Line data Source code
1 : //# GridFT.cc: Implementation of GridFT class
2 : //# Copyright (C) 1997-2016
3 : //# Associated Universities, Inc. Washington DC, USA.
4 : //#
5 : //# This library is free software; you can redistribute it and/or modify it
6 : //# under the terms of the GNU General Public License as published by
7 : //# the Free Software Foundation; either version 2 of the License, or (at your
8 : //# option) any later version.
9 : //#
10 : //# This library is distributed in the hope that it will be useful, but WITHOUT
11 : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 : //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13 : //# License for more details.
14 : //#
15 : //# You should have received a copy of the GNU General Public License
16 : //# along with this library; if not, write to the Free Software Foundation,
17 : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18 : //#
19 : //# Correspondence concerning AIPS++ should be addressed as follows:
20 : //# Internet email: casa-feedback@nrao.edu.
21 : //# Postal address: AIPS++ Project Office
22 : //# National Radio Astronomy Observatory
23 : //# 520 Edgemont Road
24 : //# Charlottesville, VA 22903-2475 USA
25 : //#
26 : //# $Id$
27 :
28 : #include <msvis/MSVis/VisibilityIterator2.h>
29 : #include <casacore/casa/Quanta/UnitMap.h>
30 : #include <casacore/casa/Quanta/UnitVal.h>
31 : #include <casacore/measures/Measures/Stokes.h>
32 : #include <casacore/coordinates/Coordinates/CoordinateSystem.h>
33 : #include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
34 : #include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
35 : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
36 : #include <casacore/coordinates/Coordinates/Projection.h>
37 : #include <casacore/ms/MeasurementSets/MSColumns.h>
38 : #include <casacore/casa/BasicSL/Constants.h>
39 : #include <casacore/scimath/Mathematics/FFTServer.h>
40 : #include <casacore/scimath/Mathematics/RigidVector.h>
41 : #include <msvis/MSVis/StokesVector.h>
42 : #include <synthesis/TransformMachines/StokesImageUtil.h>
43 : #include <synthesis/TransformMachines2/GridFT.h>
44 : #include <synthesis/Utilities/FFT2D.h>
45 : #include <msvis/MSVis/VisBuffer2.h>
46 : #include <casacore/images/Images/ImageInterface.h>
47 : #include <casacore/images/Images/PagedImage.h>
48 : #include <casacore/casa/Containers/Block.h>
49 : #include <casacore/casa/Containers/Record.h>
50 : #include <casacore/casa/Arrays/ArrayLogical.h>
51 : #include <casacore/casa/Arrays/ArrayMath.h>
52 : #include <casacore/casa/Arrays/Array.h>
53 : #include <casacore/casa/Arrays/MaskedArray.h>
54 : #include <casacore/casa/Arrays/Vector.h>
55 : #include <casacore/casa/Arrays/Matrix.h>
56 : #include <casacore/casa/Arrays/Cube.h>
57 : #include <casacore/casa/Arrays/MatrixIter.h>
58 : #include <casacore/casa/BasicSL/String.h>
59 : #include <casacore/casa/Utilities/Assert.h>
60 : #include <casacore/casa/Exceptions/Error.h>
61 : #include <casacore/lattices/Lattices/ArrayLattice.h>
62 : #include <casacore/measures/Measures/UVWMachine.h>
63 : #include <casacore/lattices/Lattices/SubLattice.h>
64 : #include <casacore/lattices/LRegions/LCBox.h>
65 : #include <casacore/lattices/Lattices/LatticeCache.h>
66 : #include <casacore/lattices/LatticeMath/LatticeFFT.h>
67 : #include <casacore/lattices/Lattices/LatticeIterator.h>
68 : #include <casacore/lattices/Lattices/LatticeStepper.h>
69 : #include <casacore/scimath/Mathematics/ConvolveGridder.h>
70 : #include <casacore/casa/Utilities/CompositeNumber.h>
71 : #include <casacore/casa/OS/Timer.h>
72 : #include <sstream>
73 : #ifdef _OPENMP
74 : #include <omp.h>
75 : #endif
76 :
77 : using namespace casacore;
78 : namespace casa { //# NAMESPACE CASA - BEGIN
79 : namespace refim {//# namespace for imaging refactor
80 : using namespace casacore;
81 : using namespace casa;
82 : using namespace casacore;
83 : using namespace casa::refim;
84 :
85 0 : GridFT::GridFT() : FTMachine(), padding_p(1.0), imageCache(0), cachesize(1000000), tilesize(1000), gridder(0), isTiled(false), convType("SF"),
86 0 : maxAbsData(0.0), centerLoc(IPosition(4,0)), offsetLoc(IPosition(4,0)),
87 0 : usezero_p(false), noPadding_p(false), usePut2_p(false),
88 0 : machineName_p("GridFT"), timemass_p(0.0), timegrid_p(0.0), timedegrid_p(0.0), convFunc_p(0), convSampling_p(1), convSupport_p(0){
89 :
90 0 : }
91 0 : GridFT::GridFT(Long icachesize, Int itilesize, String iconvType, Float padding,
92 0 : Bool usezero, Bool useDoublePrec)
93 0 : : FTMachine(), padding_p(padding), imageCache(0), cachesize(icachesize), tilesize(itilesize),
94 0 : gridder(0), isTiled(false), convType(iconvType),
95 0 : maxAbsData(0.0), centerLoc(IPosition(4,0)), offsetLoc(IPosition(4,0)),
96 0 : usezero_p(usezero), noPadding_p(false), usePut2_p(false),
97 0 : machineName_p("GridFT"), timemass_p(0.0), timegrid_p(0.0), timedegrid_p(0.0), convFunc_p(0), convSampling_p(1), convSupport_p(0)
98 : {
99 0 : useDoubleGrid_p=useDoublePrec;
100 : // peek=NULL;
101 0 : }
102 :
103 1 : GridFT::GridFT(Long icachesize, Int itilesize, String iconvType,
104 1 : MPosition mLocation, Float padding, Bool usezero, Bool useDoublePrec)
105 1 : : FTMachine(), padding_p(padding), imageCache(0), cachesize(icachesize),
106 1 : tilesize(itilesize), gridder(0), isTiled(false), convType(iconvType), maxAbsData(0.0), centerLoc(IPosition(4,0)),
107 1 : offsetLoc(IPosition(4,0)), usezero_p(usezero), noPadding_p(false),
108 2 : usePut2_p(false), machineName_p("GridFT"), timemass_p(0.0), timegrid_p(0.0), timedegrid_p(0.0), convFunc_p(0), convSampling_p(1), convSupport_p(0)
109 : {
110 1 : mLocation_p=mLocation;
111 1 : tangentSpecified_p=false;
112 1 : useDoubleGrid_p=useDoublePrec;
113 : // peek=NULL;
114 1 : }
115 :
116 0 : GridFT::GridFT(Long icachesize, Int itilesize, String iconvType,
117 0 : MDirection mTangent, Float padding, Bool usezero, Bool useDoublePrec)
118 0 : : FTMachine(), padding_p(padding), imageCache(0), cachesize(icachesize),
119 0 : tilesize(itilesize), gridder(0), isTiled(false), convType(iconvType), maxAbsData(0.0), centerLoc(IPosition(4,0)),
120 0 : offsetLoc(IPosition(4,0)), usezero_p(usezero), noPadding_p(false),
121 0 : usePut2_p(false), machineName_p("GridFT"), timemass_p(0.0), timegrid_p(0.0), timedegrid_p(0.0), convFunc_p(0), convSampling_p(1), convSupport_p(0)
