with a and b
    7460             : in "domain" and x between 0 and 1.
    7461             :                                        Relative error
    7462             : arithmetic   domain     # trials      peak         rms
    7463             :    IEEE      0,5         10000       6.9e-15     4.5e-16
    7464             :    IEEE      0,85       250000       2.2e-13     1.7e-14
    7465             :    IEEE      0,1000      30000       5.3e-12     6.3e-13
    7466             :    IEEE      0,10000    250000       9.3e-11     7.1e-12
    7467             :    IEEE      0,100000    10000       8.7e-10     4.8e-11
    7468             : Outputs smaller than the IEEE gradual underflow threshold
    7469             : were excluded from these statistics.
    7470             : 
    7471             : Cephes Math Library, Release 2.8:  June, 2000
    7472             : Copyright 1984, 1995, 2000 by Stephen L. Moshier
    7473             : *************************************************************************/
    7474           0 : double incompletebeta(double a, double b, double x, ae_state *_state)
    7475             : {
    7476             :     double t;
    7477             :     double xc;
    7478             :     double w;
    7479             :     double y;
    7480             :     ae_int_t flag;
    7481             :     double sg;
    7482             :     double big;
    7483             :     double biginv;
    7484             :     double maxgam;
    7485             :     double minlog;
    7486             :     double maxlog;
    7487             :     double result;
    7488             : 
    7489             : 
    7490           0 :     big = 4.503599627370496e15;
    7491           0 :     biginv = 2.22044604925031308085e-16;
    7492           0 :     maxgam = 171.624376956302725;
    7493           0 :     minlog = ae_log(ae_minrealnumber, _state);
    7494           0 :     maxlog = ae_log(ae_maxrealnumber, _state);
    7495           0 :     ae_assert(ae_fp_greater(a,(double)(0))&&ae_fp_greater(b,(double)(0)), "Domain error in IncompleteBeta", _state);
    7496           0 :     ae_assert(ae_fp_greater_eq(x,(double)(0))&&ae_fp_less_eq(x,(double)(1)), "Domain error in IncompleteBeta", _state);
    7497           0 :     if( ae_fp_eq(x,(double)(0)) )
    7498             :     {
    7499           0 :         result = (double)(0);
    7500           0 :         return result;
    7501             :     }
    7502           0 :     if( ae_fp_eq(x,(double)(1)) )
    7503             :     {
    7504           0 :         result = (double)(1);
    7505           0 :         return result;
    7506             :     }
    7507           0 :     flag = 0;
    7508           0 :     if( ae_fp_less_eq(b*x,1.0)&&ae_fp_less_eq(x,0.95) )
    7509             :     {
    7510           0 :         result = ibetaf_incompletebetaps(a, b, x, maxgam, _state);
    7511           0 :         return result;
    7512             :     }
    7513           0 :     w = 1.0-x;
    7514           0 :     if( ae_fp_greater(x,a/(a+b)) )
    7515             :     {
    7516           0 :         flag = 1;
    7517           0 :         t = a;
    7518           0 :         a = b;
    7519           0 :         b = t;
    7520           0 :         xc = x;
    7521           0 :         x = w;
    7522             :     }
    7523             :     else
    7524             :     {
    7525           0 :         xc = w;
    7526             :     }
    7527           0 :     if( (flag==1&&ae_fp_less_eq(b*x,1.0))&&ae_fp_less_eq(x,0.95) )
    7528             :     {
    7529           0 :         t = ibetaf_incompletebetaps(a, b, x, maxgam, _state);
    7530           0 :         if( ae_fp_less_eq(t,ae_machineepsilon) )
    7531             :         {
    7532           0 :             result = 1.0-ae_machineepsilon;
    7533             :         }
    7534             :         else
    7535             :         {
    7536           0 :             result = 1.0-t;
    7537             :         }
    7538           0 :         return result;
    7539             :     }
    7540           0 :     y = x*(a+b-2.0)-(a-1.0);
    7541           0 :     if( ae_fp_less(y,0.0) )
    7542             :     {
    7543           0 :         w = ibetaf_incompletebetafe(a, b, x, big, biginv, _state);
    7544             :     }
    7545             :     else
    7546             :     {
    7547           0 :         w = ibetaf_incompletebetafe2(a, b, x, big, biginv, _state)/xc;
    7548             :     }
    7549           0 :     y = a*ae_log(x, _state);
    7550           0 :     t = b*ae_log(xc, _state);
    7551           0 :     if( (ae_fp_less(a+b,maxgam)&&ae_fp_less(ae_fabs(y, _state),maxlog))&&ae_fp_less(ae_fabs(t, _state),maxlog) )
    7552             :     {
    7553           0 :         t = ae_pow(xc, b, _state);
    7554           0 :         t = t*ae_pow(x, a, _state);
    7555           0 :         t = t/a;
    7556           0 :         t = t*w;
    7557           0 :         t = t*(gammafunction(a+b, _state)/(gammafunction(a, _state)*gammafunction(b, _state)));
    7558           0 :         if( flag==1 )
    7559             :         {
    7560           0 :             if( ae_fp_less_eq(t,ae_machineepsilon) )
    7561             :             {
    7562           0 :                 result = 1.0-ae_machineepsilon;
    7563             :             }
    7564             :             else
    7565             :             {
    7566           0 :                 result = 1.0-t;
    7567             :             }
    7568             :         }
    7569             :         else
    7570             :         {
    7571           0 :             result = t;
    7572             :         }
    7573           0 :         return result;
    7574             :     }
    7575           0 :     y = y+t+lngamma(a+b, &sg, _state)-lngamma(a, &sg, _state)-lngamma(b, &sg, _state);
    7576           0 :     y = y+ae_log(w/a, _state);
    7577           0 :     if( ae_fp_less(y,minlog) )
    7578             :     {
    7579           0 :         t = 0.0;
    7580             :     }
    7581             :     else
    7582             :     {
    7583           0 :         t = ae_exp(y, _state);
    7584             :     }
    7585           0 :     if( flag==1 )
    7586             :     {
    7587           0 :         if( ae_fp_less_eq(t,ae_machineepsilon) )
    7588             :         {
    7589           0 :             t = 1.0-ae_machineepsilon;
    7590             :         }
    7591             :         else
    7592             :         {
    7593           0 :             t = 1.0-t;
    7594             :         }
    7595             :     }
    7596           0 :     result = t;
    7597           0 :     return result;
    7598             : }
    7599             : 
    7600             : 
    7601             : /*************************************************************************
    7602             : Inverse of imcomplete beta integral
    7603             : 
    7604             : Given y, the function finds x such that
    7605             : 
    7606             :  incbet( a, b, x ) = y .
    7607             : 
    7608             : The routine performs interval halving or Newton iterations to find the
    7609             : root of incbet(a,b,x) - y = 0.
    7610             : 
    7611             : 
    7612             : ACCURACY:
    7613             : 
    7614             :                      Relative error:
    7615             :                x     a,b
    7616             : arithmetic   domain  domain  # trials    peak       rms
    7617             :    IEEE      0,1    .5,10000   50000    5.8e-12   1.3e-13
    7618             :    IEEE      0,1   .25,100    100000    1.8e-13   3.9e-15
    7619             :    IEEE      0,1     0,5       50000    1.1e-12   5.5e-15
    7620             : With a and b constrained to half-integer or integer values:
    7621             :    IEEE      0,1    .5,10000   50000    5.8e-12   1.1e-13
    7622             :    IEEE      0,1    .5,100    100000    1.7e-14   7.9e-16
    7623             : With a = .5, b constrained to half-integer or integer values:
    7624             :    IEEE      0,1    .5,10000   10000    8.3e-11   1.0e-11
    7625             : 
    7626             : Cephes Math Library Release 2.8:  June, 2000
    7627             : Copyright 1984, 1996, 2000 by Stephen L. Moshier
    7628             : *************************************************************************/
    7629           0 : double invincompletebeta(double a, double b, double y, ae_state *_state)
    7630             : {
    7631             :     double aaa;
    7632             :     double bbb;
    7633             :     double y0;
    7634             :     double d;
    7635             :     double yyy;
    7636             :     double x;
    7637             :     double x0;
    7638             :     double x1;
    7639             :     double lgm;
    7640             :     double yp;
    7641             :     double di;
    7642             :     double dithresh;
    7643             :     double yl;
    7644             :     double yh;
    7645             :     double xt;
    7646             :     ae_int_t i;
    7647             :     ae_int_t rflg;
    7648             :     ae_int_t dir;
    7649             :     ae_int_t nflg;
    7650             :     double s;
    7651             :     ae_int_t mainlooppos;
    7652             :     ae_int_t ihalve;
    7653             :     ae_int_t ihalvecycle;
    7654             :     ae_int_t newt;
    7655             :     ae_int_t newtcycle;
    7656             :     ae_int_t breaknewtcycle;
    7657             :     ae_int_t breakihalvecycle;
    7658             :     double result;
    7659             : 
    7660             : 
    7661           0 :     i = 0;
    7662           0 :     ae_assert(ae_fp_greater_eq(y,(double)(0))&&ae_fp_less_eq(y,(double)(1)), "Domain error in InvIncompleteBeta", _state);
    7663             :     
    7664             :     /*
    7665             :      * special cases
    7666             :      */
    7667           0 :     if( ae_fp_eq(y,(double)(0)) )
    7668             :     {
    7669           0 :         result = (double)(0);
    7670           0 :         return result;
    7671             :     }
    7672           0 :     if( ae_fp_eq(y,1.0) )
    7673             :     {
    7674           0 :         result = (double)(1);
    7675           0 :         return result;
    7676             :     }
    7677             :     
    7678             :     /*
    7679             :      * these initializations are not really necessary,
    7680             :      * but without them compiler complains about 'possibly uninitialized variables'.
    7681             :      */
    7682           0 :     dithresh = (double)(0);
    7683           0 :     rflg = 0;
    7684           0 :     aaa = (double)(0);
    7685           0 :     bbb = (double)(0);
    7686           0 :     y0 = (double)(0);
    7687           0 :     x = (double)(0);
    7688           0 :     yyy = (double)(0);
    7689           0 :     lgm = (double)(0);
    7690           0 :     dir = 0;
    7691           0 :     di = (double)(0);
    7692             :     
    7693             :     /*
    7694             :      * normal initializations
    7695             :      */
    7696           0 :     x0 = 0.0;
    7697           0 :     yl = 0.0;
    7698           0 :     x1 = 1.0;
    7699           0 :     yh = 1.0;
    7700           0 :     nflg = 0;
    7701           0 :     mainlooppos = 0;
    7702           0 :     ihalve = 1;
    7703           0 :     ihalvecycle = 2;
    7704           0 :     newt = 3;
    7705           0 :     newtcycle = 4;
    7706           0 :     breaknewtcycle = 5;
    7707           0 :     breakihalvecycle = 6;
    7708             :     
    7709             :     /*
    7710             :      * main loop
    7711             :      */
    7712             :     for(;;)
    7713             :     {
    7714             :         
    7715             :         /*
    7716             :          * start
    7717             :          */
    7718           0 :         if( mainlooppos==0 )
    7719             :         {
    7720           0 :             if( ae_fp_less_eq(a,1.0)||ae_fp_less_eq(b,1.0) )
    7721             :             {
    7722           0 :                 dithresh = 1.0e-6;
    7723           0 :                 rflg = 0;
    7724           0 :                 aaa = a;
    7725           0 :                 bbb = b;
    7726           0 :                 y0 = y;
    7727           0 :                 x = aaa/(aaa+bbb);
    7728           0 :                 yyy = incompletebeta(aaa, bbb, x, _state);
    7729           0 :                 mainlooppos = ihalve;
    7730           0 :                 continue;
    7731             :             }
    7732             :             else
    7733             :             {
    7734           0 :                 dithresh = 1.0e-4;
    7735             :             }
    7736           0 :             yp = -invnormaldistribution(y, _state);
    7737           0 :             if( ae_fp_greater(y,0.5) )
    7738             :             {
    7739           0 :                 rflg = 1;
    7740           0 :                 aaa = b;
    7741           0 :                 bbb = a;
    7742           0 :                 y0 = 1.0-y;
    7743           0 :                 yp = -yp;
    7744             :             }
    7745             :             else
    7746             :             {
    7747           0 :                 rflg = 0;
    7748           0 :                 aaa = a;
    7749           0 :                 bbb = b;
    7750           0 :                 y0 = y;
    7751             :             }
    7752           0 :             lgm = (yp*yp-3.0)/6.0;
    7753           0 :             x = 2.0/(1.0/(2.0*aaa-1.0)+1.0/(2.0*bbb-1.0));
    7754           0 :             d = yp*ae_sqrt(x+lgm, _state)/x-(1.0/(2.0*bbb-1.0)-1.0/(2.0*aaa-1.0))*(lgm+5.0/6.0-2.0/(3.0*x));
    7755           0 :             d = 2.0*d;
    7756           0 :             if( ae_fp_less(d,ae_log(ae_minrealnumber, _state)) )
    7757             :             {
    7758           0 :                 x = (double)(0);
    7759           0 :                 break;
    7760             :             }
    7761           0 :             x = aaa/(aaa+bbb*ae_exp(d, _state));
    7762           0 :             yyy = incompletebeta(aaa, bbb, x, _state);
    7763           0 :             yp = (yyy-y0)/y0;
    7764           0 :             if( ae_fp_less(ae_fabs(yp, _state),0.2) )
    7765             :             {
    7766           0 :                 mainlooppos = newt;
    7767           0 :                 continue;
    7768             :             }
    7769           0 :             mainlooppos = ihalve;
    7770           0 :             continue;
    7771             :         }
    7772             :         
    7773             :         /*
    7774             :          * ihalve
    7775             :          */
    7776           0 :         if( mainlooppos==ihalve )
    7777             :         {
    7778           0 :             dir = 0;
    7779           0 :             di = 0.5;
    7780           0 :             i = 0;
    7781           0 :             mainlooppos = ihalvecycle;
    7782           0 :             continue;
    7783             :         }
    7784             :         
    7785             :         /*
    7786             :          * ihalvecycle
    7787             :          */
    7788           0 :         if( mainlooppos==ihalvecycle )
    7789             :         {
    7790           0 :             if( i<=99 )
    7791             :             {
    7792           0 :                 if( i!=0 )
    7793             :                 {
    7794           0 :                     x = x0+di*(x1-x0);
    7795           0 :                     if( ae_fp_eq(x,1.0) )
    7796             :                     {
    7797           0 :                         x = 1.0-ae_machineepsilon;
    7798             :                     }
    7799           0 :                     if( ae_fp_eq(x,0.0) )
    7800             :                     {
    7801           0 :                         di = 0.5;
    7802           0 :                         x = x0+di*(x1-x0);
    7803           0 :                         if( ae_fp_eq(x,0.0) )
    7804             :                         {
    7805           0 :                             break;
    7806             :                         }
    7807             :                     }
    7808           0 :                     yyy = incompletebeta(aaa, bbb, x, _state);
    7809           0 :                     yp = (x1-x0)/(x1+x0);
    7810           0 :                     if( ae_fp_less(ae_fabs(yp, _state),dithresh) )
    7811             :                     {
    7812           0 :                         mainlooppos = newt;
    7813           0 :                         continue;
    7814             :                     }
    7815           0 :                     yp = (yyy-y0)/y0;
    7816           0 :                     if( ae_fp_less(ae_fabs(yp, _state),dithresh) )
    7817             :                     {
    7818           0 :                         mainlooppos = newt;
    7819           0 :                         continue;
    7820             :                     }
    7821             :                 }
    7822           0 :                 if( ae_fp_less(yyy,y0) )
    7823             :                 {
    7824           0 :                     x0 = x;
    7825           0 :                     yl = yyy;
    7826           0 :                     if( dir<0 )
    7827             :                     {
    7828           0 :                         dir = 0;
    7829           0 :                         di = 0.5;
    7830             :                     }
    7831             :                     else
    7832             :                     {
    7833           0 :                         if( dir>3 )
    7834             :                         {
    7835           0 :                             di = 1.0-(1.0-di)*(1.0-di);
    7836             :                         }
    7837             :                         else
    7838             :                         {
    7839           0 :                             if( dir>1 )
    7840             :                             {
    7841           0 :                                 di = 0.5*di+0.5;
    7842             :                             }
    7843             :                             else
    7844             :                             {
    7845           0 :                                 di = (y0-yyy)/(yh-yl);
    7846             :                             }
    7847             :                         }
    7848             :                     }
    7849           0 :                     dir = dir+1;
    7850           0 :                     if( ae_fp_greater(x0,0.75) )
    7851             :                     {
    7852           0 :                         if( rflg==1 )
    7853             :                         {
    7854           0 :                             rflg = 0;
    7855           0 :                             aaa = a;
    7856           0 :                             bbb = b;
    7857           0 :                             y0 = y;
    7858             :                         }
    7859             :                         else
    7860             :                         {
    7861           0 :                             rflg = 1;
    7862           0 :                             aaa = b;
    7863           0 :                             bbb = a;
    7864           0 :                             y0 = 1.0-y;
    7865             :                         }
    7866           0 :                         x = 1.0-x;
    7867           0 :                         yyy = incompletebeta(aaa, bbb, x, _state);
    7868           0 :                         x0 = 0.0;
    7869           0 :                         yl = 0.0;
    7870           0 :                         x1 = 1.0;
    7871           0 :                         yh = 1.0;