122 : {
123 0 : mTangent_p=mTangent;
124 0 : tangentSpecified_p=true;
125 0 : useDoubleGrid_p=useDoublePrec;
126 : // peek=NULL;
127 0 : }
128 :
129 1 : GridFT::GridFT(Long icachesize, Int itilesize, String iconvType,
130 : MPosition mLocation, MDirection mTangent, Float padding,
131 1 : Bool usezero, Bool useDoublePrec)
132 1 : : FTMachine(), padding_p(padding), imageCache(0), cachesize(icachesize),
133 1 : tilesize(itilesize), gridder(0), isTiled(false), convType(iconvType), maxAbsData(0.0), centerLoc(IPosition(4,0)),
134 1 : offsetLoc(IPosition(4,0)), usezero_p(usezero), noPadding_p(false),
135 2 : usePut2_p(false),machineName_p("GridFT"), timemass_p(0.0), timegrid_p(0.0), timedegrid_p(0.0), convFunc_p(0), convSampling_p(1), convSupport_p(0)
136 : {
137 1 : mLocation_p=mLocation;
138 1 : mTangent_p=mTangent;
139 1 : tangentSpecified_p=true;
140 1 : useDoubleGrid_p=useDoublePrec;
141 : // peek=NULL;
142 1 : }
143 :
144 0 : GridFT::GridFT(const RecordInterface& stateRec)
145 0 : : FTMachine()
146 : {
147 : // Construct from the input state record
148 0 : String error;
149 0 : if (!fromRecord(error, stateRec)) {
150 0 : throw (AipsError("Failed to create gridder: " + error));
151 : };
152 0 : timemass_p=0.0;
153 0 : timegrid_p=0.0;
154 0 : timedegrid_p=0.0;
155 : // peek=NULL;
156 0 : }
157 :
158 : //----------------------------------------------------------------------
159 0 : GridFT& GridFT::operator=(const GridFT& other)
160 : {
161 0 : if(this!=&other) {
162 : //Do the base parameters
163 0 : FTMachine::operator=(other);
164 :
165 : //private params
166 0 : imageCache=other.imageCache;
167 0 : cachesize=other.cachesize;
168 0 : tilesize=other.tilesize;
169 0 : convType=other.convType;
170 0 : convType.upcase();
171 0 : uvScale.resize();
172 0 : uvOffset.resize();
173 0 : uvScale.assign(other.uvScale);
174 0 : uvOffset.assign(other.uvOffset);
175 0 : if(other.gridder==0)
176 0 : gridder=0;
177 : else{
178 0 : gridder = new ConvolveGridder<Double, Complex>(IPosition(2, nx, ny),
179 0 : uvScale, uvOffset,
180 0 : convType);
181 : }
182 0 : convFunc_p.resize();
183 0 : convSupport_p=other.convSupport_p;
184 0 : convSampling_p=other.convSampling_p;
185 0 : convFunc_p=other.convFunc_p;
186 0 : isTiled=other.isTiled;
187 : //lattice=other.lattice;
188 0 : lattice.reset( );
189 0 : tilesize=other.tilesize;
190 0 : arrayLattice.reset( );
191 0 : maxAbsData=other.maxAbsData;
192 0 : centerLoc=other.centerLoc;
193 0 : offsetLoc=other.offsetLoc;
194 0 : padding_p=other.padding_p;
195 0 : usezero_p=other.usezero_p;
196 0 : noPadding_p=other.noPadding_p;
197 0 : machineName_p="GridFT";
198 0 : timemass_p=0.0;
199 0 : timegrid_p=0.0;
200 : // peek = other.peek;
201 : };
202 0 : return *this;
203 : };
204 :
205 : //----------------------------------------------------------------------
206 0 : GridFT::GridFT(const GridFT& other) : FTMachine(), machineName_p("GridFT")
207 : {
208 0 : operator=(other);
209 0 : }
210 :
211 : //-----------------------------------------------------------------------
212 0 : FTMachine* GridFT::cloneFTM(){
213 0 : return new GridFT(*this);
214 : }
215 :
216 : //===============================
217 0 : Long GridFT::estimateRAM(const CountedPtr<SIImageStore>& imstor){
218 0 : Long mem=FTMachine::estimateRAM(imstor);
219 0 : mem=mem*padding_p*padding_p;
220 0 : return mem;
221 : }
222 :
223 :
224 : //----------------------------------------------------------------------
225 4 : void GridFT::init() {
226 :
227 4 : logIO() << LogOrigin("GridFT", "init") << LogIO::NORMAL;
228 :
229 4 : ok();
230 : // if (peek == NULL)
231 : // {
232 : // // peek = new SynthesisAsyncPeek();
233 : // // peek->reset();
234 : // // peek->startThread();
235 : // }
236 :
237 : /* hardwiring isTiled is false
238 : // Padding is possible only for non-tiled processing
239 : if((padding_p*padding_p*image->shape().product())>cachesize) {
240 : isTiled=true;
241 : nx = image->shape()(0);
242 : ny = image->shape()(1);
243 : npol = image->shape()(2);
244 : nchan = image->shape()(3);
245 : }
246 : else {
247 : */
248 : // We are padding.
249 4 : isTiled=false;
250 4 : if(!noPadding_p && padding_p > 1.01){
251 0 : CompositeNumber cn(uInt(image->shape()(0)*2));
252 0 : nx = cn.nextLargerEven(Int(padding_p*Float(image->shape()(0))-0.5));
253 0 : ny = cn.nextLargerEven(Int(padding_p*Float(image->shape()(1))-0.5));
254 0 : }
255 : else{
256 4 : nx = image->shape()(0);
257 4 : ny = image->shape()(1);
258 : }
259 4 : npol = image->shape()(2);
260 4 : nchan = image->shape()(3);
261 : // }
262 :
263 4 : sumWeight.resize(npol, nchan);
264 :
265 4 : uvScale.resize(2);
266 4 : uvScale(0)=(Float(nx)*image->coordinates().increment()(0));
267 4 : uvScale(1)=(Float(ny)*image->coordinates().increment()(1));
268 4 : uvOffset.resize(2);
269 4 : uvOffset(0)=nx/2;
270 4 : uvOffset(1)=ny/2;
271 :
272 : // Now set up the gridder. The possibilities are BOX and SF
273 4 : if(gridder) delete gridder; gridder=0;
274 4 : convType.upcase();
275 8 : gridder = new ConvolveGridder<Double, Complex>(IPosition(2, nx, ny),
276 4 : uvScale, uvOffset,
277 4 : convType);
278 :
279 4 : convFunc_p.resize();
280 4 : convSupport_p=gridder->cSupport()(0);
281 4 : convSampling_p=gridder->cSampling();
282 4 : convFunc_p=gridder->cFunction();
283 : // Set up image cache needed for gridding. For BOX-car convolution
284 : // we can use non-overlapped tiles. Otherwise we need to use
285 : // overlapped tiles and additive gridding so that only increments
286 : // to a tile are written.
287 4 : if(imageCache) delete imageCache; imageCache=0;
288 :
289 4 : if(isTiled) {
290 0 : Float tileOverlap=0.5;
291 0 : if(convType=="BOX") {
292 0 : tileOverlap=0.0;
293 : }
294 : else {
295 0 : tileOverlap=0.5;
296 0 : tilesize=max(12,tilesize);
297 : }
298 0 : IPosition tileShape=IPosition(4,tilesize,tilesize,npol,nchan);
299 0 : Vector<Float> tileOverlapVec(4);
300 0 : tileOverlapVec=0.0;
301 0 : tileOverlapVec(0)=tileOverlap;
302 0 : tileOverlapVec(1)=tileOverlap;
303 0 : Int tmpCacheVal=static_cast<Int>(cachesize);
304 0 : imageCache=new LatticeCache <Complex> (*image, tmpCacheVal, tileShape,
305 : tileOverlapVec,
306 0 : (tileOverlap>0.0));
307 :
308 0 : }
309 4 : }
310 :
311 : // This is nasty, we should use CountedPointers here.
312 0 : GridFT::~GridFT() {
313 0 : if(imageCache) delete imageCache; imageCache=0;
314 : //if(arrayLattice) delete arrayLattice; arrayLattice=0;
315 0 : if(gridder) delete gridder; gridder=0;
316 0 : }
317 :
318 : // Initialize for a transform from the Sky domain. This means that
319 : // we grid-correct, and FFT the image
320 :
321 2 : void GridFT::initializeToVis(ImageInterface<Complex>& iimage,
322 : const vi::VisBuffer2& vb)
323 : {
324 2 : image=&iimage;
325 2 : toVis_p=true;
326 :
327 2 : ok();
328 :
329 2 : init();
330 : // peek->reset();
331 : // Initialize the maps for polarization and channel. These maps
332 : // translate visibility indices into image indices
333 2 : initMaps(vb);
334 : // Need to reset nx, ny for padding
335 : // Padding is possible only for non-tiled processing
336 :
337 :
338 : //cerr << "initialize to vis nx" << nx << " " << ny << " " << npol << " " << nchan << endl;
339 :
340 : //cerr << "image shape " << image->shape() << endl;
341 :
342 : // If we are memory-based then read the image in and create an
343 : // ArrayLattice otherwise just use the PagedImage
344 : /*if(isTiled) {
345 : lattice=std::shared_ptr<Lattice<Complex> >(image, false);
346 : }
347 : else {
348 :
349 : }*/
350 2 : prepGridForDegrid();
351 :
352 : //AlwaysAssert(lattice, AipsError);
353 :
354 :
355 :
356 2 : }
357 :
358 2 : void GridFT::prepGridForDegrid(){
359 2 : IPosition gridShape(4, nx, ny, npol, nchan);
360 2 : griddedData.resize(gridShape);
361 : //griddedData can be a reference of image data...if not using model col
362 : //hence using an undocumented feature of resize that if
363 : //the size is the same as old data it is not changed.
364 : //if(!usePut2_p) griddedData.set(0);
365 2 : griddedData.set(Complex(0.0));
366 :
367 2 : IPosition stride(4, 1);
368 4 : IPosition blc(4, (nx-image->shape()(0)+(nx%2==0))/2, (ny-image->shape()(1)+(ny%2==0))/2, 0, 0);
369 4 : IPosition trc(blc+image->shape()-stride);
370 :
371 2 : IPosition start(4, 0);
372 2 : griddedData(blc, trc) = image->getSlice(start, image->shape());
373 :
374 : //if(arrayLattice) delete arrayLattice; arrayLattice=0;
375 2 : arrayLattice.reset( new ArrayLattice<Complex>(griddedData) );
376 2 : lattice=arrayLattice;
377 : //logIO() << LogIO::DEBUGGING
378 : // << "Starting grid correction and FFT of image" << LogIO::POST;
379 :
380 : // Do the Grid-correction.
381 : {
382 2 : Vector<Complex> correction(nx);
383 2 : correction=Complex(1.0, 0.0);
384 : // Do the Grid-correction
385 2 : IPosition cursorShape(4, nx, 1, 1, 1);
386 2 : IPosition axisPath(4, 0, 1, 2, 3);
387 2 : LatticeStepper lsx(lattice->shape(), cursorShape, axisPath);
388 2 : LatticeIterator<Complex> lix(*lattice, lsx);
389 202 : for(lix.reset();!lix.atEnd();lix++) {
390 200 : gridder->correctX1D(correction, lix.position()(1));
391 200 : lix.rwVectorCursor()/=correction;
392 : }
393 2 : }
394 2 : image->clearCache();
395 : // Now do the FFT2D in place
396 : //LatticeFFT::cfft2d(*lattice);
397 2 : ft_p.c2cFFT(*lattice);
398 : //logIO() << LogIO::DEBUGGING
399 : // << "Finished grid correction and FFT of image" << LogIO::POST;
400 :
401 2 : }
402 :
403 :
404 0 : void GridFT::finalizeToVis()
405 : {
406 :
407 0 : logIO() << LogOrigin("GridFT", "finalizeToVis") << LogIO::NORMAL;
408 0 : logIO() <<LogIO::NORMAL2<< "Time to degrid " << timedegrid_p <<LogIO::POST;
409 0 : timedegrid_p=0.0;
410 :
411 0 : if(arrayLattice) arrayLattice=nullptr;
412 0 : if(lattice) lattice=nullptr;
413 0 : griddedData.resize();
414 0 : if(isTiled) {
415 :
416 :
417 :
418 0 : AlwaysAssert(imageCache, AipsError);
419 0 : AlwaysAssert(image, AipsError);
420 0 : ostringstream o;
421 0 : imageCache->flush();
422 0 : imageCache->showCacheStatistics(o);
423 0 : logIO() << o.str() << LogIO::POST;
424 0 : }
425 0 : }
426 :
427 :
428 : // Initialize the FFT to the Sky. Here we have to setup and initialize the
429 : // grid.
430 2 : void GridFT::initializeToSky(ImageInterface<Complex>& iimage,
431 : Matrix<Float>& weight, const vi::VisBuffer2& vb)
432 : {
433 : // image always points to the image
434 2 : image=&iimage;
435 2 : toVis_p=false;
436 :
437 2 : init();
438 :
439 : // Initialize the maps for polarization and channel. These maps
440 : // translate visibility indices into image indices
441 2 : initMaps(vb);
442 :
443 :
444 :
445 2 : sumWeight=0.0;
446 2 : weight.resize(sumWeight.shape());
447 2 : weight=0.0;
448 :
449 :
450 2 : IPosition gridShape(4, nx, ny, npol, nchan);
451 2 : if( !useDoubleGrid_p )
452 : {
453 2 : griddedData.resize(gridShape);
454 2 : griddedData=Complex(0.0);
455 : }
456 : else{
457 :
458 0 : griddedData2.resize(gridShape);
459 0 : griddedData2=DComplex(0.0);
460 : }
461 2 : image->clearCache();
462 : //iimage.get(griddedData, false);
463 : //if(arrayLattice) delete arrayLattice; arrayLattice=0;
464 :
465 :
466 : //AlwaysAssert(lattice, AipsError);
467 2 : }
468 :
469 :
470 :
471 2 : void GridFT::finalizeToSky()
472 : {
473 : //AlwaysAssert(lattice, AipsError);
474 : // Now we flush the cache and report statistics
475 : // For memory based, we don't write anything out yet.