    7872           0 :                         mainlooppos = ihalve;
    7873           0 :                         continue;
    7874             :                     }
    7875             :                 }
    7876             :                 else
    7877             :                 {
    7878           0 :                     x1 = x;
    7879           0 :                     if( rflg==1&&ae_fp_less(x1,ae_machineepsilon) )
    7880             :                     {
    7881           0 :                         x = 0.0;
    7882           0 :                         break;
    7883             :                     }
    7884           0 :                     yh = yyy;
    7885           0 :                     if( dir>0 )
    7886             :                     {
    7887           0 :                         dir = 0;
    7888           0 :                         di = 0.5;
    7889             :                     }
    7890             :                     else
    7891             :                     {
    7892           0 :                         if( dir<-3 )
    7893             :                         {
    7894           0 :                             di = di*di;
    7895             :                         }
    7896             :                         else
    7897             :                         {
    7898           0 :                             if( dir<-1 )
    7899             :                             {
    7900           0 :                                 di = 0.5*di;
    7901             :                             }
    7902             :                             else
    7903             :                             {
    7904           0 :                                 di = (yyy-y0)/(yh-yl);
    7905             :                             }
    7906             :                         }
    7907             :                     }
    7908           0 :                     dir = dir-1;
    7909             :                 }
    7910           0 :                 i = i+1;
    7911           0 :                 mainlooppos = ihalvecycle;
    7912           0 :                 continue;
    7913             :             }
    7914             :             else
    7915             :             {
    7916           0 :                 mainlooppos = breakihalvecycle;
    7917           0 :                 continue;
    7918             :             }
    7919             :         }
    7920             :         
    7921             :         /*
    7922             :          * breakihalvecycle
    7923             :          */
    7924           0 :         if( mainlooppos==breakihalvecycle )
    7925             :         {
    7926           0 :             if( ae_fp_greater_eq(x0,1.0) )
    7927             :             {
    7928           0 :                 x = 1.0-ae_machineepsilon;
    7929           0 :                 break;
    7930             :             }
    7931           0 :             if( ae_fp_less_eq(x,0.0) )
    7932             :             {
    7933           0 :                 x = 0.0;
    7934           0 :                 break;
    7935             :             }
    7936           0 :             mainlooppos = newt;
    7937           0 :             continue;
    7938             :         }
    7939             :         
    7940             :         /*
    7941             :          * newt
    7942             :          */
    7943           0 :         if( mainlooppos==newt )
    7944             :         {
    7945           0 :             if( nflg!=0 )
    7946             :             {
    7947           0 :                 break;
    7948             :             }
    7949           0 :             nflg = 1;
    7950           0 :             lgm = lngamma(aaa+bbb, &s, _state)-lngamma(aaa, &s, _state)-lngamma(bbb, &s, _state);
    7951           0 :             i = 0;
    7952           0 :             mainlooppos = newtcycle;
    7953           0 :             continue;
    7954             :         }
    7955             :         
    7956             :         /*
    7957             :          * newtcycle
    7958             :          */
    7959           0 :         if( mainlooppos==newtcycle )
    7960             :         {
    7961           0 :             if( i<=7 )
    7962             :             {
    7963           0 :                 if( i!=0 )
    7964             :                 {
    7965           0 :                     yyy = incompletebeta(aaa, bbb, x, _state);
    7966             :                 }
    7967           0 :                 if( ae_fp_less(yyy,yl) )
    7968             :                 {
    7969           0 :                     x = x0;
    7970           0 :                     yyy = yl;
    7971             :                 }
    7972             :                 else
    7973             :                 {
    7974           0 :                     if( ae_fp_greater(yyy,yh) )
    7975             :                     {
    7976           0 :                         x = x1;
    7977           0 :                         yyy = yh;
    7978             :                     }
    7979             :                     else
    7980             :                     {
    7981           0 :                         if( ae_fp_less(yyy,y0) )
    7982             :                         {
    7983           0 :                             x0 = x;
    7984           0 :                             yl = yyy;
    7985             :                         }
    7986             :                         else
    7987             :                         {
    7988           0 :                             x1 = x;
    7989           0 :                             yh = yyy;
    7990             :                         }
    7991             :                     }
    7992             :                 }
    7993           0 :                 if( ae_fp_eq(x,1.0)||ae_fp_eq(x,0.0) )
    7994             :                 {
    7995           0 :                     mainlooppos = breaknewtcycle;
    7996           0 :                     continue;
    7997             :                 }
    7998           0 :                 d = (aaa-1.0)*ae_log(x, _state)+(bbb-1.0)*ae_log(1.0-x, _state)+lgm;
    7999           0 :                 if( ae_fp_less(d,ae_log(ae_minrealnumber, _state)) )
    8000             :                 {
    8001           0 :                     break;
    8002             :                 }
    8003           0 :                 if( ae_fp_greater(d,ae_log(ae_maxrealnumber, _state)) )
    8004             :                 {
    8005           0 :                     mainlooppos = breaknewtcycle;
    8006           0 :                     continue;
    8007             :                 }
    8008           0 :                 d = ae_exp(d, _state);
    8009           0 :                 d = (yyy-y0)/d;
    8010           0 :                 xt = x-d;
    8011           0 :                 if( ae_fp_less_eq(xt,x0) )
    8012             :                 {
    8013           0 :                     yyy = (x-x0)/(x1-x0);
    8014           0 :                     xt = x0+0.5*yyy*(x-x0);
    8015           0 :                     if( ae_fp_less_eq(xt,0.0) )
    8016             :                     {
    8017           0 :                         mainlooppos = breaknewtcycle;
    8018           0 :                         continue;
    8019             :                     }
    8020             :                 }
    8021           0 :                 if( ae_fp_greater_eq(xt,x1) )
    8022             :                 {
    8023           0 :                     yyy = (x1-x)/(x1-x0);
    8024           0 :                     xt = x1-0.5*yyy*(x1-x);
    8025           0 :                     if( ae_fp_greater_eq(xt,1.0) )
    8026             :                     {
    8027           0 :                         mainlooppos = breaknewtcycle;
    8028           0 :                         continue;
    8029             :                     }
    8030             :                 }
    8031           0 :                 x = xt;
    8032           0 :                 if( ae_fp_less(ae_fabs(d/x, _state),128.0*ae_machineepsilon) )
    8033             :                 {
    8034           0 :                     break;
    8035             :                 }
    8036           0 :                 i = i+1;
    8037           0 :                 mainlooppos = newtcycle;
    8038           0 :                 continue;
    8039             :             }
    8040             :             else
    8041             :             {
    8042           0 :                 mainlooppos = breaknewtcycle;
    8043           0 :                 continue;
    8044             :             }
    8045             :         }
    8046             :         
    8047             :         /*
    8048             :          * breaknewtcycle
    8049             :          */
    8050           0 :         if( mainlooppos==breaknewtcycle )
    8051             :         {
    8052           0 :             dithresh = 256.0*ae_machineepsilon;
    8053           0 :             mainlooppos = ihalve;
    8054           0 :             continue;
    8055             :         }
    8056             :     }
    8057             :     
    8058             :     /*
    8059             :      * done
    8060             :      */
    8061           0 :     if( rflg!=0 )
    8062             :     {
    8063           0 :         if( ae_fp_less_eq(x,ae_machineepsilon) )
    8064             :         {
    8065           0 :             x = 1.0-ae_machineepsilon;
    8066             :         }
    8067             :         else
    8068             :         {
    8069           0 :             x = 1.0-x;
    8070             :         }
    8071             :     }
    8072           0 :     result = x;
    8073           0 :     return result;
    8074             : }
    8075             : 
    8076             : 
    8077             : /*************************************************************************
    8078             : Continued fraction expansion #1 for incomplete beta integral
    8079             : 
    8080             : Cephes Math Library, Release 2.8:  June, 2000
    8081             : Copyright 1984, 1995, 2000 by Stephen L. Moshier
    8082             : *************************************************************************/
    8083           0 : static double ibetaf_incompletebetafe(double a,
    8084             :      double b,
    8085             :      double x,
    8086             :      double big,
    8087             :      double biginv,
    8088             :      ae_state *_state)
    8089             : {
    8090             :     double xk;
    8091             :     double pk;
    8092             :     double pkm1;
    8093             :     double pkm2;
    8094             :     double qk;
    8095             :     double qkm1;
    8096             :     double qkm2;
    8097             :     double k1;
    8098             :     double k2;
    8099             :     double k3;
    8100             :     double k4;
    8101             :     double k5;
    8102             :     double k6;
    8103             :     double k7;
    8104             :     double k8;
    8105             :     double r;
    8106             :     double t;
    8107             :     double ans;
    8108             :     double thresh;
    8109             :     ae_int_t n;
    8110             :     double result;
    8111             : 
    8112             : 
    8113           0 :     k1 = a;
    8114           0 :     k2 = a+b;
    8115           0 :     k3 = a;
    8116           0 :     k4 = a+1.0;
    8117           0 :     k5 = 1.0;
    8118           0 :     k6 = b-1.0;
    8119           0 :     k7 = k4;
    8120           0 :     k8 = a+2.0;
    8121           0 :     pkm2 = 0.0;
    8122           0 :     qkm2 = 1.0;
    8123           0 :     pkm1 = 1.0;
    8124           0 :     qkm1 = 1.0;
    8125           0 :     ans = 1.0;
    8126           0 :     r = 1.0;
    8127           0 :     n = 0;
    8128           0 :     thresh = 3.0*ae_machineepsilon;
    8129             :     do
    8130             :     {
    8131           0 :         xk = -x*k1*k2/(k3*k4);
    8132           0 :         pk = pkm1+pkm2*xk;
    8133           0 :         qk = qkm1+qkm2*xk;
    8134           0 :         pkm2 = pkm1;
    8135           0 :         pkm1 = pk;
    8136           0 :         qkm2 = qkm1;
    8137           0 :         qkm1 = qk;
    8138           0 :         xk = x*k5*k6/(k7*k8);
    8139           0 :         pk = pkm1+pkm2*xk;
    8140           0 :         qk = qkm1+qkm2*xk;
    8141           0 :         pkm2 = pkm1;
    8142           0 :         pkm1 = pk;
    8143           0 :         qkm2 = qkm1;
    8144           0 :         qkm1 = qk;
    8145           0 :         if( ae_fp_neq(qk,(double)(0)) )
    8146             :         {
    8147           0 :             r = pk/qk;
    8148             :         }
    8149           0 :         if( ae_fp_neq(r,(double)(0)) )
    8150             :         {
    8151           0 :             t = ae_fabs((ans-r)/r, _state);
    8152           0 :             ans = r;
    8153             :         }
    8154             :         else
    8155             :         {
    8156           0 :             t = 1.0;
    8157             :         }
    8158           0 :         if( ae_fp_less(t,thresh) )
    8159             :         {
    8160           0 :             break;
    8161             :         }
    8162           0 :         k1 = k1+1.0;
    8163           0 :         k2 = k2+1.0;
    8164           0 :         k3 = k3+2.0;
    8165           0 :         k4 = k4+2.0;
    8166           0 :         k5 = k5+1.0;
    8167           0 :         k6 = k6-1.0;
    8168           0 :         k7 = k7+2.0;
    8169           0 :         k8 = k8+2.0;
    8170           0 :         if( ae_fp_greater(ae_fabs(qk, _state)+ae_fabs(pk, _state),big) )
    8171             :         {
    8172           0 :             pkm2 = pkm2*biginv;
    8173           0 :             pkm1 = pkm1*biginv;
    8174           0 :             qkm2 = qkm2*biginv;
    8175           0 :             qkm1 = qkm1*biginv;
    8176             :         }
    8177           0 :         if( ae_fp_less(ae_fabs(qk, _state),biginv)||ae_fp_less(ae_fabs(pk, _state),biginv) )
    8178             :         {
    8179           0 :             pkm2 = pkm2*big;
    8180           0 :             pkm1 = pkm1*big;
    8181           0 :             qkm2 = qkm2*big;
    8182           0 :             qkm1 = qkm1*big;
    8183             :         }
    8184           0 :         n = n+1;
    8185             :     }
    8186           0 :     while(n!=300);
    8187           0 :     result = ans;
    8188           0 :     return result;
    8189             : }
    8190             : 
    8191             : 
    8192             : /*************************************************************************
    8193             : Continued fraction expansion #2
    8194             : for incomplete beta integral
    8195             : 
    8196             : Cephes Math Library, Release 2.8:  June, 2000
    8197             : Copyright 1984, 1995, 2000 by Stephen L. Moshier
    8198             : *************************************************************************/
    8199           0 : static double ibetaf_incompletebetafe2(double a,
    8200             :      double b,
    8201             :      double x,
    8202             :      double big,
    8203             :      double biginv,
    8204             :      ae_state *_state)
    8205             : {
    8206             :     double xk;
    8207             :     double pk;
    8208             :     double pkm1;
    8209             :     double pkm2;
    8210             :     double qk;
    8211             :     double qkm1;
    8212             :     double qkm2;
    8213             :     double k1;
    8214             :     double k2;
    8215             :     double k3;
    8216             :     double k4;
    8217             :     double k5;
    8218             :     double k6;
    8219             :     double k7;
    8220             :     double k8;
    8221             :     double r;
    8222             :     double t;
    8223             :     double ans;
    8224             :     double z;
    8225             :     double thresh;
    8226             :     ae_int_t n;
    8227             :     double result;
    8228             : 
    8229             : 
    8230           0 :     k1 = a;
    8231           0 :     k2 = b-1.0;
    8232           0 :     k3 = a;
    8233           0 :     k4 = a+1.0;
    8234           0 :     k5 = 1.0;
    8235           0 :     k6 = a+b;
    8236           0 :     k7 = a+1.0;
    8237           0 :     k8 = a+2.0;
    8238           0 :     pkm2 = 0.0;
    8239           0 :     qkm2 = 1.0;
    8240           0 :     pkm1 = 1.0;
    8241           0 :     qkm1 = 1.0;
    8242           0 :     z = x/(1.0-x);
    8243           0 :     ans = 1.0;
    8244           0 :     r = 1.0;
    8245           0 :     n = 0;
    8246           0 :     thresh = 3.0*ae_machineepsilon;
    8247             :     do
    8248             :     {
    8249           0 :         xk = -z*k1*k2/(k3*k4);
    8250           0 :         pk = pkm1+pkm2*xk;
    8251           0 :         qk = qkm1+qkm2*xk;
    8252           0 :         pkm2 = pkm1;
    8253           0 :         pkm1 = pk;
    8254           0 :         qkm2 = qkm1;
    8255           0 :         qkm1 = qk;
    8256           0 :         xk = z*k5*k6/(k7*k8);
    8257           0 :         pk = pkm1+pkm2*xk;
    8258           0 :         qk = qkm1+qkm2*xk;
    8259           0 :         pkm2 = pkm1;
    8260           0 :         pkm1 = pk;
    8261           0 :         qkm2 = qkm1;
    8262           0 :         qkm1 = qk;
    8263           0 :         if( ae_fp_neq(qk,(double)(0)) )
    8264             :         {
    8265           0 :             r = pk/qk;
    8266             :         }
    8267           0 :         if( ae_fp_neq(r,(double)(0)) )
    8268             :         {
    8269           0 :             t = ae_fabs((ans-r)/r, _state);
    8270           0 :             ans = r;
    8271             :         }
    8272             :         else
    8273             :         {
    8274           0 :             t = 1.0;
    8275             :         }
    8276           0 :         if( ae_fp_less(t,thresh) )
    8277             :         {
    8278           0 :             break;
    8279             :         }
    8280           0 :         k1 = k1+1.0;
    8281           0 :         k2 = k2-1.0;
    8282           0 :         k3 = k3+2.0;
    8283           0 :         k4 = k4+2.0;
    8284           0 :         k5 = k5+1.0;
    8285           0 :         k6 = k6+1.0;
    8286           0 :         k7 = k7+2.0;
    8287           0 :         k8 = k8+2.0;
    8288           0 :         if( ae_fp_greater(ae_fabs(qk, _state)+ae_fabs(pk, _state),big) )
    8289             :         {
    8290           0 :             pkm2 = pkm2*biginv;
    8291           0 :             pkm1 = pkm1*biginv;
    8292           0 :             qkm2 = qkm2*biginv;
    8293           0 :             qkm1 = qkm1*biginv;
    8294             :         }
    8295           0 :         if( ae_fp_less(ae_fabs(qk, _state),biginv)||ae_fp_less(ae_fabs(pk, _state),biginv) )
    8296             :         {
    8297           0 :             pkm2 = pkm2*big;
    8298           0 :             pkm1 = pkm1*big;
    8299           0 :             qkm2 = qkm2*big;
    8300           0 :             qkm1 = qkm1*big;
    8301             :         }
    8302           0 :         n = n+1;
    8303             :     }
    8304           0 :     while(n!=300);
    8305           0 :     result = ans;
    8306           0 :     return result;
    8307             : }
    8308             : 
    8309             : 
    8310             : /*************************************************************************
    8311             : Power series for incomplete beta integral.
    8312             : Use when b*x is small and x not too close to 1.