476 2 : logIO() << LogOrigin("GridFT", "finalizeToSky") << LogIO::NORMAL;
477 2 : logIO()<<LogIO::NORMAL2 <<"Time to massage data " << timemass_p << LogIO::POST;
478 2 : logIO()<< LogIO::NORMAL2 <<"Time to grid data " << timegrid_p << LogIO::POST;
479 2 : timemass_p=0.0;
480 2 : timegrid_p=0.0;
481 2 : if(isTiled) {
482 :
483 :
484 0 : AlwaysAssert(image, AipsError);
485 0 : AlwaysAssert(imageCache, AipsError);
486 0 : imageCache->flush();
487 0 : ostringstream o;
488 0 : imageCache->showCacheStatistics(o);
489 0 : logIO() << o.str() << LogIO::POST;
490 0 : }
491 : // peek->terminate();
492 : // peek->reset();
493 2 : }
494 :
495 :
496 :
497 0 : Array<Complex>* GridFT::getDataPointer(const IPosition& centerLoc2D,
498 : Bool readonly) {
499 : Array<Complex>* result;
500 : // Is tiled: get tiles and set up offsets
501 0 : centerLoc(0)=centerLoc2D(0);
502 0 : centerLoc(1)=centerLoc2D(1);
503 0 : result=&imageCache->tile(offsetLoc,centerLoc, readonly);
504 0 : gridder->setOffset(IPosition(2, offsetLoc(0), offsetLoc(1)));
505 0 : return result;
506 : }
507 :
508 : #define NEED_UNDERSCORES
509 : #if defined(NEED_UNDERSCORES)
510 : #define ggrid ggrid_
511 : #define dgrid dgrid_
512 : #define ggrids ggrids_
513 : #define sectggridd sectggridd_
514 : #define sectggrids sectggrids_
515 : #define sectdgrid sectdgrid_
516 : #define locuvw locuvw_
517 : #endif
518 :
519 : extern "C" {
520 : void locuvw(const Double*, const Double*, const Double*, const Int*, const Double*, const Double*, const Int*,
521 : Int*, Int*, Complex*, const Int*, const Int*, const Double*);
522 : void ggrid(Double*,
523 : Double*,
524 : const Complex*,
525 : Int*,
526 : Int*,
527 : Int*,
528 : const Int*,
529 : const Int*,
530 : const Float*,
531 : Int*,
532 : Int*,
533 : Double*,
534 : Double*,
535 : DComplex*,
536 : Int*,
537 : Int*,
538 : Int *,
539 : Int *,
540 : const Double*,
541 : const Double*,
542 : Int*,
543 : Int*,
544 : Double*,
545 : Int*,
546 : Int*,
547 : Double*);
548 : void sectggridd(const Complex*,
549 : const Int*,
550 : const Int*,
551 : const Int*,
552 : const Int*,
553 : const Int*,
554 : const Float*,
555 : const Int*,
556 : DComplex*,
557 : const Int*,
558 : const Int*,
559 : const Int *,
560 : const Int *,
561 : //support
562 : const Int*,
563 : const Int*,
564 : const Double*,
565 : const Int*,
566 : const Int*,
567 : Double*,
568 : const Int*,
569 : const Int*,
570 : const Int*,
571 : const Int*,
572 : const Int*,
573 : const Int*,
574 : //loc, off, phasor
575 : const Int*,
576 : const Int*,
577 : const Complex*);
578 : //single precision gridder
579 : void sectggrids(const Complex*,
580 : const Int*,
581 : const Int*,
582 : const Int*,
583 : const Int*,
584 : const Int*,
585 : const Float*,
586 : const Int*,
587 : Complex*,
588 : const Int*,
589 : const Int*,
590 : const Int *,
591 : const Int *,
592 : const Int*,
593 : const Int*,
594 : const Double*,
595 : const Int*,
596 : const Int*,
597 : Double*,
598 : const Int*,
599 : const Int*,
600 : const Int*,
601 : const Int*,
602 : const Int*,
603 : const Int*,
604 : //loc, off, phasor
605 : const Int*,
606 : const Int*,
607 : const Complex*);
608 : void ggrids(Double*,
609 : Double*,
610 : const Complex*,
611 : Int*,
612 : Int*,
613 : Int*,
614 : const Int*,
615 : const Int*,
616 : const Float*,
617 : Int*,
618 : Int*,
619 : Double*,
620 : Double*,
621 : Complex*,
622 : Int*,
623 : Int*,
624 : Int *,
625 : Int *,
626 : const Double*,
627 : const Double*,
628 : Int*,
629 : Int*,
630 : Double*,
631 : Int*,
632 : Int*,
633 : Double*);
634 :
635 : void dgrid(Double*,
636 : Double*,
637 : Complex*,
638 : Int*,
639 : Int*,
640 : const Int*,
641 : const Int*,
642 : Int*,
643 : Int*,
644 : Double*,
645 : Double*,
646 : const Complex*,
647 : Int*,
648 : Int*,
649 : Int *,
650 : Int *,
651 : const Double*,
652 : const Double*,
653 : Int*,
654 : Int*,
655 : Double*,
656 : Int*,
657 : Int*);
658 :
659 : void sectdgrid(Complex*,
660 : const Int*,
661 : const Int*,
662 : const Int*,
663 : const Int*,
664 : const Int*,
665 : const Complex*,
666 : const Int*,
667 : const Int*,
668 : const Int *,
669 : const Int *,
670 : //support
671 : const Int*,
672 : const Int*,
673 : const Double*,
674 : const Int*,
675 : const Int*,
676 : //rbeg, rend, loc, off, phasor
677 : const Int*,
678 : const Int*,
679 : const Int*,
680 : const Int*,
681 : const Complex*);
682 : }
683 400 : void GridFT::put(const vi::VisBuffer2& vb, Int row, Bool dopsf,
684 : FTMachine::Type type)
685 : {
686 :
687 400 : gridOk(convSupport_p);
688 : // peek->setVBPtr(&vb);
689 :
690 : //Check if ms has changed then cache new spw and chan selection
691 : //if(vb.isNewMs())
692 : // matchAllSpwChans(vb);
693 :
694 : //Here we redo the match or use previous match
695 :
696 : //Channel matching for the actual spectral window of buffer
697 : //if(doConversion_p[vb.spectralWindows()[0]]){
698 400 : matchChannel(vb);
699 : //}
700 : //else{
701 : // chanMap.resize();
702 : // chanMap=multiChanMap_p[vb.spectralWindows()[0]];
703 : //}
704 :
705 : //No point in reading data if its not matching in frequency
706 400 : if(max(chanMap)==-1)
707 : {
708 : // peek->reset();
709 0 : return;
710 : }
711 :
712 400 : Timer tim;
713 400 : tim.mark();
714 :
715 : //const Matrix<Float> *imagingweight;
716 : //imagingweight=&(vb.imagingWeight());
717 400 : Matrix<Float> imagingweight;
718 400 : getImagingWeight(imagingweight, vb);
719 :
720 400 : if(dopsf) {type=FTMachine::PSF;}
721 :
722 400 : Cube<Complex> data;
723 : //Fortran gridder need the flag as ints
724 400 : Cube<Int> flags;
725 400 : Matrix<Float> elWeight;
726 400 : interpolateFrequencyTogrid(vb, imagingweight,data, flags, elWeight, type);
727 :
728 :
729 : Bool iswgtCopy;
730 : const Float *wgtStorage;
731 400 : wgtStorage=elWeight.getStorage(iswgtCopy);
732 :
733 : Bool isCopy;
734 : const Complex *datStorage;
735 400 : if(!dopsf)
736 400 : datStorage=data.getStorage(isCopy);
737 : else
738 0 : datStorage=0;
739 : // If row is -1 then we pass through all rows
740 : Int startRow, endRow, nRow;
741 400 : if (row==-1) {
742 400 : nRow=vb.nRows();
743 400 : startRow=0;
744 400 : endRow=nRow-1;
745 : } else {
746 0 : nRow=1;
747 0 : startRow=row;
748 0 : endRow=row;
749 : }
750 :
751 : //cerr << "nRow " << nRow << endl;
752 :
753 :
754 : // Get the uvws in a form that Fortran can use and do that
755 : // necessary phase rotation. On a Pentium Pro 200 MHz
756 : // when null, this step takes about 50us per uvw point. This
757 : // is just barely noticeable for Stokes I continuum and
758 : // irrelevant for other cases.
759 :
760 : Bool del;
761 : // IPosition s(flags.shape());
762 400 : const IPosition &fs=flags.shape();
763 400 : std::vector<Int> s(fs.begin(),fs.end());
764 400 : Int nvispol=s[0];
765 400 : Int nvischan=s[1];
766 400 : Int nvisrow=s[2];
767 400 : Matrix<Double> uvw(negateUV(vb));
768 :
769 400 : Vector<Double> dphase(vb.nRows());
770 400 : Cube<Int> loc(2, nvischan, nRow);
771 400 : Cube<Int> off(2, nvischan, nRow);
772 400 : Matrix<Complex> phasor(nvischan, nRow);
773 400 : Int csamp=convSampling_p;
774 400 : dphase=0.0;
775 :
776 400 : timemass_p +=tim.real();
777 400 : tim.mark();
778 400 : rotateUVW(uvw, dphase, vb);
779 400 : refocus(uvw, vb.antenna1(), vb.antenna2(), dphase, vb);
780 : Bool delphase;
781 400 : Complex * phasorstor=phasor.getStorage(delphase);
782 400 : const Double * visfreqstor=interpVisFreq_p.getStorage(del);
783 400 : const Double * scalestor=uvScale.getStorage(del);
784 400 : const Double * offsetstor=uvOffset.getStorage(del);
785 400 : const Double* uvstor= uvw.getStorage(del);
786 400 : Int * locstor=loc.getStorage(del);
787 400 : Int * offstor=off.getStorage(del);
788 400 : const Double *dpstor=dphase.getStorage(del);
789 : //Vector<Double> f1=interpVisFreq_p.copy();
790 400 : Int nvchan=nvischan;
791 : Int irow;
792 400 : Double cinv=Double(1.0)/C::c;
793 400 : Int dow=0;
794 400 : Int nth=1;
795 : #ifdef _OPENMP
796 400 : if(numthreads_p >0){
797 0 : nth=min(numthreads_p, omp_get_max_threads());
798 : }
799 : else{
800 400 : nth= omp_get_max_threads();
801 : }
802 : //nth=min(4,nth);
803 : #endif
804 :
805 :
806 400 : #pragma omp parallel default(none) private(irow) firstprivate(visfreqstor, nvchan, scalestor, offsetstor, csamp, phasorstor, uvstor, locstor, offstor, dpstor, cinv, dow) shared(startRow, endRow) num_threads(nth)
807 : {
808 : #pragma omp for schedule(dynamic)
809 : for (irow=startRow; irow<=endRow; ++irow){
810 : //locateuvw(uvstor,dpstor, visfreqstor, nvchan, scalestor, offsetstor, csamp,
811 : // locstor,
812 : // offstor, phasorstor, irow);
813 : locuvw(uvstor, dpstor, visfreqstor, &nvchan, scalestor, offsetstor, &csamp, locstor, offstor, phasorstor, &irow, &dow, &cinv);
814 : }
815 :
816 : }//end pragma parallel
817 : // Take care of translation of Bools to Integer
818 400 : Int idopsf=0;
819 400 : if(dopsf) idopsf=1;
820 :
821 : //////TESTOO
822 : //ofstream myfile;
823 : //myfile.open ("putLoc.txt", ios::out | ios::app | ios::ate );
824 : //myfile << vb.rowIds()(0) << " uv " << uvw.column(0) << " loc " << loc(0,0,0) << ", " << loc(1,0,0) << "\n" << endl;
825 : //myfile.close();
826 : ///////////////
827 :
828 :
829 :
830 400 : Vector<Int> rowFlags(vb.nRows());
831 400 : rowFlags=0;
832 400 : rowFlags(vb.flagRow())=true;
833 400 : if(!usezero_p) {
834 140800 : for (Int rownr=startRow; rownr<=endRow; rownr++) {
835 140400 : if(vb.antenna1()(rownr)==vb.antenna2()(rownr)) rowFlags(rownr)=1;
836 : }
837 : }
838 :
839 : /////////////Some extra stuff for openmp
840 :
841 : Int ixsub, iysub, icounter;
842 400 : Int csupp=convSupport_p;
843 :
844 400 : const Double * convfuncstor=(convFunc_p).getStorage(del);
845 :
846 : // cerr <<"Poffset " << min(off) << " " << max(off) << " length " << gridder->cFunction().shape() << endl;
847 :
848 :
849 :
850 400 : ixsub=1;
851 400 : iysub=1;
852 400 : if (nth >4){
853 400 : ixsub=8;
854 400 : iysub=8;
855 : }
856 0 : else if(nth >1) {
857 0 : ixsub=2;
858 0 : iysub=2;
859 : }
860 :
861 :
862 400 : Int rbeg=startRow+1;
863 400 : Int rend=endRow+1;
864 400 : Block<Matrix<Double> > sumwgt(ixsub*iysub);
865 26000 : for (icounter=0; icounter < ixsub*iysub; ++icounter){
866 25600 : sumwgt[icounter].resize(sumWeight.shape());
867 25600 : sumwgt[icounter].set(0.0);
868 : }
869 400 : if(doneThreadPartition_p < 0){
870 2 : xsect_p.resize(ixsub*iysub);
871 2 : ysect_p.resize(ixsub*iysub);
872 2 : nxsect_p.resize(ixsub*iysub);
873 2 : nysect_p.resize(ixsub*iysub);
874 130 : for (icounter=0; icounter < ixsub*iysub; ++icounter){
875 128 : findGridSector(nx, ny, ixsub, iysub, 0, 0, icounter, xsect_p(icounter), ysect_p(icounter), nxsect_p(icounter), nysect_p(icounter), true);
876 : }
877 : }
878 400 : Vector<Int> xsect, ysect, nxsect, nysect;
879 400 : xsect=xsect_p; ysect=ysect_p; nxsect=nxsect_p; nysect=nysect_p;
880 400 : const Int* pmapstor=polMap.getStorage(del);
881 400 : const Int *cmapstor=chanMap.getStorage(del);
882 400 : Int nc=nchan;
883 400 : Int np=npol;
884 400 : Int nxp=nx;
885 400 : Int nyp=ny;
886 400 : const Int * flagstor=flags.getStorage(del);
887 400 : const Int * rowflagstor=rowFlags.getStorage(del);
888 : ////////////////////////
889 :
890 : Bool gridcopy;
891 400 : if(useDoubleGrid_p){
892 0 : DComplex *gridstor=griddedData2.getStorage(gridcopy);
893 0 : #pragma omp parallel default(none) private(icounter, del) firstprivate(idopsf, datStorage, wgtStorage, flagstor, rowflagstor, convfuncstor, pmapstor, cmapstor, gridstor, nxp, nyp, np, nc,ixsub, iysub, rend, rbeg, csamp, csupp, nvispol, nvischan, nvisrow, phasorstor, locstor, offstor, xsect, ysect, nxsect, nysect) shared(sumwgt) num_threads(nth)
894 :
895 : {
896 : //cerr << "numthreads " << omp_get_num_threads() << endl;
897 : #pragma omp for schedule(dynamic)
898 : for(icounter=0; icounter < ixsub*iysub; ++icounter){
899 : //cerr << "thread id " << omp_get_thread_num() << endl;
900 : Int x0=xsect(icounter);
901 : Int y0=ysect(icounter);
902 : Int nxsub=nxsect(icounter);
903 : Int nysub=nysect(icounter);
904 :
905 : sectggridd(datStorage,
906 : &nvispol,
907 : &nvischan,