    8313             : 
    8314             : Cephes Math Library, Release 2.8:  June, 2000
    8315             : Copyright 1984, 1995, 2000 by Stephen L. Moshier
    8316             : *************************************************************************/
    8317           0 : static double ibetaf_incompletebetaps(double a,
    8318             :      double b,
    8319             :      double x,
    8320             :      double maxgam,
    8321             :      ae_state *_state)
    8322             : {
    8323             :     double s;
    8324             :     double t;
    8325             :     double u;
    8326             :     double v;
    8327             :     double n;
    8328             :     double t1;
    8329             :     double z;
    8330             :     double ai;
    8331             :     double sg;
    8332             :     double result;
    8333             : 
    8334             : 
    8335           0 :     ai = 1.0/a;
    8336           0 :     u = (1.0-b)*x;
    8337           0 :     v = u/(a+1.0);
    8338           0 :     t1 = v;
    8339           0 :     t = u;
    8340           0 :     n = 2.0;
    8341           0 :     s = 0.0;
    8342           0 :     z = ae_machineepsilon*ai;
    8343           0 :     while(ae_fp_greater(ae_fabs(v, _state),z))
    8344             :     {
    8345           0 :         u = (n-b)*x/n;
    8346           0 :         t = t*u;
    8347           0 :         v = t/(a+n);
    8348           0 :         s = s+v;
    8349           0 :         n = n+1.0;
    8350             :     }
    8351           0 :     s = s+t1;
    8352           0 :     s = s+ai;
    8353           0 :     u = a*ae_log(x, _state);
    8354           0 :     if( ae_fp_less(a+b,maxgam)&&ae_fp_less(ae_fabs(u, _state),ae_log(ae_maxrealnumber, _state)) )
    8355             :     {
    8356           0 :         t = gammafunction(a+b, _state)/(gammafunction(a, _state)*gammafunction(b, _state));
    8357           0 :         s = s*t*ae_pow(x, a, _state);
    8358             :     }
    8359             :     else
    8360             :     {
    8361           0 :         t = lngamma(a+b, &sg, _state)-lngamma(a, &sg, _state)-lngamma(b, &sg, _state)+u+ae_log(s, _state);
    8362           0 :         if( ae_fp_less(t,ae_log(ae_minrealnumber, _state)) )
    8363             :         {
    8364           0 :             s = 0.0;
    8365             :         }
    8366             :         else
    8367             :         {
    8368           0 :             s = ae_exp(t, _state);
    8369             :         }
    8370             :     }
    8371           0 :     result = s;
    8372           0 :     return result;
    8373             : }
    8374             : 
    8375             : 
    8376             : #endif
    8377             : #if defined(AE_COMPILE_FDISTR) || !defined(AE_PARTIAL_BUILD)
    8378             : 
    8379             : 
    8380             : /*************************************************************************
    8381             : F distribution
    8382             : 
    8383             : Returns the area from zero to x under the F density
    8384             : function (also known as Snedcor's density or the
    8385             : variance ratio density).  This is the density
    8386             : of x = (u1/df1)/(u2/df2), where u1 and u2 are random
    8387             : variables having Chi square distributions with df1
    8388             : and df2 degrees of freedom, respectively.
    8389             : The incomplete beta integral is used, according to the
    8390             : formula
    8391             : 
    8392             : P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
    8393             : 
    8394             : 
    8395             : The arguments a and b are greater than zero, and x is
    8396             : nonnegative.
    8397             : 
    8398             : ACCURACY:
    8399             : 
    8400             : Tested at random points (a,b,x).
    8401             : 
    8402             :                x     a,b                     Relative error:
    8403             : arithmetic  domain  domain     # trials      peak         rms
    8404             :    IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
    8405             :    IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
    8406             :    IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
    8407             :    IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13
    8408             : 
    8409             : Cephes Math Library Release 2.8:  June, 2000
    8410             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    8411             : *************************************************************************/
    8412           0 : double fdistribution(ae_int_t a, ae_int_t b, double x, ae_state *_state)
    8413             : {
    8414             :     double w;
    8415             :     double result;
    8416             : 
    8417             : 
    8418           0 :     ae_assert((a>=1&&b>=1)&&ae_fp_greater_eq(x,(double)(0)), "Domain error in FDistribution", _state);
    8419           0 :     w = a*x;
    8420           0 :     w = w/(b+w);
    8421           0 :     result = incompletebeta(0.5*a, 0.5*b, w, _state);
    8422           0 :     return result;
    8423             : }
    8424             : 
    8425             : 
    8426             : /*************************************************************************
    8427             : Complemented F distribution
    8428             : 
    8429             : Returns the area from x to infinity under the F density
    8430             : function (also known as Snedcor's density or the
    8431             : variance ratio density).
    8432             : 
    8433             : 
    8434             :                      inf.
    8435             :                       -
    8436             :              1       | |  a-1      b-1
    8437             : 1-P(x)  =  ------    |   t    (1-t)    dt
    8438             :            B(a,b)  | |
    8439             :                     -
    8440             :                      x
    8441             : 
    8442             : 
    8443             : The incomplete beta integral is used, according to the
    8444             : formula
    8445             : 
    8446             : P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
    8447             : 
    8448             : 
    8449             : ACCURACY:
    8450             : 
    8451             : Tested at random points (a,b,x) in the indicated intervals.
    8452             :                x     a,b                     Relative error:
    8453             : arithmetic  domain  domain     # trials      peak         rms
    8454             :    IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
    8455             :    IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
    8456             :    IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
    8457             :    IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12
    8458             : 
    8459             : Cephes Math Library Release 2.8:  June, 2000
    8460             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    8461             : *************************************************************************/
    8462           0 : double fcdistribution(ae_int_t a, ae_int_t b, double x, ae_state *_state)
    8463             : {
    8464             :     double w;
    8465             :     double result;
    8466             : 
    8467             : 
    8468           0 :     ae_assert((a>=1&&b>=1)&&ae_fp_greater_eq(x,(double)(0)), "Domain error in FCDistribution", _state);
    8469           0 :     w = b/(b+a*x);
    8470           0 :     result = incompletebeta(0.5*b, 0.5*a, w, _state);
    8471           0 :     return result;
    8472             : }
    8473             : 
    8474             : 
    8475             : /*************************************************************************
    8476             : Inverse of complemented F distribution
    8477             : 
    8478             : Finds the F density argument x such that the integral
    8479             : from x to infinity of the F density is equal to the
    8480             : given probability p.
    8481             : 
    8482             : This is accomplished using the inverse beta integral
    8483             : function and the relations
    8484             : 
    8485             :      z = incbi( df2/2, df1/2, p )
    8486             :      x = df2 (1-z) / (df1 z).
    8487             : 
    8488             : Note: the following relations hold for the inverse of
    8489             : the uncomplemented F distribution:
    8490             : 
    8491             :      z = incbi( df1/2, df2/2, p )
    8492             :      x = df2 z / (df1 (1-z)).
    8493             : 
    8494             : ACCURACY:
    8495             : 
    8496             : Tested at random points (a,b,p).
    8497             : 
    8498             :              a,b                     Relative error:
    8499             : arithmetic  domain     # trials      peak         rms
    8500             :  For p between .001 and 1:
    8501             :    IEEE     1,100       100000      8.3e-15     4.7e-16
    8502             :    IEEE     1,10000     100000      2.1e-11     1.4e-13
    8503             :  For p between 10^-6 and 10^-3:
    8504             :    IEEE     1,100        50000      1.3e-12     8.4e-15
    8505             :    IEEE     1,10000      50000      3.0e-12     4.8e-14
    8506             : 
    8507             : Cephes Math Library Release 2.8:  June, 2000
    8508             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
    8509             : *************************************************************************/
    8510           0 : double invfdistribution(ae_int_t a,
    8511             :      ae_int_t b,
    8512             :      double y,
    8513             :      ae_state *_state)
    8514             : {
    8515             :     double w;
    8516             :     double result;
    8517             : 
    8518             : 
    8519           0 :     ae_assert(((a>=1&&b>=1)&&ae_fp_greater(y,(double)(0)))&&ae_fp_less_eq(y,(double)(1)), "Domain error in InvFDistribution", _state);
    8520             :     
    8521             :     /*
    8522             :      * Compute probability for x = 0.5
    8523             :      */
    8524           0 :     w = incompletebeta(0.5*b, 0.5*a, 0.5, _state);
    8525             :     
    8526             :     /*
    8527             :      * If that is greater than y, then the solution w < .5
    8528             :      * Otherwise, solve at 1-y to remove cancellation in (b - b*w)
    8529             :      */
    8530           0 :     if( ae_fp_greater(w,y)||ae_fp_less(y,0.001) )
    8531             :     {
    8532           0 :         w = invincompletebeta(0.5*b, 0.5*a, y, _state);
    8533           0 :         result = (b-b*w)/(a*w);
    8534             :     }
    8535             :     else
    8536             :     {
    8537           0 :         w = invincompletebeta(0.5*a, 0.5*b, 1.0-y, _state);
    8538           0 :         result = b*w/(a*(1.0-w));
    8539             :     }
    8540           0 :     return result;
    8541             : }
    8542             : 
    8543             : 
    8544             : #endif
    8545             : #if defined(AE_COMPILE_FRESNEL) || !defined(AE_PARTIAL_BUILD)
    8546             : 
    8547             : 
    8548             : /*************************************************************************
    8549             : Fresnel integral
    8550             : 
    8551             : Evaluates the Fresnel integrals
    8552             : 
    8553             :           x
    8554             :           -
    8555             :          | |
    8556             : C(x) =   |   cos(pi/2 t**2) dt,
    8557             :        | |
    8558             :         -
    8559             :          0
    8560             : 
    8561             :           x
    8562             :           -
    8563             :          | |
    8564             : S(x) =   |   sin(pi/2 t**2) dt.
    8565             :        | |
    8566             :         -
    8567             :          0
    8568             : 
    8569             : 
    8570             : The integrals are evaluated by a power series for x < 1.
    8571             : For x >= 1 auxiliary functions f(x) and g(x) are employed
    8572             : such that
    8573             : 
    8574             : C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 )
    8575             : S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 )
    8576             : 
    8577             : 
    8578             : 
    8579             : ACCURACY:
    8580             : 
    8581             :  Relative error.
    8582             : 
    8583             : Arithmetic  function   domain     # trials      peak         rms
    8584             :   IEEE       S(x)      0, 10       10000       2.0e-15     3.2e-16
    8585             :   IEEE       C(x)      0, 10       10000       1.8e-15     3.3e-16
    8586             : 
    8587             : Cephes Math Library Release 2.8:  June, 2000
    8588             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
    8589             : *************************************************************************/
    8590           0 : void fresnelintegral(double x, double* c, double* s, ae_state *_state)
    8591             : {
    8592             :     double xxa;
    8593             :     double f;
    8594             :     double g;
    8595             :     double cc;
    8596             :     double ss;
    8597             :     double t;
    8598             :     double u;
    8599             :     double x2;
    8600             :     double sn;
    8601             :     double sd;
    8602             :     double cn;
    8603             :     double cd;
    8604             :     double fn;
    8605             :     double fd;
    8606             :     double gn;
    8607             :     double gd;
    8608             :     double mpi;
    8609             :     double mpio2;
    8610             : 
    8611             : 
    8612           0 :     mpi = 3.14159265358979323846;
    8613           0 :     mpio2 = 1.57079632679489661923;
    8614           0 :     xxa = x;
    8615           0 :     x = ae_fabs(xxa, _state);
    8616           0 :     x2 = x*x;
    8617           0 :     if( ae_fp_less(x2,2.5625) )
    8618             :     {
    8619           0 :         t = x2*x2;
    8620           0 :         sn = -2.99181919401019853726E3;
    8621           0 :         sn = sn*t+7.08840045257738576863E5;
    8622           0 :         sn = sn*t-6.29741486205862506537E7;
    8623           0 :         sn = sn*t+2.54890880573376359104E9;
    8624           0 :         sn = sn*t-4.42979518059697779103E10;
    8625           0 :         sn = sn*t+3.18016297876567817986E11;
    8626           0 :         sd = 1.00000000000000000000E0;
    8627           0 :         sd = sd*t+2.81376268889994315696E2;
    8628           0 :         sd = sd*t+4.55847810806532581675E4;
    8629           0 :         sd = sd*t+5.17343888770096400730E6;
    8630           0 :         sd = sd*t+4.19320245898111231129E8;
    8631           0 :         sd = sd*t+2.24411795645340920940E10;
    8632           0 :         sd = sd*t+6.07366389490084639049E11;
    8633           0 :         cn = -4.98843114573573548651E-8;
    8634           0 :         cn = cn*t+9.50428062829859605134E-6;
    8635           0 :         cn = cn*t-6.45191435683965050962E-4;
    8636           0 :         cn = cn*t+1.88843319396703850064E-2;
    8637           0 :         cn = cn*t-2.05525900955013891793E-1;
    8638           0 :         cn = cn*t+9.99999999999999998822E-1;
    8639           0 :         cd = 3.99982968972495980367E-12;
    8640           0 :         cd = cd*t+9.15439215774657478799E-10;
    8641           0 :         cd = cd*t+1.25001862479598821474E-7;
    8642           0 :         cd = cd*t+1.22262789024179030997E-5;
    8643           0 :         cd = cd*t+8.68029542941784300606E-4;
    8644           0 :         cd = cd*t+4.12142090722199792936E-2;
    8645           0 :         cd = cd*t+1.00000000000000000118E0;
    8646           0 :         *s = ae_sign(xxa, _state)*x*x2*sn/sd;
    8647           0 :         *c = ae_sign(xxa, _state)*x*cn/cd;
    8648           0 :         return;
    8649             :     }
    8650           0 :     if( ae_fp_greater(x,36974.0) )
    8651             :     {
    8652           0 :         *c = ae_sign(xxa, _state)*0.5;
    8653           0 :         *s = ae_sign(xxa, _state)*0.5;
    8654           0 :         return;
    8655             :     }
    8656           0 :     x2 = x*x;
    8657           0 :     t = mpi*x2;
    8658           0 :     u = 1/(t*t);
    8659           0 :     t = 1/t;
    8660           0 :     fn = 4.21543555043677546506E-1;
    8661           0 :     fn = fn*u+1.43407919780758885261E-1;
    8662           0 :     fn = fn*u+1.15220955073585758835E-2;
    8663           0 :     fn = fn*u+3.45017939782574027900E-4;
    8664           0 :     fn = fn*u+4.63613749287867322088E-6;
    8665           0 :     fn = fn*u+3.05568983790257605827E-8;
    8666           0 :     fn = fn*u+1.02304514164907233465E-10;
    8667           0 :     fn = fn*u+1.72010743268161828879E-13;
    8668           0 :     fn = fn*u+1.34283276233062758925E-16;
    8669           0 :     fn = fn*u+3.76329711269987889006E-20;
    8670           0 :     fd = 1.00000000000000000000E0;
    8671           0 :     fd = fd*u+7.51586398353378947175E-1;
    8672           0 :     fd = fd*u+1.16888925859191382142E-1;
    8673           0 :     fd = fd*u+6.44051526508858611005E-3;
    8674           0 :     fd = fd*u+1.55934409164153020873E-4;
    8675           0 :     fd = fd*u+1.84627567348930545870E-6;
    8676           0 :     fd = fd*u+1.12699224763999035261E-8;
    8677           0 :     fd = fd*u+3.60140029589371370404E-11;
    8678           0 :     fd = fd*u+5.88754533621578410010E-14;
    8679           0 :     fd = fd*u+4.52001434074129701496E-17;
    8680           0 :     fd = fd*u+1.25443237090011264384E-20;
    8681           0 :     gn = 5.04442073643383265887E-1;
    8682           0 :     gn = gn*u+1.97102833525523411709E-1;
    8683           0 :     gn = gn*u+1.87648584092575249293E-2;
    8684           0 :     gn = gn*u+6.84079380915393090172E-4;
    8685           0 :     gn = gn*u+1.15138826111884280931E-5;
    8686           0 :     gn = gn*u+9.82852443688422223854E-8;
    8687           0 :     gn = gn*u+4.45344415861750144738E-10;
    8688           0 :     gn = gn*u+1.08268041139020870318E-12;
    8689           0 :     gn = gn*u+1.37555460633261799868E-15;
    8690           0 :     gn = gn*u+8.36354435630677421531E-19;
    8691           0 :     gn = gn*u+1.86958710162783235106E-22;
    8692           0 :     gd = 1.00000000000000000000E0;
    8693           0 :     gd = gd*u+1.47495759925128324529E0;
    8694           0 :     gd = gd*u+3.37748989120019970451E-1;
    8695           0 :     gd = gd*u+2.53603741420338795122E-2;
    8696           0 :     gd = gd*u+8.14679107184306179049E-4;
    8697           0 :     gd = gd*u+1.27545075667729118702E-5;
    8698           0 :     gd = gd*u+1.04314589657571990585E-7;
    8699           0 :     gd = gd*u+4.60680728146520428211E-10;
    8700           0 :     gd = gd*u+1.10273215066240270757E-12;
    8701           0 :     gd = gd*u+1.38796531259578871258E-15;
    8702           0 :     gd = gd*u+8.39158816283118707363E-19;
    8703           0 :     gd = gd*u+1.86958710162783236342E-22;
    8704           0 :     f = 1-u*fn/fd;
    8705           0 :     g = t*gn/gd;
    8706           0 :     t = mpio2*x2;
    8707           0 :     cc = ae_cos(t, _state);
    8708           0 :     ss = ae_sin(t, _state);
    8709           0 :     t = mpi*x;
    8710           0 :     *c = 0.5+(f*ss-g*cc)/t;
    8711           0 :     *s = 0.5-(f*cc+g*ss)/t;
    8712           0 :     *c = *c*ae_sign(xxa, _state);
    8713           0 :     *s = *s*ae_sign(xxa, _state);
    8714             : }
    8715             : 
    8716             : 
    8717             : #endif
    8718             : #if defined(AE_COMPILE_JACOBIANELLIPTIC) || !defined(AE_PARTIAL_BUILD)
    8719             : 
    8720             : 
    8721             : /*************************************************************************
    8722             : Jacobian Elliptic Functions
    8723             : 
    8724             : Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
    8725             : and dn(u|m) of parameter m between 0 and 1, and real
    8726             : argument u.
    8727             : 
    8728             : These functions are periodic, with quarter-period on the
    8729             : real axis equal to the complete elliptic integral
    8730             : ellpk(1.0-m).