908 : &idopsf,
909 : flagstor,
910 : rowflagstor,
911 : wgtStorage,
912 : &nvisrow,
913 : gridstor,
914 : &nxp,
915 : &nyp,
916 : &np,
917 : &nc,
918 : &csupp,
919 : &csamp,
920 : convfuncstor,
921 : cmapstor,
922 : pmapstor,
923 : (sumwgt[icounter]).getStorage(del),
924 : &x0, &y0, &nxsub, &nysub, &rbeg, &rend, locstor, offstor,
925 : phasorstor);
926 : }//end for
927 : }// end pragma parallel
928 0 : for (icounter=0; icounter < ixsub*iysub; ++icounter){
929 0 : sumWeight=sumWeight+sumwgt[icounter];
930 : }
931 : //phasor.putStorage(phasorstor, delphase);
932 0 : griddedData2.putStorage(gridstor, gridcopy);
933 0 : if(dopsf && (nth >4))
934 0 : tweakGridSector(nx, ny, ixsub, iysub);
935 : }
936 : else{
937 400 : Complex *gridstor=griddedData.getStorage(gridcopy);
938 400 : #pragma omp parallel default(none) private(icounter, del) firstprivate(idopsf, datStorage, wgtStorage, flagstor, rowflagstor, convfuncstor, pmapstor, cmapstor, gridstor, nxp, nyp, np, nc,ixsub, iysub, rend, rbeg, csamp, csupp, nvispol, nvischan, nvisrow, phasorstor, locstor, offstor, xsect, ysect, nxsect, nysect) shared(sumwgt) num_threads(ixsub*iysub)
939 : {
940 : //cerr << "numthreads " << omp_get_num_threads() << endl;
941 : #pragma omp for schedule(dynamic)
942 :
943 : for(icounter=0; icounter < ixsub*iysub; ++icounter){
944 : //cerr << "thread id " << omp_get_thread_num() << endl;
945 : Int x0=xsect(icounter);
946 : Int y0=ysect(icounter);
947 : Int nxsub=nxsect(icounter);
948 : Int nysub=nysect(icounter);
949 :
950 :
951 :
952 : //cerr << "x0 " << x0 << " y0 " << y0 << " nxsub " << nxsub << " nysub " << nysub << endl;
953 : sectggrids(datStorage,
954 : &nvispol,
955 : &nvischan,
956 : &idopsf,
957 : flagstor,
958 : rowflagstor,
959 : wgtStorage,
960 : &nvisrow,
961 : gridstor,
962 : &nxp,
963 : &nyp,
964 : &np,
965 : &nc,
966 : &csupp,
967 : &csamp,
968 : convfuncstor,
969 : cmapstor,
970 : pmapstor,
971 : (sumwgt[icounter]).getStorage(del),
972 : &x0, &y0, &nxsub, &nysub, &rbeg, &rend, locstor, offstor,
973 : phasorstor);
974 : }//end for
975 : }// end pragma parallel
976 26000 : for (icounter=0; icounter < ixsub*iysub; ++icounter){
977 25600 : sumWeight=sumWeight+sumwgt[icounter];
978 : }
979 :
980 400 : griddedData.putStorage(gridstor, gridcopy);
981 400 : if(dopsf && (nth > 4))
982 0 : tweakGridSector(nx, ny, ixsub, iysub);
983 : }
984 : // cerr << "sunweight " << sumWeight << endl;
985 :
986 400 : timegrid_p+=tim.real();
987 :
988 400 : if(!dopsf)
989 400 : data.freeStorage(datStorage, isCopy);
990 400 : elWeight.freeStorage(wgtStorage,iswgtCopy);
991 :
992 : // peek->reset();
993 400 : }
994 :
995 0 : void GridFT::modifyConvFunc(const Vector<Double>& convFunc, Int convSupport, Int convSampling){
996 0 : convFunc_p.resize();
997 0 : convFunc_p=convFunc;
998 0 : convSupport_p=convSupport;
999 0 : convSampling_p=convSampling;
1000 :
1001 0 : }
1002 :
1003 200 : void GridFT::get(vi::VisBuffer2& vb, Int row)
1004 : {
1005 :
1006 200 : gridOk(convSupport_p);
1007 : // If row is -1 then we pass through all rows
1008 : Int startRow, endRow, nRow;
1009 200 : if (row < 0) {
1010 200 : nRow=vb.nRows();
1011 200 : startRow=0;
1012 200 : endRow=nRow-1;
1013 : //unnecessary zeroing
1014 : //vb.modelVisCube()=Complex(0.0,0.0);
1015 : } else {
1016 0 : nRow=1;
1017 0 : startRow=row;
1018 0 : endRow=row;
1019 : //unnecessary zeroing
1020 : //vb.modelVisCube().xyPlane(row)=Complex(0.0,0.0);
1021 : }
1022 :
1023 :
1024 : ///Channel matching for the actual spectral window of buffer
1025 200 : matchChannel(vb);
1026 :
1027 :
1028 : //cerr << "GETchanMap " << chanMap << endl;
1029 : //No point in reading data if its not matching in frequency
1030 200 : if(max(chanMap)==-1)
1031 0 : return;
1032 :
1033 :
1034 :
1035 : // Get the uvws in a form that Fortran can use
1036 200 : Matrix<Double> uvw(negateUV(vb));
1037 200 : Vector<Double> dphase(vb.nRows());
1038 200 : dphase=0.0;
1039 200 : rotateUVW(uvw, dphase, vb);
1040 200 : refocus(uvw, vb.antenna1(), vb.antenna2(), dphase, vb);
1041 :
1042 :
1043 :
1044 : //Check if ms has changed then cache new spw and chan selection
1045 : //if(vb.isNewMs())
1046 : // matchAllSpwChans(vb);
1047 :
1048 :
1049 : //Here we redo the match or use previous match
1050 :
1051 :
1052 200 : Cube<Complex> data;
1053 200 : Cube<Int> flags;
1054 200 : getInterpolateArrays(vb, data, flags);
1055 :
1056 : //cerr << "max min data " << max(griddedData) << " " << min(griddedData) << " flags " << max(flags) << " " << min(flags) << endl;
1057 :
1058 : // IPosition s(data.shape());
1059 200 : Int nvp=data.shape()(0);
1060 200 : Int nvc=data.shape()(1);
1061 200 : Int nvisrow=data.shape()(2);
1062 :
1063 :
1064 : //cerr << "get flags " << min(flags) << " " << max(flags) << endl;
1065 : Complex *datStorage;
1066 : Bool isCopy;
1067 200 : datStorage=data.getStorage(isCopy);
1068 :
1069 : ///
1070 200 : Cube<Int> loc(2, nvc, nvisrow);
1071 200 : Cube<Int> off(2, nvc, nRow);
1072 200 : Matrix<Complex> phasor(nvc, nRow);
1073 200 : Int csamp=convSampling_p;
1074 : Bool delphase;
1075 : Bool del;
1076 200 : Complex * phasorstor=phasor.getStorage(delphase);
1077 200 : const Double * visfreqstor=interpVisFreq_p.getStorage(del);
1078 200 : const Double * scalestor=uvScale.getStorage(del);
1079 200 : const Double * offsetstor=uvOffset.getStorage(del);
1080 200 : const Double* uvstor= uvw.getStorage(del);
1081 200 : Int * locstor=loc.getStorage(del);
1082 200 : Int * offstor=off.getStorage(del);
1083 200 : const Double *dpstor=dphase.getStorage(del);
1084 : //Vector<Double> f1=interpVisFreq_p.copy();
1085 200 : Int nvchan=nvc;
1086 : Int irow;
1087 200 : Double cinv=Double(1.0)/C::c;
1088 200 : Int dow=0;
1089 200 : Int nth=1;
1090 : #ifdef _OPENMP
1091 200 : if(numthreads_p >0){
1092 0 : nth=min(numthreads_p, omp_get_max_threads());
1093 : }
1094 : else{
1095 200 : nth= omp_get_max_threads();
1096 : }
1097 : //nth=min(4,nth);
1098 : #endif
1099 :
1100 :
1101 200 : #pragma omp parallel default(none) private(irow) firstprivate(visfreqstor, nvchan, scalestor, offsetstor, csamp, phasorstor, uvstor, locstor, offstor, dpstor, cinv, dow) shared(startRow, endRow) num_threads(nth)
1102 :
1103 : {
1104 : #pragma omp for schedule(dynamic)
1105 : for (irow=startRow; irow<=endRow; ++irow){
1106 : //locateuvw(uvstor,dpstor, visfreqstor, nvchan, scalestor, offsetstor, csamp,
1107 : // locstor,
1108 : // offstor, phasorstor, irow);
1109 :
1110 : locuvw(uvstor, dpstor, visfreqstor, &nvchan, scalestor, offsetstor, &csamp, locstor, offstor, phasorstor, &irow, &dow, &cinv);
1111 : }
1112 :
1113 : }//end pragma parallel
1114 :
1115 200 : Int rbeg=startRow+1;
1116 200 : Int rend=endRow+1;
1117 :
1118 :
1119 200 : Vector<Int> rowFlags(vb.nRows());
1120 200 : rowFlags=0;
1121 200 : rowFlags(vb.flagRow())=true;
1122 : //cerr << "rowFlags " << rowFlags << endl;
1123 200 : if(!usezero_p) {
1124 70400 : for (Int rownr=startRow; rownr<=endRow; rownr++) {
1125 70200 : if(vb.antenna1()(rownr)==vb.antenna2()(rownr)) rowFlags(rownr)=1;
1126 : }
1127 : }
1128 :
1129 :
1130 : //cerr <<"offset " << min(off) << " " <<max(off) << " length " << gridder->cFunction().shape() << endl;
1131 :
1132 : {
1133 : Bool delgrid;
1134 200 : const Complex* gridstor=griddedData.getStorage(delgrid);
1135 200 : const Double * convfuncstor=(convFunc_p).getStorage(del);
1136 :
1137 200 : const Int* pmapstor=polMap.getStorage(del);
1138 200 : const Int *cmapstor=chanMap.getStorage(del);
1139 200 : Int nc=nchan;
1140 200 : Int np=npol;
1141 200 : Int nxp=nx;
1142 200 : Int nyp=ny;
1143 200 : Int csupp=convSupport_p;
1144 200 : const Int * flagstor=flags.getStorage(del);
1145 200 : const Int * rowflagstor=rowFlags.getStorage(del);
1146 :
1147 :
1148 200 : Int npart=nth;
1149 :
1150 :
1151 200 : Int ix=0;
1152 200 : #pragma omp parallel default(none) private(ix, rbeg, rend) firstprivate(datStorage, flagstor, rowflagstor, convfuncstor, pmapstor, cmapstor, gridstor, nxp, nyp, np, nc, csamp, csupp, nvp, nvc, nvisrow, phasorstor, locstor, offstor) shared(npart) num_threads(npart)
1153 : {
1154 : #pragma omp for schedule(dynamic)
1155 : for (ix=0; ix< npart; ++ix){
1156 : rbeg=ix*(nvisrow/npart)+1;
1157 : rend=(ix != (npart-1)) ? (rbeg+(nvisrow/npart)-1) : (rbeg+(nvisrow/npart)+nvisrow%npart-1) ;
1158 : //cerr << "rbeg " << rbeg << " rend " << rend << " " << nvisrow << endl;
1159 :
1160 : sectdgrid(datStorage,
1161 : &nvp,
1162 : &nvc,
1163 : flagstor,
1164 : rowflagstor,
1165 : &nvisrow,
1166 : gridstor,
1167 : &nxp,
1168 : &nyp,
1169 : &np,
1170 : &nc,
1171 : &csupp,
1172 : &csamp,
1173 : convfuncstor,
1174 : cmapstor,
1175 : pmapstor,
1176 : &rbeg, &rend, locstor, offstor, phasorstor);
1177 : }//end pragma parallel
1178 : }
1179 200 : data.putStorage(datStorage, isCopy);
1180 200 : griddedData.freeStorage(gridstor, delgrid);
1181 : //cerr << "Get min max " << min(data) << " " << max(data) << endl;
1182 : }
1183 200 : interpolateFrequencyFromgrid(vb, data, FTMachine::MODEL);
1184 :
1185 200 : }
1186 :
1187 :
1188 :
1189 : // Finalize the FFT to the Sky. Here we actually do the FFT and
1190 : // return the resulting image
1191 2 : ImageInterface<Complex>& GridFT::getImage(Matrix<Float>& weights, Bool normalize)
1192 : {
1193 : //AlwaysAssert(lattice, AipsError);
1194 2 : AlwaysAssert(gridder, AipsError);
1195 2 : AlwaysAssert(image, AipsError);
1196 2 : logIO() << LogOrigin("GridFT", "getImage") << LogIO::NORMAL;
1197 :
1198 2 : if((griddedData.nelements() ==0) && (griddedData2.nelements()==0)){
1199 0 : throw(AipsError("Programmer error ...request for image without right order of calls"));
1200 : }
1201 2 : weights.resize(sumWeight.shape());
1202 :
1203 2 : convertArray(weights, sumWeight);
1204 : // If the weights are all zero then we cannot normalize
1205 : // otherwise we don't care.
1206 2 : if(normalize&&max(weights)==0.0) {
1207 : logIO() << LogIO::SEVERE << "No useful data in GridFT: weights all zero"
1208 0 : << LogIO::POST;
1209 : }
1210 : else {
1211 :
1212 : //const IPosition latticeShape = lattice->shape();
1213 :
1214 : //logIO() << LogIO::DEBUGGING
1215 : // << "Starting FFT and scaling of image" << LogIO::POST;
1216 :
1217 :
1218 :
1219 : // if(useDoubleGrid_p){
1220 : // convertArray(griddedData, griddedData2);
1221 : // //Don't need the double-prec grid anymore...
1222 : // griddedData2.resize();
1223 : // }
1224 :
1225 : // x and y transforms
1226 : // LatticeFFT::cfft2d(*lattice,false);
1227 : //
1228 : // Retain the double precision grid for FFT as well. Convert it
1229 : // to single precision just after (since images are still single
1230 : // precision).
1231 : //
1232 2 : if(useDoubleGrid_p)
1233 : {
1234 0 : ArrayLattice<DComplex> darrayLattice(griddedData2);
1235 : //LatticeFFT::cfft2d(darrayLattice,false);
1236 0 : ft_p.c2cFFT(darrayLattice, False);
1237 0 : griddedData.resize(griddedData2.shape());
1238 0 : convertArray(griddedData, griddedData2);
1239 :
1240 0 : SynthesisUtilMethods::getResource("mem peak in getImage");
1241 :
1242 : //Don't need the double-prec grid anymore...