    8731             : 
    8732             : Relation to incomplete elliptic integral:
    8733             : If u = ellik(phi,m), then sn(u|m) = sin(phi),
    8734             : and cn(u|m) = cos(phi).  Phi is called the amplitude of u.
    8735             : 
    8736             : Computation is by means of the arithmetic-geometric mean
    8737             : algorithm, except when m is within 1e-9 of 0 or 1.  In the
    8738             : latter case with m close to 1, the approximation applies
    8739             : only for phi < pi/2.
    8740             : 
    8741             : ACCURACY:
    8742             : 
    8743             : Tested at random points with u between 0 and 10, m between
    8744             : 0 and 1.
    8745             : 
    8746             :            Absolute error (* = relative error):
    8747             : arithmetic   function   # trials      peak         rms
    8748             :    IEEE      phi         10000       9.2e-16*    1.4e-16*
    8749             :    IEEE      sn          50000       4.1e-15     4.6e-16
    8750             :    IEEE      cn          40000       3.6e-15     4.4e-16
    8751             :    IEEE      dn          10000       1.3e-12     1.8e-14
    8752             : 
    8753             :  Peak error observed in consistency check using addition
    8754             : theorem for sn(u+v) was 4e-16 (absolute).  Also tested by
    8755             : the above relation to the incomplete elliptic integral.
    8756             : Accuracy deteriorates when u is large.
    8757             : 
    8758             : Cephes Math Library Release 2.8:  June, 2000
    8759             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    8760             : *************************************************************************/
    8761           0 : void jacobianellipticfunctions(double u,
    8762             :      double m,
    8763             :      double* sn,
    8764             :      double* cn,
    8765             :      double* dn,
    8766             :      double* ph,
    8767             :      ae_state *_state)
    8768             : {
    8769             :     ae_frame _frame_block;
    8770             :     double ai;
    8771             :     double b;
    8772             :     double phi;
    8773             :     double t;
    8774             :     double twon;
    8775             :     ae_vector a;
    8776             :     ae_vector c;
    8777             :     ae_int_t i;
    8778             : 
    8779           0 :     ae_frame_make(_state, &_frame_block);
    8780           0 :     memset(&a, 0, sizeof(a));
    8781           0 :     memset(&c, 0, sizeof(c));
    8782           0 :     *sn = 0;
    8783           0 :     *cn = 0;
    8784           0 :     *dn = 0;
    8785           0 :     *ph = 0;
    8786           0 :     ae_vector_init(&a, 0, DT_REAL, _state, ae_true);
    8787           0 :     ae_vector_init(&c, 0, DT_REAL, _state, ae_true);
    8788             : 
    8789           0 :     ae_assert(ae_fp_greater_eq(m,(double)(0))&&ae_fp_less_eq(m,(double)(1)), "Domain error in JacobianEllipticFunctions: m<0 or m>1", _state);
    8790           0 :     ae_vector_set_length(&a, 8+1, _state);
    8791           0 :     ae_vector_set_length(&c, 8+1, _state);
    8792           0 :     if( ae_fp_less(m,1.0e-9) )
    8793             :     {
    8794           0 :         t = ae_sin(u, _state);
    8795           0 :         b = ae_cos(u, _state);
    8796           0 :         ai = 0.25*m*(u-t*b);
    8797           0 :         *sn = t-ai*b;
    8798           0 :         *cn = b+ai*t;
    8799           0 :         *ph = u-ai;
    8800           0 :         *dn = 1.0-0.5*m*t*t;
    8801           0 :         ae_frame_leave(_state);
    8802           0 :         return;
    8803             :     }
    8804           0 :     if( ae_fp_greater_eq(m,0.9999999999) )
    8805             :     {
    8806           0 :         ai = 0.25*(1.0-m);
    8807           0 :         b = ae_cosh(u, _state);
    8808           0 :         t = ae_tanh(u, _state);
    8809           0 :         phi = 1.0/b;
    8810           0 :         twon = b*ae_sinh(u, _state);
    8811           0 :         *sn = t+ai*(twon-u)/(b*b);
    8812           0 :         *ph = 2.0*ae_atan(ae_exp(u, _state), _state)-1.57079632679489661923+ai*(twon-u)/b;
    8813           0 :         ai = ai*t*phi;
    8814           0 :         *cn = phi-ai*(twon-u);
    8815           0 :         *dn = phi+ai*(twon+u);
    8816           0 :         ae_frame_leave(_state);
    8817           0 :         return;
    8818             :     }
    8819           0 :     a.ptr.p_double[0] = 1.0;
    8820           0 :     b = ae_sqrt(1.0-m, _state);
    8821           0 :     c.ptr.p_double[0] = ae_sqrt(m, _state);
    8822           0 :     twon = 1.0;
    8823           0 :     i = 0;
    8824           0 :     while(ae_fp_greater(ae_fabs(c.ptr.p_double[i]/a.ptr.p_double[i], _state),ae_machineepsilon))
    8825             :     {
    8826           0 :         if( i>7 )
    8827             :         {
    8828           0 :             ae_assert(ae_false, "Overflow in JacobianEllipticFunctions", _state);
    8829           0 :             break;
    8830             :         }
    8831           0 :         ai = a.ptr.p_double[i];
    8832           0 :         i = i+1;
    8833           0 :         c.ptr.p_double[i] = 0.5*(ai-b);
    8834           0 :         t = ae_sqrt(ai*b, _state);
    8835           0 :         a.ptr.p_double[i] = 0.5*(ai+b);
    8836           0 :         b = t;
    8837           0 :         twon = twon*2.0;
    8838             :     }
    8839           0 :     phi = twon*a.ptr.p_double[i]*u;
    8840             :     do
    8841             :     {
    8842           0 :         t = c.ptr.p_double[i]*ae_sin(phi, _state)/a.ptr.p_double[i];
    8843           0 :         b = phi;
    8844           0 :         phi = (ae_asin(t, _state)+phi)/2.0;
    8845           0 :         i = i-1;
    8846             :     }
    8847           0 :     while(i!=0);
    8848           0 :     *sn = ae_sin(phi, _state);
    8849           0 :     t = ae_cos(phi, _state);
    8850           0 :     *cn = t;
    8851           0 :     *dn = t/ae_cos(phi-b, _state);
    8852           0 :     *ph = phi;
    8853           0 :     ae_frame_leave(_state);
    8854             : }
    8855             : 
    8856             : 
    8857             : #endif
    8858             : #if defined(AE_COMPILE_PSIF) || !defined(AE_PARTIAL_BUILD)
    8859             : 
    8860             : 
    8861             : /*************************************************************************
    8862             : Psi (digamma) function
    8863             : 
    8864             :              d      -
    8865             :   psi(x)  =  -- ln | (x)
    8866             :              dx
    8867             : 
    8868             : is the logarithmic derivative of the gamma function.
    8869             : For integer x,
    8870             :                   n-1
    8871             :                    -
    8872             : psi(n) = -EUL  +   >  1/k.
    8873             :                    -
    8874             :                   k=1
    8875             : 
    8876             : This formula is used for 0 < n <= 10.  If x is negative, it
    8877             : is transformed to a positive argument by the reflection
    8878             : formula  psi(1-x) = psi(x) + pi cot(pi x).
    8879             : For general positive x, the argument is made greater than 10
    8880             : using the recurrence  psi(x+1) = psi(x) + 1/x.
    8881             : Then the following asymptotic expansion is applied:
    8882             : 
    8883             :                           inf.   B
    8884             :                            -      2k
    8885             : psi(x) = log(x) - 1/2x -   >   -------
    8886             :                            -        2k
    8887             :                           k=1   2k x
    8888             : 
    8889             : where the B2k are Bernoulli numbers.
    8890             : 
    8891             : ACCURACY:
    8892             :    Relative error (except absolute when |psi| < 1):
    8893             : arithmetic   domain     # trials      peak         rms
    8894             :    IEEE      0,30        30000       1.3e-15     1.4e-16
    8895             :    IEEE      -30,0       40000       1.5e-15     2.2e-16
    8896             : 
    8897             : Cephes Math Library Release 2.8:  June, 2000
    8898             : Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
    8899             : *************************************************************************/
    8900           0 : double psi(double x, ae_state *_state)
    8901             : {
    8902             :     double p;
    8903             :     double q;
    8904             :     double nz;
    8905             :     double s;
    8906             :     double w;
    8907             :     double y;
    8908             :     double z;
    8909             :     double polv;
    8910             :     ae_int_t i;
    8911             :     ae_int_t n;
    8912             :     ae_int_t negative;
    8913             :     double result;
    8914             : 
    8915             : 
    8916           0 :     negative = 0;
    8917           0 :     nz = 0.0;
    8918           0 :     if( ae_fp_less_eq(x,(double)(0)) )
    8919             :     {
    8920           0 :         negative = 1;
    8921           0 :         q = x;
    8922           0 :         p = (double)(ae_ifloor(q, _state));
    8923           0 :         if( ae_fp_eq(p,q) )
    8924             :         {
    8925           0 :             ae_assert(ae_false, "Singularity in Psi(x)", _state);
    8926           0 :             result = ae_maxrealnumber;
    8927           0 :             return result;
    8928             :         }
    8929           0 :         nz = q-p;
    8930           0 :         if( ae_fp_neq(nz,0.5) )
    8931             :         {
    8932           0 :             if( ae_fp_greater(nz,0.5) )
    8933             :             {
    8934           0 :                 p = p+1.0;
    8935           0 :                 nz = q-p;
    8936             :             }
    8937           0 :             nz = ae_pi/ae_tan(ae_pi*nz, _state);
    8938             :         }
    8939             :         else
    8940             :         {
    8941           0 :             nz = 0.0;
    8942             :         }
    8943           0 :         x = 1.0-x;
    8944             :     }
    8945           0 :     if( ae_fp_less_eq(x,10.0)&&ae_fp_eq(x,(double)(ae_ifloor(x, _state))) )
    8946             :     {
    8947           0 :         y = 0.0;
    8948           0 :         n = ae_ifloor(x, _state);
    8949           0 :         for(i=1; i<=n-1; i++)
    8950             :         {
    8951           0 :             w = (double)(i);
    8952           0 :             y = y+1.0/w;
    8953             :         }
    8954           0 :         y = y-0.57721566490153286061;
    8955             :     }
    8956             :     else
    8957             :     {
    8958           0 :         s = x;
    8959           0 :         w = 0.0;
    8960           0 :         while(ae_fp_less(s,10.0))
    8961             :         {
    8962           0 :             w = w+1.0/s;
    8963           0 :             s = s+1.0;
    8964             :         }
    8965           0 :         if( ae_fp_less(s,1.0E17) )
    8966             :         {
    8967           0 :             z = 1.0/(s*s);
    8968           0 :             polv = 8.33333333333333333333E-2;
    8969           0 :             polv = polv*z-2.10927960927960927961E-2;
    8970           0 :             polv = polv*z+7.57575757575757575758E-3;
    8971           0 :             polv = polv*z-4.16666666666666666667E-3;
    8972           0 :             polv = polv*z+3.96825396825396825397E-3;
    8973           0 :             polv = polv*z-8.33333333333333333333E-3;
    8974           0 :             polv = polv*z+8.33333333333333333333E-2;
    8975           0 :             y = z*polv;
    8976             :         }
    8977             :         else
    8978             :         {
    8979           0 :             y = 0.0;
    8980             :         }
    8981           0 :         y = ae_log(s, _state)-0.5/s-y-w;
    8982             :     }
    8983           0 :     if( negative!=0 )
    8984             :     {
    8985           0 :         y = y-nz;
    8986             :     }
    8987           0 :     result = y;
    8988           0 :     return result;
    8989             : }
    8990             : 
    8991             : 
    8992             : #endif
    8993             : #if defined(AE_COMPILE_EXPINTEGRALS) || !defined(AE_PARTIAL_BUILD)
    8994             : 
    8995             : 
    8996             : /*************************************************************************
    8997             : Exponential integral Ei(x)
    8998             : 
    8999             :               x
    9000             :                -     t
    9001             :               | |   e
    9002             :    Ei(x) =   -|-   ---  dt .
    9003             :             | |     t
    9004             :              -
    9005             :             -inf
    9006             : 
    9007             : Not defined for x <= 0.
    9008             : See also expn.c.
    9009             : 
    9010             : 
    9011             : 
    9012             : ACCURACY:
    9013             : 
    9014             :                      Relative error:
    9015             : arithmetic   domain     # trials      peak         rms
    9016             :    IEEE       0,100       50000      8.6e-16     1.3e-16
    9017             : 
    9018             : Cephes Math Library Release 2.8:  May, 1999
    9019             : Copyright 1999 by Stephen L. Moshier
    9020             : *************************************************************************/
    9021           0 : double exponentialintegralei(double x, ae_state *_state)
    9022             : {
    9023             :     double eul;
    9024             :     double f;
    9025             :     double f1;
    9026             :     double f2;
    9027             :     double w;
    9028             :     double result;
    9029             : 
    9030             : 
    9031           0 :     eul = 0.5772156649015328606065;
    9032           0 :     if( ae_fp_less_eq(x,(double)(0)) )
    9033             :     {
    9034           0 :         result = (double)(0);
    9035           0 :         return result;
    9036             :     }
    9037           0 :     if( ae_fp_less(x,(double)(2)) )
    9038             :     {
    9039           0 :         f1 = -5.350447357812542947283;
    9040           0 :         f1 = f1*x+218.5049168816613393830;
    9041           0 :         f1 = f1*x-4176.572384826693777058;
    9042           0 :         f1 = f1*x+55411.76756393557601232;
    9043           0 :         f1 = f1*x-331338.1331178144034309;
    9044           0 :         f1 = f1*x+1592627.163384945414220;
    9045           0 :         f2 = 1.000000000000000000000;
    9046           0 :         f2 = f2*x-52.50547959112862969197;
    9047           0 :         f2 = f2*x+1259.616186786790571525;
    9048           0 :         f2 = f2*x-17565.49581973534652631;
    9049           0 :         f2 = f2*x+149306.2117002725991967;
    9050           0 :         f2 = f2*x-729494.9239640527645655;
    9051           0 :         f2 = f2*x+1592627.163384945429726;
    9052           0 :         f = f1/f2;
    9053           0 :         result = eul+ae_log(x, _state)+x*f;
    9054           0 :         return result;
    9055             :     }
    9056           0 :     if( ae_fp_less(x,(double)(4)) )
    9057             :     {
    9058           0 :         w = 1/x;
    9059           0 :         f1 = 1.981808503259689673238E-2;
    9060           0 :         f1 = f1*w-1.271645625984917501326;
    9061           0 :         f1 = f1*w-2.088160335681228318920;
    9062           0 :         f1 = f1*w+2.755544509187936721172;
    9063           0 :         f1 = f1*w-4.409507048701600257171E-1;
    9064           0 :         f1 = f1*w+4.665623805935891391017E-2;
    9065           0 :         f1 = f1*w-1.545042679673485262580E-3;
    9066           0 :         f1 = f1*w+7.059980605299617478514E-5;
    9067           0 :         f2 = 1.000000000000000000000;
    9068           0 :         f2 = f2*w+1.476498670914921440652;
    9069           0 :         f2 = f2*w+5.629177174822436244827E-1;
    9070           0 :         f2 = f2*w+1.699017897879307263248E-1;
    9071           0 :         f2 = f2*w+2.291647179034212017463E-2;
    9072           0 :         f2 = f2*w+4.450150439728752875043E-3;
    9073           0 :         f2 = f2*w+1.727439612206521482874E-4;
    9074           0 :         f2 = f2*w+3.953167195549672482304E-5;
    9075           0 :         f = f1/f2;
    9076           0 :         result = ae_exp(x, _state)*w*(1+w*f);
    9077           0 :         return result;
    9078             :     }
    9079           0 :     if( ae_fp_less(x,(double)(8)) )
    9080             :     {
    9081           0 :         w = 1/x;
    9082           0 :         f1 = -1.373215375871208729803;
    9083           0 :         f1 = f1*w-7.084559133740838761406E-1;
    9084           0 :         f1 = f1*w+1.580806855547941010501;
    9085           0 :         f1 = f1*w-2.601500427425622944234E-1;
    9086           0 :         f1 = f1*w+2.994674694113713763365E-2;
    9087           0 :         f1 = f1*w-1.038086040188744005513E-3;
    9088           0 :         f1 = f1*w+4.371064420753005429514E-5;
    9089           0 :         f1 = f1*w+2.141783679522602903795E-6;
    9090           0 :         f2 = 1.000000000000000000000;
    9091           0 :         f2 = f2*w+8.585231423622028380768E-1;
    9092           0 :         f2 = f2*w+4.483285822873995129957E-1;
    9093           0 :         f2 = f2*w+7.687932158124475434091E-2;
    9094           0 :         f2 = f2*w+2.449868241021887685904E-2;
    9095           0 :         f2 = f2*w+8.832165941927796567926E-4;
    9096           0 :         f2 = f2*w+4.590952299511353531215E-4;
    9097           0 :         f2 = f2*w+(-4.729848351866523044863E-6);
    9098           0 :         f2 = f2*w+2.665195537390710170105E-6;
    9099           0 :         f = f1/f2;
    9100           0 :         result = ae_exp(x, _state)*w*(1+w*f);
    9101           0 :         return result;
    9102             :     }
    9103           0 :     if( ae_fp_less(x,(double)(16)) )
    9104             :     {
    9105           0 :         w = 1/x;
    9106           0 :         f1 = -2.106934601691916512584;
    9107           0 :         f1 = f1*w+1.732733869664688041885;
    9108           0 :         f1 = f1*w-2.423619178935841904839E-1;
    9109           0 :         f1 = f1*w+2.322724180937565842585E-2;
    9110           0 :         f1 = f1*w+2.372880440493179832059E-4;
    9111           0 :         f1 = f1*w-8.343219561192552752335E-5;
    9112           0 :         f1 = f1*w+1.363408795605250394881E-5;
    9113           0 :         f1 = f1*w-3.655412321999253963714E-7;
    9114           0 :         f1 = f1*w+1.464941733975961318456E-8;
    9115           0 :         f1 = f1*w+6.176407863710360207074E-10;
    9116           0 :         f2 = 1.000000000000000000000;
    9117           0 :         f2 = f2*w-2.298062239901678075778E-1;
    9118           0 :         f2 = f2*w+1.105077041474037862347E-1;
    9119           0 :         f2 = f2*w-1.566542966630792353556E-2;
    9120           0 :         f2 = f2*w+2.761106850817352773874E-3;
    9121           0 :         f2 = f2*w-2.089148012284048449115E-4;
    9122           0 :         f2 = f2*w+1.708528938807675304186E-5;
    9123           0 :         f2 = f2*w-4.459311796356686423199E-7;
    9124           0 :         f2 = f2*w+1.394634930353847498145E-8;
    9125           0 :         f2 = f2*w+6.150865933977338354138E-10;
    9126           0 :         f = f1/f2;
    9127           0 :         result = ae_exp(x, _state)*w*(1+w*f);
    9128           0 :         return result;
    9129             :     }
    9130           0 :     if( ae_fp_less(x,(double)(32)) )
    9131             :     {
    9132           0 :         w = 1/x;
    9133           0 :         f1 = -2.458119367674020323359E-1;
    9134           0 :         f1 = f1*w-1.483382253322077687183E-1;
    9135           0 :         f1 = f1*w+7.248291795735551591813E-2;
    9136           0 :         f1 = f1*w-1.348315687380940523823E-2;
    9137           0 :         f1 = f1*w+1.342775069788636972294E-3;
    9138           0 :         f1 = f1*w-7.942465637159712264564E-5;
    9139           0 :         f1 = f1*w+2.644179518984235952241E-6;
    9140           0 :         f1 = f1*w-4.239473659313765177195E-8;
    9141           0 :         f2 = 1.000000000000000000000;
    9142           0 :         f2 = f2*w-1.044225908443871106315E-1;
    9143           0 :         f2 = f2*w-2.676453128101402655055E-1;
    9144           0 :         f2 = f2*w+9.695000254621984627876E-2;
    9145           0 :         f2 = f2*w-1.601745692712991078208E-2;
    9146           0 :         f2 = f2*w+1.496414899205908021882E-3;
    9147           0 :         f2 = f2*w-8.462452563778485013756E-5;
    9148           0 :         f2 = f2*w+2.728938403476726394024E-6;
    9149           0 :         f2 = f2*w-4.239462431819542051337E-8;
    9150           0 :         f = f1/f2;
    9151           0 :         result = ae_exp(x, _state)*w*(1+w*f);
    9152           0 :         return result;
    9153             :     }
    9154           0 :     if( ae_fp_less(x,(double)(64)) )
    9155             :     {
    9156           0 :         w = 1/x;
    9157           0 :         f1 = 1.212561118105456670844E-1;
    9158           0 :         f1 = f1*w-5.823133179043894485122E-1;
    9159           0 :         f1 = f1*w+2.348887314557016779211E-1;
    9160           0 :         f1 = f1*w-3.040034318113248237280E-2;
    9161           0 :         f1 = f1*w+1.510082146865190661777E-3;
    9162           0 :         f1 = f1*w-2.523137095499571377122E-5;
    9163           0 :         f2 = 1.000000000000000000000;
    9164           0 :         f2 = f2*w-1.002252150365854016662;
    9165           0 :         f2 = f2*w+2.928709694872224144953E-1;
    9166           0 :         f2 = f2*w-3.337004338674007801307E-2;
    9167           0 :         f2 = f2*w+1.560544881127388842819E-3;
    9168           0 :         f2 = f2*w-2.523137093603234562648E-5;
    9169           0 :         f = f1/f2;
    9170           0 :         result = ae_exp(x, _state)*w*(1+w*f);
    9171           0 :         return result;
    9172             :     }
    9173           0 :     w = 1/x;
    9174           0 :     f1 = -7.657847078286127362028E-1;
    9175           0 :     f1 = f1*w+6.886192415566705051750E-1;
    9176           0 :     f1 = f1*w-2.132598113545206124553E-1;
    9177           0 :     f1 = f1*w+3.346107552384193813594E-2;
    9178           0 :     f1 = f1*w-3.076541477344756050249E-3;
    9179           0 :     f1 = f1*w+1.747119316454907477380E-4;
    9180           0 :     f1 = f1*w-6.103711682274170530369E-6;
    9181           0 :     f1 = f1*w+1.218032765428652199087E-7;
    9182           0 :     f1 = f1*w-1.086076102793290233007E-9;
    9183           0 :     f2 = 1.000000000000000000000;
    9184           0 :     f2 = f2*w-1.888802868662308731041;
    9185           0 :     f2 = f2*w+1.066691687211408896850;
    9186           0 :     f2 = f2*w-2.751915982306380647738E-1;
    9187           0 :     f2 = f2*w+3.930852688233823569726E-2;
    9188           0 :     f2 = f2*w-3.414684558602365085394E-3;
    9189           0 :     f2 = f2*w+1.866844370703555398195E-4;
    9190           0 :     f2 = f2*w-6.345146083130515357861E-6;
    9191           0 :     f2 = f2*w+1.239754287483206878024E-7;
    9192           0 :     f2 = f2*w-1.086076102793126632978E-9;
    9193           0 :     f = f1/f2;
    9194           0 :     result = ae_exp(x, _state)*w*(1+w*f);
    9195           0 :     return result;
    9196             : }
    9197             : 
    9198             : 
    9199             : /*************************************************************************
    9200             : Exponential integral En(x)
    9201             : 
    9202             : Evaluates the exponential integral
    9203             : 
    9204             :                 inf.
    9205             :                   -
    9206             :                  | |   -xt
    9207             :                  |    e
    9208             :      E (x)  =    |    ----  dt.
    9209             :       n          |      n
    9210             :                | |     t
    9211             :                 -
    9212             :                  1
    9213             : 
    9214             : 
    9215             : Both n and x must be nonnegative.
    9216             : 
    9217             : The routine employs either a power series, a continued
    9218             : fraction, or an asymptotic formula depending on the
    9219             : relative values of n and x.
    9220             : 
    9221             : ACCURACY:
    9222             : 
    9223             :                      Relative error:
    9224             : arithmetic   domain     # trials      peak         rms
    9225             :    IEEE      0, 30       10000       1.7e-15     3.6e-16
    9226             : 
    9227             : Cephes Math Library Release 2.8:  June, 2000
    9228             : Copyright 1985, 2000 by Stephen L. Moshier
    9229             : *************************************************************************/
    9230           0 : double exponentialintegralen(double x, ae_int_t n, ae_state *_state)
    9231             : {
    9232             :     double r;
    9233             :     double t;
    9234             :     double yk;
    9235             :     double xk;
    9236             :     double pk;
    9237             :     double pkm1;
    9238             :     double pkm2;
    9239             :     double qk;
    9240             :     double qkm1;
    9241             :     double qkm2;
    9242             :     double psi;
    9243             :     double z;
    9244             :     ae_int_t i;
    9245             :     ae_int_t k;
    9246             :     double big;
    9247             :     double eul;
    9248             :     double result;
    9249             : 
    9250             : 
    9251           0 :     eul = 0.57721566490153286060;
    9252           0 :     big = 1.44115188075855872*ae_pow((double)(10), (double)(17), _state);
    9253           0 :     if( ((n<0||ae_fp_less(x,(double)(0)))||ae_fp_greater(x,(double)(170)))||(ae_fp_eq(x,(double)(0))&&n<2) )
    9254             :     {
    9255           0 :         result = (double)(-1);
    9256           0 :         return result;
    9257             :     }
    9258           0 :     if( ae_fp_eq(x,(double)(0)) )
    9259             :     {
    9260           0 :         result = (double)1/(double)(n-1);
    9261           0 :         return result;
    9262             :     }
    9263           0 :     if( n==0 )
    9264             :     {
    9265           0 :         result = ae_exp(-x, _state)/x;
    9266           0 :         return result;
    9267             :     }
    9268           0 :     if( n>5000 )
    9269             :     {
    9270           0 :         xk = x+n;
    9271           0 :         yk = 1/(xk*xk);
    9272           0 :         t = (double)(n);
    9273           0 :         result = yk*t*(6*x*x-8*t*x+t*t);
    9274           0 :         result = yk*(result+t*(t-2.0*x));
    9275           0 :         result = yk*(result+t);
    9276           0 :         result = (result+1)*ae_exp(-x, _state)/xk;
    9277           0 :         return result;
    9278             :     }
    9279           0 :     if( ae_fp_less_eq(x,(double)(1)) )
    9280             :     {
    9281           0 :         psi = -eul-ae_log(x, _state);
    9282           0 :         for(i=1; i<=n-1; i++)
    9283             :         {
    9284           0 :             psi = psi+(double)1/(double)i;
    9285             :         }
    9286           0 :         z = -x;
    9287           0 :         xk = (double)(0);
    9288           0 :         yk = (double)(1);
    9289           0 :         pk = (double)(1-n);
    9290           0 :         if( n==1 )
    9291             :         {
    9292           0 :             result = 0.0;
    9293             :         }
    9294             :         else
    9295             :         {
    9296           0 :             result = 1.0/pk;
    9297             :         }
    9298             :         do
    9299             :         {
    9300           0 :             xk = xk+1;
    9301           0 :             yk = yk*z/xk;
    9302           0 :             pk = pk+1;
    9303           0 :             if( ae_fp_neq(pk,(double)(0)) )
    9304             :             {
    9305           0 :                 result = result+yk/pk;
    9306             :             }
    9307           0 :             if( ae_fp_neq(result,(double)(0)) )
    9308             :             {
    9309           0 :                 t = ae_fabs(yk/result, _state);
    9310             :             }
    9311             :             else
    9312             :             {
    9313           0 :                 t = (double)(1);
    9314             :             }
    9315             :         }
    9316           0 :         while(ae_fp_greater_eq(t,ae_machineepsilon));
    9317           0 :         t = (double)(1);
    9318           0 :         for(i=1; i<=n-1; i++)
    9319             :         {
    9320           0 :             t = t*z/i;
    9321             :         }
    9322           0 :         result = psi*t-result;
    9323           0 :         return result;
    9324             :     }
    9325             :     else
    9326             :     {
    9327           0 :         k = 1;
    9328           0 :         pkm2 = (double)(1);
    9329           0 :         qkm2 = x;
    9330           0 :         pkm1 = 1.0;
    9331           0 :         qkm1 = x+n;
    9332           0 :         result = pkm1/qkm1;
    9333             :         do
    9334             :         {
    9335           0 :             k = k+1;
    9336           0 :             if( k%2==1 )
    9337             :             {
    9338           0 :                 yk = (double)(1);
    9339           0 :                 xk = n+(double)(k-1)/(double)2;
    9340             :             }
    9341             :             else
    9342             :             {
    9343           0 :                 yk = x;
    9344           0 :                 xk = (double)k/(double)2;
    9345             :             }
    9346           0 :             pk = pkm1*yk+pkm2*xk;
    9347           0 :             qk = qkm1*yk+qkm2*xk;
    9348           0 :             if( ae_fp_neq(qk,(double)(0)) )
    9349             :             {
    9350           0 :                 r = pk/qk;
    9351           0 :                 t = ae_fabs((result-r)/r, _state);
    9352           0 :                 result = r;
    9353             :             }
    9354             :             else
    9355             :             {
    9356           0 :                 t = (double)(1);
    9357             :             }
    9358           0 :             pkm2 = pkm1;
    9359           0 :             pkm1 = pk;
    9360           0 :             qkm2 = qkm1;
    9361           0 :             qkm1 = qk;
    9362           0 :             if( ae_fp_greater(ae_fabs(pk, _state),big) )
    9363             :             {
    9364           0 :                 pkm2 = pkm2/big;
    9365           0 :                 pkm1 = pkm1/big;
    9366           0 :                 qkm2 = qkm2/big;
    9367           0 :                 qkm1 = qkm1/big;
    9368             :             }
    9369             :         }
    9370           0 :         while(ae_fp_greater_eq(t,ae_machineepsilon));
    9371           0 :         result = result*ae_exp(-x, _state);
    9372             :     }
    9373           0 :     return result;
    9374             : }
    9375             : 
    9376             : 
    9377             : #endif
    9378             : #if defined(AE_COMPILE_LAGUERRE) || !defined(AE_PARTIAL_BUILD)
    9379             : 
    9380             : 
    9381             : /*************************************************************************
    9382             : Calculation of the value of the Laguerre polynomial.
    9383             : 
    9384             : Parameters:
    9385             :     n   -   degree, n>=0
    9386             :     x   -   argument
    9387             : 
    9388             : Result:
    9389             :     the value of the Laguerre polynomial Ln at x
    9390             : *************************************************************************/
    9391           0 : double laguerrecalculate(ae_int_t n, double x, ae_state *_state)
    9392             : {
    9393             :     double a;
    9394             :     double b;
    9395             :     double i;
    9396             :     double result;
    9397             : 
    9398             : 
    9399           0 :     result = (double)(1);
    9400           0 :     a = (double)(1);
    9401           0 :     b = 1-x;
    9402           0 :     if( n==1 )
    9403             :     {
    9404           0 :         result = b;
    9405             :     }
    9406           0 :     i = (double)(2);
    9407           0 :     while(ae_fp_less_eq(i,(double)(n)))
    9408             :     {
    9409           0 :         result = ((2*i-1-x)*b-(i-1)*a)/i;
    9410           0 :         a = b;
    9411           0 :         b = result;
    9412           0 :         i = i+1;
    9413             :     }
    9414           0 :     return result;
    9415             : }
    9416             : 
    9417             : 
    9418             : /*************************************************************************
    9419             : Summation of Laguerre polynomials using Clenshaw's recurrence formula.
    9420             : 
    9421             : This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x)
    9422             : 
    9423             : Parameters:
    9424             :     n   -   degree, n>=0
    9425             :     x   -   argument
    9426             : 
    9427             : Result:
    9428             :     the value of the Laguerre polynomial at x
    9429             : *************************************************************************/
    9430           0 : double laguerresum(/* Real    */ ae_vector* c,
    9431             :      ae_int_t n,
    9432             :      double x,
    9433             :      ae_state *_state)
    9434             : {
    9435             :     double b1;
    9436             :     double b2;
    9437             :     ae_int_t i;
    9438             :     double result;
    9439             : 
    9440             : 
    9441           0 :     b1 = (double)(0);
    9442           0 :     b2 = (double)(0);
    9443           0 :     result = (double)(0);
    9444           0 :     for(i=n; i>=0; i--)
    9445             :     {
    9446           0 :         result = (2*i+1-x)*b1/(i+1)-(i+1)*b2/(i+2)+c->ptr.p_double[i];
    9447           0 :         b2 = b1;
    9448           0 :         b1 = result;
    9449             :     }
    9450           0 :     return result;
    9451             : }
    9452             : 
    9453             : 
    9454             : /*************************************************************************
    9455             : Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N
    9456             : 
    9457             : Input parameters:
    9458             :     N   -   polynomial degree, n>=0
    9459             : 
    9460             : Output parameters:
    9461             :     C   -   coefficients
    9462             : *************************************************************************/
    9463           0 : void laguerrecoefficients(ae_int_t n,
    9464             :      /* Real    */ ae_vector* c,
    9465             :      ae_state *_state)
    9466             : {
    9467             :     ae_int_t i;
    9468             : 
    9469           0 :     ae_vector_clear(c);
    9470             : 
    9471           0 :     ae_vector_set_length(c, n+1, _state);
    9472           0 :     c->ptr.p_double[0] = (double)(1);
    9473           0 :     for(i=0; i<=n-1; i++)
    9474             :     {
    9475           0 :         c->ptr.p_double[i+1] = -c->ptr.p_double[i]*(n-i)/(i+1)/(i+1);
    9476             :     }
    9477           0 : }
    9478             : 
    9479             : 
    9480             : #endif
    9481             : #if defined(AE_COMPILE_CHISQUAREDISTR) || !defined(AE_PARTIAL_BUILD)
    9482             : 
    9483             : 
    9484             : /*************************************************************************
    9485             : Chi-square distribution
    9486             : 
    9487             : Returns the area under the left hand tail (from 0 to x)
    9488             : of the Chi square probability density function with
    9489             : v degrees of freedom.
    9490             : 
    9491             : 
    9492             :                                   x
    9493             :                                    -
    9494             :                        1          | |  v/2-1  -t/2
    9495             :  P( x | v )   =   -----------     |   t      e     dt
    9496             :                    v/2  -       | |
    9497             :                   2    | (v/2)   -
    9498             :                                   0
    9499             : 
    9500             : where x is the Chi-square variable.
    9501             : 
    9502             : The incomplete gamma integral is used, according to the
    9503             : formula
    9504             : 
    9505             : y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
    9506             : 
    9507             : The arguments must both be positive.
    9508             : 
    9509             : ACCURACY:
    9510             : 
    9511             : See incomplete gamma function
    9512             : 
    9513             : 
    9514             : Cephes Math Library Release 2.8:  June, 2000
    9515             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    9516             : *************************************************************************/
    9517           0 : double chisquaredistribution(double v, double x, ae_state *_state)
    9518             : {
    9519             :     double result;
    9520             : 
    9521             : 
    9522           0 :     ae_assert(ae_fp_greater_eq(x,(double)(0))&&ae_fp_greater_eq(v,(double)(1)), "Domain error in ChiSquareDistribution", _state);
    9523           0 :     result = incompletegamma(v/2.0, x/2.0, _state);
    9524           0 :     return result;
    9525             : }
    9526             : 
    9527             : 
    9528             : /*************************************************************************
    9529             : Complemented Chi-square distribution
    9530             : 
    9531             : Returns the area under the right hand tail (from x to
    9532             : infinity) of the Chi square probability density function
    9533             : with v degrees of freedom:
    9534             : 
    9535             :                                  inf.
    9536             :                                    -
    9537             :                        1          | |  v/2-1  -t/2
    9538             :  P( x | v )   =   -----------     |   t      e     dt
    9539             :                    v/2  -       | |
    9540             :                   2    | (v/2)   -
    9541             :                                   x
    9542             : 
    9543             : where x is the Chi-square variable.
    9544             : 
    9545             : The incomplete gamma integral is used, according to the
    9546             : formula
    9547             : 
    9548             : y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
    9549             : 
    9550             : The arguments must both be positive.
    9551             : 
    9552             : ACCURACY:
    9553             : 
    9554             : See incomplete gamma function
    9555             : 
    9556             : Cephes Math Library Release 2.8:  June, 2000
    9557             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    9558             : *************************************************************************/
    9559           0 : double chisquarecdistribution(double v, double x, ae_state *_state)
    9560             : {
    9561             :     double result;
    9562             : 
    9563             : 
    9564           0 :     ae_assert(ae_fp_greater_eq(x,(double)(0))&&ae_fp_greater_eq(v,(double)(1)), "Domain error in ChiSquareDistributionC", _state);
    9565           0 :     result = incompletegammac(v/2.0, x/2.0, _state);
    9566           0 :     return result;
    9567             : }
    9568             : 
    9569             : 
    9570             : /*************************************************************************
    9571             : Inverse of complemented Chi-square distribution
    9572             : 
    9573             : Finds the Chi-square argument x such that the integral
    9574             : from x to infinity of the Chi-square density is equal
    9575             : to the given cumulative probability y.
    9576             : 
    9577             : This is accomplished using the inverse gamma integral
    9578             : function and the relation
    9579             : 
    9580             :    x/2 = igami( df/2, y );
    9581             : 
    9582             : ACCURACY:
    9583             : 
    9584             : See inverse incomplete gamma function
    9585             : 
    9586             : 
    9587             : Cephes Math Library Release 2.8:  June, 2000
    9588             : Copyright 1984, 1987, 2000 by Stephen L. Moshier
    9589             : *************************************************************************/
    9590           0 : double invchisquaredistribution(double v, double y, ae_state *_state)
    9591             : {
    9592             :     double result;
    9593             : 
    9594             : 
    9595           0 :     ae_assert((ae_fp_greater_eq(y,(double)(0))&&ae_fp_less_eq(y,(double)(1)))&&ae_fp_greater_eq(v,(double)(1)), "Domain error in InvChiSquareDistribution", _state);
    9596           0 :     result = 2*invincompletegammac(0.5*v, y, _state);
    9597           0 :     return result;
    9598             : }
    9599             : 
    9600             : 
    9601             : #endif
    9602             : #if defined(AE_COMPILE_LEGENDRE) || !defined(AE_PARTIAL_BUILD)
    9603             : 
    9604             : 
    9605             : /*************************************************************************
    9606             : Calculation of the value of the Legendre polynomial Pn.
    9607             : 
    9608             : Parameters:
    9609             :     n   -   degree, n>=0
    9610             :     x   -   argument
    9611             : 
    9612             : Result:
    9613             :     the value of the Legendre polynomial Pn at x
    9614             : *************************************************************************/
    9615           0 : double legendrecalculate(ae_int_t n, double x, ae_state *_state)
    9616             : {
    9617             :     double a;
    9618             :     double b;
    9619             :     ae_int_t i;
    9620             :     double result;
    9621             : 
    9622             : 
    9623           0 :     result = (double)(1);
    9624           0 :     a = (double)(1);
    9625           0 :     b = x;
    9626           0 :     if( n==0 )
    9627             :     {
    9628           0 :         result = a;
    9629           0 :         return result;
    9630             :     }
    9631           0 :     if( n==1 )
    9632             :     {
    9633           0 :         result = b;
    9634           0 :         return result;
    9635             :     }
    9636           0 :     for(i=2; i<=n; i++)
    9637             :     {
    9638           0 :         result = ((2*i-1)*x*b-(i-1)*a)/i;
    9639           0 :         a = b;
    9640           0 :         b = result;
    9641             :     }
    9642           0 :     return result;
    9643             : }
    9644             : 
    9645             : 
    9646             : /*************************************************************************
    9647             : Summation of Legendre polynomials using Clenshaw's recurrence formula.
    9648             : 
    9649             : This routine calculates
    9650             :     c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x)
    9651             : 
    9652             : Parameters:
    9653             :     n   -   degree, n>=0
    9654             :     x   -   argument
    9655             : 
    9656             : Result:
    9657             :     the value of the Legendre polynomial at x
    9658             : *************************************************************************/
    9659           0 : double legendresum(/* Real    */ ae_vector* c,
    9660             :      ae_int_t n,
    9661             :      double x,
    9662             :      ae_state *_state)
    9663             : {
    9664             :     double b1;
    9665             :     double b2;
    9666             :     ae_int_t i;
    9667             :     double result;
    9668             : 
    9669             : 
    9670           0 :     b1 = (double)(0);
    9671           0 :     b2 = (double)(0);
    9672           0 :     result = (double)(0);
    9673           0 :     for(i=n; i>=0; i--)
    9674             :     {
    9675           0 :         result = (2*i+1)*x*b1/(i+1)-(i+1)*b2/(i+2)+c->ptr.p_double[i];
    9676           0 :         b2 = b1;
    9677           0 :         b1 = result;
    9678             :     }
    9679           0 :     return result;
    9680             : }
    9681             : 
    9682             : 
    9683             : /*************************************************************************
    9684             : Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N
    9685             : 
    9686             : Input parameters:
    9687             :     N   -   polynomial degree, n>=0
    9688             : 
    9689             : Output parameters:
    9690             :     C   -   coefficients
    9691             : *************************************************************************/
    9692           0 : void legendrecoefficients(ae_int_t n,
    9693             :      /* Real    */ ae_vector* c,
    9694             :      ae_state *_state)
    9695             : {
    9696             :     ae_int_t i;
    9697             : 
    9698           0 :     ae_vector_clear(c);
    9699             : 
    9700           0 :     ae_vector_set_length(c, n+1, _state);
    9701           0 :     for(i=0; i<=n; i++)
    9702             :     {
    9703           0 :         c->ptr.p_double[i] = (double)(0);
    9704             :     }
    9705           0 :     c->ptr.p_double[n] = (double)(1);
    9706           0 :     for(i=1; i<=n; i++)
    9707             :     {
    9708           0 :         c->ptr.p_double[n] = c->ptr.p_double[n]*(n+i)/2/i;
    9709             :     }
    9710           0 :     for(i=0; i<=n/2-1; i++)
    9711             :     {
    9712           0 :         c->ptr.p_double[n-2*(i+1)] = -c->ptr.p_double[n-2*i]*(n-2*i)*(n-2*i-1)/2/(i+1)/(2*(n-i)-1);
    9713             :     }
    9714           0 : }
    9715             : 
    9716             : 
    9717             : #endif
    9718             : #if defined(AE_COMPILE_BETAF) || !defined(AE_PARTIAL_BUILD)
    9719             : 
    9720             : 
    9721             : /*************************************************************************
    9722             : Beta function
    9723             : 
    9724             : 
    9725             :                   -     -
    9726             :                  | (a) | (b)
    9727             : beta( a, b )  =  -----------.
    9728             :                     -
    9729             :                    | (a+b)
    9730             : 
    9731             : For large arguments the logarithm of the function is
    9732             : evaluated using lgam(), then exponentiated.
    9733             : 
    9734             : ACCURACY:
    9735             : 
    9736             :                      Relative error:
    9737             : arithmetic   domain     # trials      peak         rms
    9738             :    IEEE       0,30       30000       8.1e-14     1.1e-14
    9739             : 
    9740             : Cephes Math Library Release 2.0:  April, 1987
    9741             : Copyright 1984, 1987 by Stephen L. Moshier
    9742             : *************************************************************************/
    9743           0 : double beta(double a, double b, ae_state *_state)
    9744             : {
    9745             :     double y;
    9746             :     double sg;
    9747             :     double s;
    9748             :     double result;
    9749             : 
    9750             : 
    9751           0 :     sg = (double)(1);
    9752           0 :     ae_assert(ae_fp_greater(a,(double)(0))||ae_fp_neq(a,(double)(ae_ifloor(a, _state))), "Overflow in Beta", _state);
    9753           0 :     ae_assert(ae_fp_greater(b,(double)(0))||ae_fp_neq(b,(double)(ae_ifloor(b, _state))), "Overflow in Beta", _state);
    9754           0 :     y = a+b;
    9755           0 :     if( ae_fp_greater(ae_fabs(y, _state),171.624376956302725) )
    9756             :     {
    9757           0 :         y = lngamma(y, &s, _state);
    9758           0 :         sg = sg*s;
    9759           0 :         y = lngamma(b, &s, _state)-y;
    9760           0 :         sg = sg*s;
    9761           0 :         y = lngamma(a, &s, _state)+y;
    9762           0 :         sg = sg*s;
    9763           0 :         ae_assert(ae_fp_less_eq(y,ae_log(ae_maxrealnumber, _state)), "Overflow in Beta", _state);
    9764           0 :         result = sg*ae_exp(y, _state);
    9765           0 :         return result;
    9766             :     }
    9767           0 :     y = gammafunction(y, _state);
    9768           0 :     ae_assert(ae_fp_neq(y,(double)(0)), "Overflow in Beta", _state);
    9769           0 :     if( ae_fp_greater(a,b) )
    9770             :     {
    9771           0 :         y = gammafunction(a, _state)/y;
    9772           0 :         y = y*gammafunction(b, _state);
    9773             :     }
    9774             :     else
    9775             :     {
    9776           0 :         y = gammafunction(b, _state)/y;
    9777           0 :         y = y*gammafunction(a, _state);
    9778             :     }
    9779           0 :     result = y;
    9780           0 :     return result;
    9781             : }
    9782             : 
    9783             : 
    9784             : #endif
    9785             : #if defined(AE_COMPILE_CHEBYSHEV) || !defined(AE_PARTIAL_BUILD)
    9786             : 
    9787             : 
    9788             : /*************************************************************************
    9789             : Calculation of the value of the Chebyshev polynomials of the
    9790             : first and second kinds.
    9791             : 
    9792             : Parameters:
    9793             :     r   -   polynomial kind, either 1 or 2.
    9794             :     n   -   degree, n>=0
    9795             :     x   -   argument, -1 <= x <= 1
    9796             : 
    9797             : Result:
    9798             :     the value of the Chebyshev polynomial at x
    9799             : *************************************************************************/
    9800           0 : double chebyshevcalculate(ae_int_t r,
    9801             :      ae_int_t n,
    9802             :      double x,
    9803             :      ae_state *_state)
    9804             : {
    9805             :     ae_int_t i;
    9806             :     double a;
    9807             :     double b;
    9808             :     double result;
    9809             : 
    9810             : 
    9811           0 :     result = (double)(0);
    9812             :     
    9813             :     /*
    9814             :      * Prepare A and B
    9815             :      */
    9816           0 :     if( r==1 )
    9817             :     {
    9818           0 :         a = (double)(1);
    9819           0 :         b = x;
    9820             :     }
    9821             :     else
    9822             :     {
    9823           0 :         a = (double)(1);
    9824           0 :         b = 2*x;
    9825             :     }
    9826             :     
    9827             :     /*
    9828             :      * Special cases: N=0 or N=1
    9829             :      */
    9830           0 :     if( n==0 )
    9831             :     {
    9832           0 :         result = a;
    9833           0 :         return result;
    9834             :     }
    9835           0 :     if( n==1 )
    9836             :     {
    9837           0 :         result = b;
    9838           0 :         return result;
    9839             :     }
    9840             :     
    9841             :     /*
    9842             :      * General case: N>=2
    9843             :      */
    9844           0 :     for(i=2; i<=n; i++)
    9845             :     {
    9846           0 :         result = 2*x*b-a;
    9847           0 :         a = b;
    9848           0 :         b = result;
    9849             :     }
    9850           0 :     return result;
    9851             : }
    9852             : 
    9853             : 
    9854             : /*************************************************************************
    9855             : Summation of Chebyshev polynomials using Clenshaw's recurrence formula.
    9856             : 
    9857             : This routine calculates
    9858             :     c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
    9859             : or
    9860             :     c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
    9861             : depending on the R.
    9862             : 
    9863             : Parameters:
    9864             :     r   -   polynomial kind, either 1 or 2.
    9865             :     n   -   degree, n>=0
    9866             :     x   -   argument
    9867             : 
    9868             : Result:
    9869             :     the value of the Chebyshev polynomial at x
    9870             : *************************************************************************/
    9871           0 : double chebyshevsum(/* Real    */ ae_vector* c,
    9872             :      ae_int_t r,
    9873             :      ae_int_t n,
    9874             :      double x,
    9875             :      ae_state *_state)
    9876             : {
    9877             :     double b1;
    9878             :     double b2;
    9879             :     ae_int_t i;
    9880             :     double result;
    9881             : 
    9882             : 
    9883           0 :     b1 = (double)(0);
    9884           0 :     b2 = (double)(0);
    9885           0 :     for(i=n; i>=1; i--)
    9886             :     {
    9887           0 :         result = 2*x*b1-b2+c->ptr.p_double[i];
    9888           0 :         b2 = b1;
    9889           0 :         b1 = result;
    9890             :     }
    9891           0 :     if( r==1 )
    9892             :     {
    9893           0 :         result = -b2+x*b1+c->ptr.p_double[0];
    9894             :     }
    9895             :     else
    9896             :     {
    9897           0 :         result = -b2+2*x*b1+c->ptr.p_double[0];
    9898             :     }
    9899           0 :     return result;
    9900             : }
    9901             : 
    9902             : 
    9903             : /*************************************************************************
    9904             : Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
    9905             : 
    9906             : Input parameters:
    9907             :     N   -   polynomial degree, n>=0
    9908             : 
    9909             : Output parameters:
    9910             :     C   -   coefficients
    9911             : *************************************************************************/
    9912           0 : void chebyshevcoefficients(ae_int_t n,
    9913             :      /* Real    */ ae_vector* c,
    9914             :      ae_state *_state)
    9915             : {
    9916             :     ae_int_t i;
    9917             : 
    9918           0 :     ae_vector_clear(c);
    9919             : 
    9920           0 :     ae_vector_set_length(c, n+1, _state);
    9921           0 :     for(i=0; i<=n; i++)
    9922             :     {
    9923           0 :         c->ptr.p_double[i] = (double)(0);
    9924             :     }
    9925           0 :     if( n==0||n==1 )
    9926             :     {
    9927           0 :         c->ptr.p_double[n] = (double)(1);
    9928             :     }
    9929             :     else
    9930             :     {
    9931           0 :         c->ptr.p_double[n] = ae_exp((n-1)*ae_log((double)(2), _state), _state);
    9932           0 :         for(i=0; i<=n/2-1; i++)
    9933             :         {
    9934           0 :             c->ptr.p_double[n-2*(i+1)] = -c->ptr.p_double[n-2*i]*(n-2*i)*(n-2*i-1)/4/(i+1)/(n-i-1);
    9935             :         }
    9936             :     }
    9937           0 : }
    9938             : 
    9939             : 
    9940             : /*************************************************************************
    9941             : Conversion of a series of Chebyshev polynomials to a power series.
    9942             : 
    9943             : Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
    9944             : B[0] + B[1]*X + ... + B[N]*X^N.
    9945             : 
    9946             : Input parameters:
    9947             :     A   -   Chebyshev series coefficients
    9948             :     N   -   degree, N>=0
    9949             :     
    9950             : Output parameters
    9951             :     B   -   power series coefficients
    9952             : *************************************************************************/
    9953           0 : void fromchebyshev(/* Real    */ ae_vector* a,
    9954             :      ae_int_t n,
    9955             :      /* Real    */ ae_vector* b,
    9956             :      ae_state *_state)
    9957             : {
    9958             :     ae_int_t i;
    9959             :     ae_int_t k;
    9960             :     double e;
    9961             :     double d;
    9962             : 
    9963           0 :     ae_vector_clear(b);
    9964             : 
    9965           0 :     ae_vector_set_length(b, n+1, _state);
    9966           0 :     for(i=0; i<=n; i++)
    9967             :     {
    9968           0 :         b->ptr.p_double[i] = (double)(0);
    9969             :     }
    9970           0 :     d = (double)(0);
    9971           0 :     i = 0;
    9972             :     do
    9973             :     {
    9974           0 :         k = i;
    9975             :         do
    9976             :         {
    9977           0 :             e = b->ptr.p_double[k];
    9978           0 :             b->ptr.p_double[k] = (double)(0);
    9979           0 :             if( i<=1&&k==i )
    9980             :             {
    9981           0 :                 b->ptr.p_double[k] = (double)(1);
    9982             :             }
    9983             :             else
    9984             :             {
    9985           0 :                 if( i!=0 )
    9986             :                 {
    9987           0 :                     b->ptr.p_double[k] = 2*d;
    9988             :                 }
    9989           0 :                 if( k>i+1 )
    9990             :                 {
    9991           0 :                     b->ptr.p_double[k] = b->ptr.p_double[k]-b->ptr.p_double[k-2];
    9992             :                 }
    9993             :             }
    9994           0 :             d = e;
    9995           0 :             k = k+1;
    9996             :         }
    9997           0 :         while(k<=n);
    9998           0 :         d = b->ptr.p_double[i];
    9999           0 :         e = (double)(0);
   10000           0 :         k = i;
   10001           0 :         while(k<=n)
   10002             :         {
   10003           0 :             e = e+b->ptr.p_double[k]*a->ptr.p_double[k];
   10004           0 :             k = k+2;
   10005             :         }
   10006           0 :         b->ptr.p_double[i] = e;
   10007           0 :         i = i+1;
   10008             :     }
   10009           0 :     while(i<=n);
   10010           0 : }
   10011             : 
   10012             : 
   10013             : #endif
   10014             : #if defined(AE_COMPILE_STUDENTTDISTR) || !defined(AE_PARTIAL_BUILD)
   10015             : 
   10016             : 
   10017             : /*************************************************************************
   10018             : Student's t distribution
   10019             : 
   10020             : Computes the integral from minus infinity to t of the Student
   10021             : t distribution with integer k > 0 degrees of freedom:
   10022             : 
   10023             :                                      t
   10024             :                                      -
   10025             :                                     | |
   10026             :              -                      |         2   -(k+1)/2
   10027             :             | ( (k+1)/2 )           |  (     x   )
   10028             :       ----------------------        |  ( 1 + --- )        dx
   10029             :                     -               |  (      k  )
   10030             :       sqrt( k pi ) | ( k/2 )        |
   10031             :                                   | |
   10032             :                                    -
   10033             :                                   -inf.
   10034             : 
   10035             : Relation to incomplete beta integral:
   10036             : 
   10037             :        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
   10038             : where
   10039             :        z = k/(k + t**2).
   10040             : 
   10041             : For t < -2, this is the method of computation.  For higher t,
   10042             : a direct method is derived from integration by parts.
   10043             : Since the function is symmetric about t=0, the area under the
   10044             : right tail of the density is found by calling the function
   10045             : with -t instead of t.
   10046             : 
   10047             : ACCURACY:
   10048             : 
   10049             : Tested at random 1 <= k <= 25.  The "domain" refers to t.
   10050             :                      Relative error:
   10051             : arithmetic   domain     # trials      peak         rms
   10052             :    IEEE     -100,-2      50000       5.9e-15     1.4e-15
   10053             :    IEEE     -2,100      500000       2.7e-15     4.9e-17
   10054             : 
   10055             : Cephes Math Library Release 2.8:  June, 2000
   10056             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
   10057             : *************************************************************************/
   10058           0 : double studenttdistribution(ae_int_t k, double t, ae_state *_state)
   10059             : {
   10060             :     double x;
   10061             :     double rk;
   10062             :     double z;
   10063             :     double f;
   10064             :     double tz;
   10065             :     double p;
   10066             :     double xsqk;
   10067             :     ae_int_t j;
   10068             :     double result;
   10069             : 
   10070             : 
   10071           0 :     ae_assert(k>0, "Domain error in StudentTDistribution", _state);
   10072           0 :     if( ae_fp_eq(t,(double)(0)) )
   10073             :     {
   10074           0 :         result = 0.5;
   10075           0 :         return result;
   10076             :     }
   10077           0 :     if( ae_fp_less(t,-2.0) )
   10078             :     {
   10079           0 :         rk = (double)(k);
   10080           0 :         z = rk/(rk+t*t);
   10081           0 :         result = 0.5*incompletebeta(0.5*rk, 0.5, z, _state);
   10082           0 :         return result;
   10083             :     }
   10084           0 :     if( ae_fp_less(t,(double)(0)) )
   10085             :     {
   10086           0 :         x = -t;
   10087             :     }
   10088             :     else
   10089             :     {
   10090           0 :         x = t;
   10091             :     }
   10092           0 :     rk = (double)(k);
   10093           0 :     z = 1.0+x*x/rk;
   10094           0 :     if( k%2!=0 )
   10095             :     {
   10096           0 :         xsqk = x/ae_sqrt(rk, _state);
   10097           0 :         p = ae_atan(xsqk, _state);
   10098           0 :         if( k>1 )
   10099             :         {
   10100           0 :             f = 1.0;
   10101           0 :             tz = 1.0;
   10102           0 :             j = 3;
   10103           0 :             while(j<=k-2&&ae_fp_greater(tz/f,ae_machineepsilon))
   10104             :             {
   10105           0 :                 tz = tz*((j-1)/(z*j));
   10106           0 :                 f = f+tz;
   10107           0 :                 j = j+2;
   10108             :             }
   10109           0 :             p = p+f*xsqk/z;
   10110             :         }
   10111           0 :         p = p*2.0/ae_pi;
   10112             :     }
   10113             :     else
   10114             :     {
   10115           0 :         f = 1.0;
   10116           0 :         tz = 1.0;
   10117           0 :         j = 2;
   10118           0 :         while(j<=k-2&&ae_fp_greater(tz/f,ae_machineepsilon))
   10119             :         {
   10120           0 :             tz = tz*((j-1)/(z*j));
   10121           0 :             f = f+tz;
   10122           0 :             j = j+2;
   10123             :         }
   10124           0 :         p = f*x/ae_sqrt(z*rk, _state);
   10125             :     }
   10126           0 :     if( ae_fp_less(t,(double)(0)) )
   10127             :     {
   10128           0 :         p = -p;
   10129             :     }
   10130           0 :     result = 0.5+0.5*p;
   10131           0 :     return result;
   10132             : }
   10133             : 
   10134             : 
   10135             : /*************************************************************************
   10136             : Functional inverse of Student's t distribution
   10137             : 
   10138             : Given probability p, finds the argument t such that stdtr(k,t)
   10139             : is equal to p.
   10140             : 
   10141             : ACCURACY:
   10142             : 
   10143             : Tested at random 1 <= k <= 100.  The "domain" refers to p:
   10144             :                      Relative error:
   10145             : arithmetic   domain     # trials      peak         rms
   10146             :    IEEE    .001,.999     25000       5.7e-15     8.0e-16
   10147             :    IEEE    10^-6,.001    25000       2.0e-12     2.9e-14
   10148             : 
   10149             : Cephes Math Library Release 2.8:  June, 2000
   10150             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
   10151             : *************************************************************************/
   10152           0 : double invstudenttdistribution(ae_int_t k, double p, ae_state *_state)
   10153             : {
   10154             :     double t;
   10155             :     double rk;
   10156             :     double z;
   10157             :     ae_int_t rflg;
   10158             :     double result;
   10159             : 
   10160             : 
   10161           0 :     ae_assert((k>0&&ae_fp_greater(p,(double)(0)))&&ae_fp_less(p,(double)(1)), "Domain error in InvStudentTDistribution", _state);
   10162           0 :     rk = (double)(k);
   10163           0 :     if( ae_fp_greater(p,0.25)&&ae_fp_less(p,0.75) )
   10164             :     {
   10165           0 :         if( ae_fp_eq(p,0.5) )
   10166             :         {
   10167           0 :             result = (double)(0);
   10168           0 :             return result;
   10169             :         }
   10170           0 :         z = 1.0-2.0*p;
   10171           0 :         z = invincompletebeta(0.5, 0.5*rk, ae_fabs(z, _state), _state);
   10172           0 :         t = ae_sqrt(rk*z/(1.0-z), _state);
   10173           0 :         if( ae_fp_less(p,0.5) )
   10174             :         {
   10175           0 :             t = -t;
   10176             :         }
   10177           0 :         result = t;
   10178           0 :         return result;
   10179             :     }
   10180           0 :     rflg = -1;
   10181           0 :     if( ae_fp_greater_eq(p,0.5) )
   10182             :     {
   10183           0 :         p = 1.0-p;
   10184           0 :         rflg = 1;
   10185             :     }
   10186           0 :     z = invincompletebeta(0.5*rk, 0.5, 2.0*p, _state);
   10187           0 :     if( ae_fp_less(ae_maxrealnumber*z,rk) )
   10188             :     {
   10189           0 :         result = rflg*ae_maxrealnumber;
   10190           0 :         return result;
   10191             :     }
   10192           0 :     t = ae_sqrt(rk/z-rk, _state);
   10193           0 :     result = rflg*t;
   10194           0 :     return result;
   10195             : }
   10196             : 
   10197             : 
   10198             : #endif
   10199             : #if defined(AE_COMPILE_BINOMIALDISTR) || !defined(AE_PARTIAL_BUILD)
   10200             : 
   10201             : 
   10202             : /*************************************************************************
   10203             : Binomial distribution
   10204             : 
   10205             : Returns the sum of the terms 0 through k of the Binomial
   10206             : probability density:
   10207             : 
   10208             :   k
   10209             :   --  ( n )   j      n-j
   10210             :   >   (   )  p  (1-p)
   10211             :   --  ( j )
   10212             :  j=0
   10213             : 
   10214             : The terms are not summed directly; instead the incomplete
   10215             : beta integral is employed, according to the formula
   10216             : 
   10217             : y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
   10218             : 
   10219             : The arguments must be positive, with p ranging from 0 to 1.
   10220             : 
   10221             : ACCURACY:
   10222             : 
   10223             : Tested at random points (a,b,p), with p between 0 and 1.
   10224             : 
   10225             :               a,b                     Relative error:
   10226             : arithmetic  domain     # trials      peak         rms
   10227             :  For p between 0.001 and 1:
   10228             :    IEEE     0,100       100000      4.3e-15     2.6e-16
   10229             : 
   10230             : Cephes Math Library Release 2.8:  June, 2000
   10231             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
   10232             : *************************************************************************/
   10233           0 : double binomialdistribution(ae_int_t k,
   10234             :      ae_int_t n,
   10235             :      double p,
   10236             :      ae_state *_state)
   10237             : {
   10238             :     double dk;
   10239             :     double dn;
   10240             :     double result;
   10241             : 
   10242             : 
   10243           0 :     ae_assert(ae_fp_greater_eq(p,(double)(0))&&ae_fp_less_eq(p,(double)(1)), "Domain error in BinomialDistribution", _state);
   10244           0 :     ae_assert(k>=-1&&k<=n, "Domain error in BinomialDistribution", _state);
   10245           0 :     if( k==-1 )
   10246             :     {
   10247           0 :         result = (double)(0);
   10248           0 :         return result;
   10249             :     }
   10250           0 :     if( k==n )
   10251             :     {
   10252           0 :         result = (double)(1);
   10253           0 :         return result;
   10254             :     }
   10255           0 :     dn = (double)(n-k);
   10256           0 :     if( k==0 )
   10257             :     {
   10258           0 :         dk = ae_pow(1.0-p, dn, _state);
   10259             :     }
   10260             :     else
   10261             :     {
   10262           0 :         dk = (double)(k+1);
   10263           0 :         dk = incompletebeta(dn, dk, 1.0-p, _state);
   10264             :     }
   10265           0 :     result = dk;
   10266           0 :     return result;
   10267             : }
   10268             : 
   10269             : 
   10270             : /*************************************************************************
   10271             : Complemented binomial distribution
   10272             : 
   10273             : Returns the sum of the terms k+1 through n of the Binomial
   10274             : probability density:
   10275             : 
   10276             :   n
   10277             :   --  ( n )   j      n-j
   10278             :   >   (   )  p  (1-p)
   10279             :   --  ( j )
   10280             :  j=k+1
   10281             : 
   10282             : The terms are not summed directly; instead the incomplete
   10283             : beta integral is employed, according to the formula
   10284             : 
   10285             : y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
   10286             : 
   10287             : The arguments must be positive, with p ranging from 0 to 1.
   10288             : 
   10289             : ACCURACY:
   10290             : 
   10291             : Tested at random points (a,b,p).
   10292             : 
   10293             :               a,b                     Relative error:
   10294             : arithmetic  domain     # trials      peak         rms
   10295             :  For p between 0.001 and 1:
   10296             :    IEEE     0,100       100000      6.7e-15     8.2e-16
   10297             :  For p between 0 and .001:
   10298             :    IEEE     0,100       100000      1.5e-13     2.7e-15
   10299             : 
   10300             : Cephes Math Library Release 2.8:  June, 2000
   10301             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
   10302             : *************************************************************************/
   10303           0 : double binomialcdistribution(ae_int_t k,
   10304             :      ae_int_t n,
   10305             :      double p,
   10306             :      ae_state *_state)
   10307             : {
   10308             :     double dk;
   10309             :     double dn;
   10310             :     double result;
   10311             : 
   10312             : 
   10313           0 :     ae_assert(ae_fp_greater_eq(p,(double)(0))&&ae_fp_less_eq(p,(double)(1)), "Domain error in BinomialDistributionC", _state);
   10314           0 :     ae_assert(k>=-1&&k<=n, "Domain error in BinomialDistributionC", _state);
   10315           0 :     if( k==-1 )
   10316             :     {
   10317           0 :         result = (double)(1);
   10318           0 :         return result;
   10319             :     }
   10320           0 :     if( k==n )
   10321             :     {
   10322           0 :         result = (double)(0);
   10323           0 :         return result;
   10324             :     }
   10325           0 :     dn = (double)(n-k);
   10326           0 :     if( k==0 )
   10327             :     {
   10328           0 :         if( ae_fp_less(p,0.01) )
   10329             :         {
   10330           0 :             dk = -nuexpm1(dn*nulog1p(-p, _state), _state);
   10331             :         }
   10332             :         else
   10333             :         {
   10334           0 :             dk = 1.0-ae_pow(1.0-p, dn, _state);
   10335             :         }
   10336             :     }
   10337             :     else
   10338             :     {
   10339           0 :         dk = (double)(k+1);
   10340           0 :         dk = incompletebeta(dk, dn, p, _state);
   10341             :     }
   10342           0 :     result = dk;
   10343           0 :     return result;
   10344             : }
   10345             : 
   10346             : 
   10347             : /*************************************************************************
   10348             : Inverse binomial distribution
   10349             : 
   10350             : Finds the event probability p such that the sum of the
   10351             : terms 0 through k of the Binomial probability density
   10352             : is equal to the given cumulative probability y.
   10353             : 
   10354             : This is accomplished using the inverse beta integral
   10355             : function and the relation
   10356             : 
   10357             : 1 - p = incbi( n-k, k+1, y ).
   10358             : 
   10359             : ACCURACY:
   10360             : 
   10361             : Tested at random points (a,b,p).
   10362             : 
   10363             :               a,b                     Relative error:
   10364             : arithmetic  domain     # trials      peak         rms
   10365             :  For p between 0.001 and 1:
   10366             :    IEEE     0,100       100000      2.3e-14     6.4e-16
   10367             :    IEEE     0,10000     100000      6.6e-12     1.2e-13
   10368             :  For p between 10^-6 and 0.001:
   10369             :    IEEE     0,100       100000      2.0e-12     1.3e-14
   10370             :    IEEE     0,10000     100000      1.5e-12     3.2e-14
   10371             : 
   10372             : Cephes Math Library Release 2.8:  June, 2000
   10373             : Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
   10374             : *************************************************************************/
   10375           0 : double invbinomialdistribution(ae_int_t k,
   10376             :      ae_int_t n,
   10377             :      double y,
   10378             :      ae_state *_state)
   10379             : {
   10380             :     double dk;
   10381             :     double dn;
   10382             :     double p;
   10383             :     double result;
   10384             : 
   10385             : 
   10386           0 :     ae_assert(k>=0&&k<n, "Domain error in InvBinomialDistribution", _state);
   10387           0 :     dn = (double)(n-k);
   10388           0 :     if( k==0 )
   10389             :     {
   10390           0 :         if( ae_fp_greater(y,0.8) )
   10391             :         {
   10392           0 :             p = -nuexpm1(nulog1p(y-1.0, _state)/dn, _state);
   10393             :         }
   10394             :         else
   10395             :         {
   10396           0 :             p = 1.0-ae_pow(y, 1.0/dn, _state);
   10397             :         }
   10398             :     }
   10399             :     else
   10400             :     {
   10401           0 :         dk = (double)(k+1);
   10402           0 :         p = incompletebeta(dn, dk, 0.5, _state);
   10403           0 :         if( ae_fp_greater(p,0.5) )
   10404             :         {
   10405           0 :             p = invincompletebeta(dk, dn, 1.0-y, _state);
   10406             :         }
   10407             :         else
   10408             :         {
   10409           0 :             p = 1.0-invincompletebeta(dn, dk, y, _state);
   10410             :         }
   10411             :     }
   10412           0 :     result = p;
   10413           0 :     return result;
   10414             : }
   10415             : 
   10416             : 
   10417             : #endif
   10418             : #if defined(AE_COMPILE_AIRYF) || !defined(AE_PARTIAL_BUILD)
   10419             : 
   10420             : 
   10421             : /*************************************************************************
   10422             : Airy function
   10423             : 
   10424             : Solution of the differential equation
   10425             : 
   10426             : y"(x) = xy.
   10427             : 
   10428             : The function returns the two independent solutions Ai, Bi
   10429             : and their first derivatives Ai'(x), Bi'(x).
   10430             : 
   10431             : Evaluation is by power series summation for small x,
   10432             : by rational minimax approximations for large x.
   10433             : 
   10434             : 
   10435             : 
   10436             : ACCURACY:
   10437             : Error criterion is absolute when function <= 1, relative
   10438             : when function > 1, except * denotes relative error criterion.
   10439             : For large negative x, the absolute error increases as x^1.5.
   10440             : For large positive x, the relative error increases as x^1.5.
   10441             : 
   10442             : Arithmetic  domain   function  # trials      peak         rms
   10443             : IEEE        -10, 0     Ai        10000       1.6e-15     2.7e-16
   10444             : IEEE          0, 10    Ai        10000       2.3e-14*    1.8e-15*
   10445             : IEEE        -10, 0     Ai'       10000       4.6e-15     7.6e-16
   10446             : IEEE          0, 10    Ai'       10000       1.8e-14*    1.5e-15*
   10447             : IEEE        -10, 10    Bi        30000       4.2e-15     5.3e-16
   10448             : IEEE        -10, 10    Bi'       30000       4.9e-15     7.3e-16
   10449             : 
   10450             : Cephes Math Library Release 2.8:  June, 2000
   10451             : Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
   10452             : *************************************************************************/
   10453           0 : void airy(double x,
   10454             :      double* ai,
   10455             :      double* aip,
   10456             :      double* bi,
   10457             :      double* bip,
   10458             :      ae_state *_state)
   10459             : {
   10460             :     double z;
   10461             :     double zz;
   10462             :     double t;
   10463             :     double f;
   10464             :     double g;
   10465             :     double uf;
   10466             :     double ug;
   10467             :     double k;
   10468             :     double zeta;
   10469             :     double theta;
   10470             :     ae_int_t domflg;
   10471             :     double c1;
   10472             :     double c2;
   10473             :     double sqrt3;
   10474             :     double sqpii;
   10475             :     double afn;
   10476             :     double afd;
   10477             :     double agn;
   10478             :     double agd;
   10479             :     double apfn;
   10480             :     double apfd;
   10481             :     double apgn;
   10482             :     double apgd;
   10483             :     double an;
   10484             :     double ad;
   10485             :     double apn;
   10486             :     double apd;
   10487             :     double bn16;
   10488             :     double bd16;
   10489             :     double bppn;
   10490             :     double bppd;
   10491             : 
   10492           0 :     *ai = 0;
   10493           0 :     *aip = 0;
   10494           0 :     *bi = 0;
   10495           0 :     *bip = 0;
   10496             : 
   10497           0 :     sqpii = 5.64189583547756286948E-1;
   10498           0 :     c1 = 0.35502805388781723926;
   10499           0 :     c2 = 0.258819403792806798405;
   10500           0 :     sqrt3 = 1.732050807568877293527;
   10501           0 :     domflg = 0;
   10502           0 :     if( ae_fp_greater(x,25.77) )
   10503             :     {
   10504           0 :         *ai = (double)(0);
   10505           0 :         *aip = (double)(0);
   10506           0 :         *bi = ae_maxrealnumber;
   10507           0 :         *bip = ae_maxrealnumber;
   10508           0 :         return;
   10509             :     }
   10510           0 :     if( ae_fp_less(x,-2.09) )
   10511             :     {
   10512           0 :         domflg = 15;
   10513           0 :         t = ae_sqrt(-x, _state);
   10514           0 :         zeta = -2.0*x*t/3.0;
   10515           0 :         t = ae_sqrt(t, _state);
   10516           0 :         k = sqpii/t;
   10517           0 :         z = 1.0/zeta;
   10518           0 :         zz = z*z;
   10519           0 :         afn = -1.31696323418331795333E-1;
   10520           0 :         afn = afn*zz-6.26456544431912369773E-1;
   10521           0 :         afn = afn*zz-6.93158036036933542233E-1;
   10522           0 :         afn = afn*zz-2.79779981545119124951E-1;
   10523           0 :         afn = afn*zz-4.91900132609500318020E-2;
   10524           0 :         afn = afn*zz-4.06265923594885404393E-3;
   10525           0 :         afn = afn*zz-1.59276496239262096340E-4;
   10526           0 :         afn = afn*zz-2.77649108155232920844E-6;
   10527           0 :         afn = afn*zz-1.67787698489114633780E-8;
   10528           0 :         afd = 1.00000000000000000000E0;
   10529           0 :         afd = afd*zz+1.33560420706553243746E1;
   10530           0 :         afd = afd*zz+3.26825032795224613948E1;
   10531           0 :         afd = afd*zz+2.67367040941499554804E1;
   10532           0 :         afd = afd*zz+9.18707402907259625840E0;
   10533           0 :         afd = afd*zz+1.47529146771666414581E0;
   10534           0 :         afd = afd*zz+1.15687173795188044134E-1;
   10535           0 :         afd = afd*zz+4.40291641615211203805E-3;
   10536           0 :         afd = afd*zz+7.54720348287414296618E-5;
   10537           0 :         afd = afd*zz+4.51850092970580378464E-7;
   10538           0 :         uf = 1.0+zz*afn/afd;
   10539           0 :         agn = 1.97339932091685679179E-2;
   10540           0 :         agn = agn*zz+3.91103029615688277255E-1;
   10541           0 :         agn = agn*zz+1.06579897599595591108E0;
   10542           0 :         agn = agn*zz+9.39169229816650230044E-1;
   10543           0 :         agn = agn*zz+3.51465656105547619242E-1;
   10544           0 :         agn = agn*zz+6.33888919628925490927E-2;
   10545           0 :         agn = agn*zz+5.85804113048388458567E-3;
   10546           0 :         agn = agn*zz+2.82851600836737019778E-4;
   10547           0 :         agn = agn*zz+6.98793669997260967291E-6;
   10548           0 :         agn = agn*zz+8.11789239554389293311E-8;
   10549           0 :         agn = agn*zz+3.41551784765923618484E-10;
   10550           0 :         agd = 1.00000000000000000000E0;
   10551           0 :         agd = agd*zz+9.30892908077441974853E0;
   10552           0 :         agd = agd*zz+1.98352928718312140417E1;
   10553           0 :         agd = agd*zz+1.55646628932864612953E1;
   10554           0 :         agd = agd*zz+5.47686069422975497931E0;
   10555           0 :         agd = agd*zz+9.54293611618961883998E-1;
   10556           0 :         agd = agd*zz+8.64580826352392193095E-2;
   10557           0 :         agd = agd*zz+4.12656523824222607191E-3;
   10558           0 :         agd = agd*zz+1.01259085116509135510E-4;
   10559           0 :         agd = agd*zz+1.17166733214413521882E-6;
   10560           0 :         agd = agd*zz+4.91834570062930015649E-9;
   10561           0 :         ug = z*agn/agd;
   10562           0 :         theta = zeta+0.25*ae_pi;
   10563           0 :         f = ae_sin(theta, _state);
   10564           0 :         g = ae_cos(theta, _state);
   10565           0 :         *ai = k*(f*uf-g*ug);
   10566           0 :         *bi = k*(g*uf+f*ug);
   10567           0 :         apfn = 1.85365624022535566142E-1;
   10568           0 :         apfn = apfn*zz+8.86712188052584095637E-1;
   10569           0 :         apfn = apfn*zz+9.87391981747398547272E-1;
   10570           0 :         apfn = apfn*zz+4.01241082318003734092E-1;
   10571           0 :         apfn = apfn*zz+7.10304926289631174579E-2;
   10572           0 :         apfn = apfn*zz+5.90618657995661810071E-3;
   10573           0 :         apfn = apfn*zz+2.33051409401776799569E-4;
   10574           0 :         apfn = apfn*zz+4.08718778289035454598E-6;
   10575           0 :         apfn = apfn*zz+2.48379932900442457853E-8;
   10576           0 :         apfd = 1.00000000000000000000E0;
   10577           0 :         apfd = apfd*zz+1.47345854687502542552E1;
   10578           0 :         apfd = apfd*zz+3.75423933435489594466E1;
   10579           0 :         apfd = apfd*zz+3.14657751203046424330E1;
   10580           0 :         apfd = apfd*zz+1.09969125207298778536E1;
   10581           0 :         apfd = apfd*zz+1.78885054766999417817E0;
   10582           0 :         apfd = apfd*zz+1.41733275753662636873E-1;
   10583           0 :         apfd = apfd*zz+5.44066067017226003627E-3;
   10584           0 :         apfd = apfd*zz+9.39421290654511171663E-5;
   10585           0 :         apfd = apfd*zz+5.65978713036027009243E-7;
   10586           0 :         uf = 1.0+zz*apfn/apfd;
   10587           0 :         apgn = -3.55615429033082288335E-2;
   10588           0 :         apgn = apgn*zz-6.37311518129435504426E-1;
   10589           0 :         apgn = apgn*zz-1.70856738884312371053E0;
   10590           0 :         apgn = apgn*zz-1.50221872117316635393E0;
   10591           0 :         apgn = apgn*zz-5.63606665822102676611E-1;
   10592           0 :         apgn = apgn*zz-1.02101031120216891789E-1;
   10593           0 :         apgn = apgn*zz-9.48396695961445269093E-3;
   10594           0 :         apgn = apgn*zz-4.60325307486780994357E-4;
   10595           0 :         apgn = apgn*zz-1.14300836484517375919E-5;
   10596           0 :         apgn = apgn*zz-1.33415518685547420648E-7;
   10597           0 :         apgn = apgn*zz-5.63803833958893494476E-10;
   10598           0 :         apgd = 1.00000000000000000000E0;
   10599           0 :         apgd = apgd*zz+9.85865801696130355144E0;
   10600           0 :         apgd = apgd*zz+2.16401867356585941885E1;
   10601           0 :         apgd = apgd*zz+1.73130776389749389525E1;
   10602           0 :         apgd = apgd*zz+6.17872175280828766327E0;
   10603           0 :         apgd = apgd*zz+1.08848694396321495475E0;
   10604           0 :         apgd = apgd*zz+9.95005543440888479402E-2;
   10605           0 :         apgd = apgd*zz+4.78468199683886610842E-3;
   10606           0 :         apgd = apgd*zz+1.18159633322838625562E-4;
   10607           0 :         apgd = apgd*zz+1.37480673554219441465E-6;
   10608           0 :         apgd = apgd*zz+5.79912514929147598821E-9;
   10609           0 :         ug = z*apgn/apgd;
   10610           0 :         k = sqpii*t;
   10611           0 :         *aip = -k*(g*uf+f*ug);
   10612           0 :         *bip = k*(f*uf-g*ug);
   10613           0 :         return;
   10614             :     }
   10615           0 :     if( ae_fp_greater_eq(x,2.09) )
   10616             :     {
   10617           0 :         domflg = 5;
   10618           0 :         t = ae_sqrt(x, _state);
   10619           0 :         zeta = 2.0*x*t/3.0;
   10620           0 :         g = ae_exp(zeta, _state);
   10621           0 :         t = ae_sqrt(t, _state);
   10622           0 :         k = 2.0*t*g;
   10623           0 :         z = 1.0/zeta;
   10624           0 :         an = 3.46538101525629032477E-1;
   10625           0 :         an = an*z+1.20075952739645805542E1;
   10626           0 :         an = an*z+7.62796053615234516538E1;
   10627           0 :         an = an*z+1.68089224934630576269E2;
   10628           0 :         an = an*z+1.59756391350164413639E2;
   10629           0 :         an = an*z+7.05360906840444183113E1;
   10630           0 :         an = an*z+1.40264691163389668864E1;
   10631           0 :         an = an*z+9.99999999999999995305E-1;
   10632           0 :         ad = 5.67594532638770212846E-1;
   10633           0 :         ad = ad*z+1.47562562584847203173E1;
   10634           0 :         ad = ad*z+8.45138970141474626562E1;
   10635           0 :         ad = ad*z+1.77318088145400459522E2;
   10636           0 :         ad = ad*z+1.64234692871529701831E2;
   10637           0 :         ad = ad*z+7.14778400825575695274E1;
   10638           0 :         ad = ad*z+1.40959135607834029598E1;
   10639           0 :         ad = ad*z+1.00000000000000000470E0;
   10640           0 :         f = an/ad;
   10641           0 :         *ai = sqpii*f/k;
   10642           0 :         k = -0.5*sqpii*t/g;
   10643           0 :         apn = 6.13759184814035759225E-1;
   10644           0 :         apn = apn*z+1.47454670787755323881E1;
   10645           0 :         apn = apn*z+8.20584123476060982430E1;
   10646           0 :         apn = apn*z+1.71184781360976385540E2;
   10647           0 :         apn = apn*z+1.59317847137141783523E2;
   10648           0 :         apn = apn*z+6.99778599330103016170E1;
   10649           0 :         apn = apn*z+1.39470856980481566958E1;
   10650           0 :         apn = apn*z+1.00000000000000000550E0;
   10651           0 :         apd = 3.34203677749736953049E-1;
   10652           0 :         apd = apd*z+1.11810297306158156705E1;
   10653           0 :         apd = apd*z+7.11727352147859965283E1;
   10654           0 :         apd = apd*z+1.58778084372838313640E2;
   10655           0 :         apd = apd*z+1.53206427475809220834E2;
   10656           0 :         apd = apd*z+6.86752304592780337944E1;
   10657           0 :         apd = apd*z+1.38498634758259442477E1;
   10658           0 :         apd = apd*z+9.99999999999999994502E-1;
   10659           0 :         f = apn/apd;
   10660           0 :         *aip = f*k;
   10661           0 :         if( ae_fp_greater(x,8.3203353) )
   10662             :         {
   10663           0 :             bn16 = -2.53240795869364152689E-1;
   10664           0 :             bn16 = bn16*z+5.75285167332467384228E-1;
   10665           0 :             bn16 = bn16*z-3.29907036873225371650E-1;
   10666           0 :             bn16 = bn16*z+6.44404068948199951727E-2;
   10667           0 :             bn16 = bn16*z-3.82519546641336734394E-3;
   10668           0 :             bd16 = 1.00000000000000000000E0;
   10669           0 :             bd16 = bd16*z-7.15685095054035237902E0;
   10670           0 :             bd16 = bd16*z+1.06039580715664694291E1;
   10671           0 :             bd16 = bd16*z-5.23246636471251500874E0;
   10672           0 :             bd16 = bd16*z+9.57395864378383833152E-1;
   10673           0 :             bd16 = bd16*z-5.50828147163549611107E-2;
   10674           0 :             f = z*bn16/bd16;
   10675           0 :             k = sqpii*g;
   10676           0 :             *bi = k*(1.0+f)/t;
   10677           0 :             bppn = 4.65461162774651610328E-1;
   10678           0 :             bppn = bppn*z-1.08992173800493920734E0;
   10679           0 :             bppn = bppn*z+6.38800117371827987759E-1;
   10680           0 :             bppn = bppn*z-1.26844349553102907034E-1;
   10681           0 :             bppn = bppn*z+7.62487844342109852105E-3;
   10682           0 :             bppd = 1.00000000000000000000E0;
   10683           0 :             bppd = bppd*z-8.70622787633159124240E0;
   10684           0 :             bppd = bppd*z+1.38993162704553213172E1;
   10685           0 :             bppd = bppd*z-7.14116144616431159572E0;
   10686           0 :             bppd = bppd*z+1.34008595960680518666E0;
   10687           0 :             bppd = bppd*z-7.84273211323341930448E-2;
   10688           0 :             f = z*bppn/bppd;
   10689           0 :             *bip = k*t*(1.0+f);
   10690           0 :             return;
   10691             :         }
   10692             :     }
   10693           0 :     f = 1.0;
   10694           0 :     g = x;
   10695           0 :     t = 1.0;
   10696           0 :     uf = 1.0;
   10697           0 :     ug = x;
   10698           0 :     k = 1.0;
   10699           0 :     z = x*x*x;
   10700           0 :     while(ae_fp_greater(t,ae_machineepsilon))
   10701             :     {
   10702           0 :         uf = uf*z;
   10703           0 :         k = k+1.0;
   10704           0 :         uf = uf/k;
   10705           0 :         ug = ug*z;
   10706           0 :         k = k+1.0;
   10707           0 :         ug = ug/k;
   10708           0 :         uf = uf/k;
   10709           0 :         f = f+uf;
   10710           0 :         k = k+1.0;
   10711           0 :         ug = ug/k;
   10712           0 :         g = g+ug;
   10713           0 :         t = ae_fabs(uf/f, _state);
   10714             :     }
   10715           0 :     uf = c1*f;
   10716           0 :     ug = c2*g;
   10717           0 :     if( domflg%2==0 )
   10718             :     {
   10719           0 :         *ai = uf-ug;
   10720             :     }
   10721           0 :     if( domflg/2%2==0 )
   10722             :     {
   10723           0 :         *bi = sqrt3*(uf+ug);
   10724             :     }
   10725           0 :     k = 4.0;
   10726           0 :     uf = x*x/2.0;
   10727           0 :     ug = z/3.0;
   10728           0 :     f = uf;
   10729           0 :     g = 1.0+ug;
   10730           0 :     uf = uf/3.0;
   10731           0 :     t = 1.0;
   10732           0 :     while(ae_fp_greater(t,ae_machineepsilon))
   10733             :     {
   10734           0 :         uf = uf*z;
   10735           0 :         ug = ug/k;
   10736           0 :         k = k+1.0;
   10737           0 :         ug = ug*z;
   10738           0 :         uf = uf/k;
   10739           0 :         f = f+uf;
   10740           0 :         k = k+1.0;
   10741           0 :         ug = ug/k;
   10742           0 :         uf = uf/k;
   10743           0 :         g = g+ug;
   10744           0 :         k = k+1.0;
   10745           0 :         t = ae_fabs(ug/g, _state);
   10746             :     }
   10747           0 :     uf = c1*f;
   10748           0 :     ug = c2*g;
   10749           0 :     if( domflg/4%2==0 )
   10750             :     {
   10751           0 :         *aip = uf-ug;
   10752             :     }
   10753           0 :     if( domflg/8%2==0 )
   10754             :     {
   10755           0 :         *bip = sqrt3*(uf+ug);
   10756             :     }
   10757             : }
   10758             : 
   10759             : 
   10760             : #endif
   10761             : 
   10762             : }
   10763             : 

Generated by: LCOV version 1.16