1243 0 : griddedData2.resize();
1244 0 : arrayLattice.reset( new ArrayLattice<Complex>(griddedData) );
1245 0 : lattice=arrayLattice;
1246 0 : }
1247 : else{
1248 2 : arrayLattice.reset( new ArrayLattice<Complex>(griddedData) );
1249 2 : lattice=arrayLattice;
1250 :
1251 : //LatticeFFT::cfft2d(*lattice,false);
1252 2 : ft_p.c2cFFT(*lattice, False);
1253 : }
1254 :
1255 :
1256 :
1257 : {
1258 2 : Int inx = lattice->shape()(0);
1259 2 : Int iny = lattice->shape()(1);
1260 2 : Vector<Complex> correction(inx);
1261 2 : correction=Complex(1.0, 0.0);
1262 : // Do the Grid-correction
1263 2 : IPosition cursorShape(4, inx, 1, 1, 1);
1264 2 : IPosition axisPath(4, 0, 1, 2, 3);
1265 2 : LatticeStepper lsx(lattice->shape(), cursorShape, axisPath);
1266 2 : LatticeIterator<Complex> lix(*lattice, lsx);
1267 202 : for(lix.reset();!lix.atEnd();lix++) {
1268 200 : Int pol=lix.position()(2);
1269 200 : Int chan=lix.position()(3);
1270 200 : if(weights(pol, chan)!=0.0) {
1271 200 : gridder->correctX1D(correction, lix.position()(1));
1272 200 : lix.rwVectorCursor()/=correction;
1273 200 : if(normalize) {
1274 200 : Complex rnorm(Float(inx)*Float(iny)/weights(pol,chan));
1275 200 : lix.rwCursor()*=rnorm;
1276 : }
1277 : else {
1278 0 : Complex rnorm(Float(inx)*Float(iny));
1279 0 : lix.rwCursor()*=rnorm;
1280 : }
1281 : }
1282 : else {
1283 0 : lix.woCursor()=0.0;
1284 : }
1285 : }
1286 2 : }
1287 2 : LatticeLocker lock1 (*(image), FileLocker::Write);
1288 2 : if(!isTiled) {
1289 : // Check the section from the image BEFORE converting to a lattice
1290 4 : IPosition blc(4, (nx-image->shape()(0)+(nx%2==0))/2, (ny-image->shape()(1)+(ny%2==0))/2, 0, 0);
1291 2 : IPosition stride(4, 1);
1292 4 : IPosition trc(blc+image->shape()-stride);
1293 : // Do the copy
1294 2 : IPosition start(4, 0);
1295 :
1296 2 : image->put(griddedData(blc, trc));
1297 2 : }
1298 2 : }
1299 2 : image->flush();
1300 2 : image->clearCache();
1301 :
1302 2 : if(arrayLattice) arrayLattice=nullptr;
1303 2 : if(lattice) lattice=nullptr;
1304 2 : griddedData.resize();
1305 2 : return *image;
1306 : }
1307 :
1308 : // Get weight image
1309 0 : void GridFT::getWeightImage(ImageInterface<Float>& weightImage, Matrix<Float>& weights)
1310 : {
1311 :
1312 0 : logIO() << LogOrigin("GridFT", "getWeightImage") << LogIO::NORMAL;
1313 :
1314 0 : weights.resize(sumWeight.shape());
1315 0 : convertArray(weights,sumWeight);
1316 :
1317 0 : const IPosition latticeShape = weightImage.shape();
1318 :
1319 0 : Int nx=latticeShape(0);
1320 0 : Int ny=latticeShape(1);
1321 :
1322 0 : IPosition loc(2, 0);
1323 0 : IPosition cursorShape(4, nx, ny, 1, 1);
1324 0 : IPosition axisPath(4, 0, 1, 2, 3);
1325 0 : LatticeStepper lsx(latticeShape, cursorShape, axisPath);
1326 0 : LatticeIterator<Float> lix(weightImage, lsx);
1327 0 : for(lix.reset();!lix.atEnd();lix++) {
1328 0 : Int pol=lix.position()(2);
1329 0 : Int chan=lix.position()(3);
1330 0 : lix.rwCursor()=weights(pol,chan);
1331 : }
1332 0 : }
1333 :
1334 0 : Bool GridFT::toRecord(String& error,
1335 : RecordInterface& outRec, Bool withImage, const String diskimage)
1336 : {
1337 :
1338 :
1339 :
1340 : // Save the current GridFT object to an output state record
1341 0 : Bool retval = true;
1342 0 : Float elpadd=padding_p;
1343 0 : if(toVis_p && withImage)
1344 0 : elpadd=1.0;
1345 : //save the base class variables
1346 0 : if(!FTMachine::toRecord(error, outRec, withImage, diskimage))
1347 0 : return false;
1348 :
1349 : //a call to init will redo imagecache and gridder
1350 : // so no need to save these
1351 :
1352 0 : outRec.define("cachesize", Int64(cachesize));
1353 0 : outRec.define("tilesize", tilesize);
1354 0 : outRec.define("convtype", convType);
1355 0 : outRec.define("uvscale", uvScale);
1356 0 : outRec.define("uvoffset", uvOffset);
1357 0 : outRec.define("istiled", isTiled);
1358 0 : outRec.define("maxabsdata", maxAbsData);
1359 0 : Vector<Int> center_loc(4), offset_loc(4);
1360 0 : for (Int k=0; k<4 ; k++){
1361 0 : center_loc(k)=centerLoc(k);
1362 0 : offset_loc(k)=offsetLoc(k);
1363 : }
1364 0 : outRec.define("centerloc", center_loc);
1365 0 : outRec.define("offsetloc", offset_loc);
1366 0 : outRec.define("padding", elpadd);
1367 0 : outRec.define("usezero", usezero_p);
1368 0 : outRec.define("nopadding", noPadding_p);
1369 0 : return retval;
1370 0 : }
1371 :
1372 0 : Bool GridFT::fromRecord(String& error,
1373 : const RecordInterface& inRec)
1374 : {
1375 0 : Bool retval = true;
1376 0 : if(!FTMachine::fromRecord(error, inRec))
1377 0 : return false;
1378 0 : gridder=0; imageCache=0; lattice.reset( ); arrayLattice.reset( );
1379 : //For some reason int64 seems to be getting lost...
1380 : //this is not an important parameter...so filing a jira
1381 0 : if(inRec.isDefined("cachesize"))
1382 0 : cachesize=inRec.asInt64("cachesize");
1383 : else
1384 0 : cachesize=1000000;
1385 0 : inRec.get("tilesize", tilesize);
1386 0 : inRec.get("convtype", convType);
1387 0 : inRec.get("uvscale", uvScale);
1388 0 : inRec.get("uvoffset", uvOffset);
1389 0 : inRec.get("istiled", isTiled);
1390 0 : inRec.get("maxabsdata", maxAbsData);
1391 0 : Vector<Int> center_loc(4), offset_loc(4);
1392 0 : inRec.get("centerloc", center_loc);
1393 0 : inRec.get("offsetloc", offset_loc);
1394 0 : uInt ndim4 = 4;
1395 0 : centerLoc=IPosition(ndim4, center_loc(0), center_loc(1), center_loc(2),
1396 0 : center_loc(3));
1397 0 : offsetLoc=IPosition(ndim4, offset_loc(0), offset_loc(1), offset_loc(2),
1398 0 : offset_loc(3));
1399 0 : inRec.get("padding", padding_p);
1400 0 : inRec.get("usezero", usezero_p);
1401 0 : inRec.get("nopadding", noPadding_p);
1402 :
1403 0 : machineName_p="GridFT";
1404 : ///setup some of the parameters if there is an image
1405 0 : if(inRec.isDefined("image") || inRec.isDefined("diskimage"))
1406 0 : init();
1407 : /*if(!cmplxImage_p.null()){
1408 : //FTMachine::fromRecord would have recovered the image
1409 : // Might be changing the shape of sumWeight
1410 :
1411 : if(isTiled) {
1412 : lattice=std::shared_ptr<Lattice<Complex> >(image, false);
1413 : }
1414 : else {
1415 : // Make the grid the correct shape and turn it into an array lattice
1416 : // Check the section from the image BEFORE converting to a lattice
1417 : if(!toVis_p){
1418 : IPosition gridShape(4, nx, ny, npol, nchan);
1419 : griddedData.resize(gridShape);
1420 : griddedData=Complex(0.0);
1421 : }
1422 : else{
1423 : prepGridForDegrid();
1424 : }
1425 : }
1426 : };*/
1427 0 : return retval;
1428 0 : }
1429 :
1430 1606 : void GridFT::ok() {
1431 1606 : AlwaysAssert(image, AipsError);
1432 1606 : }
1433 :
1434 : // Make a plain straightforward honest-to-God image. This returns
1435 : // a complex image, without conversion to Stokes. The representation
1436 : // is that required for the visibilities.
1437 : //----------------------------------------------------------------------
1438 0 : void GridFT::makeImage(FTMachine::Type type,
1439 : vi::VisibilityIterator2& vi,
1440 : ImageInterface<Complex>& theImage,
1441 : Matrix<Float>& weight) {
1442 :
1443 :
1444 0 : logIO() << LogOrigin("GridFT", "makeImage") << LogIO::NORMAL;
1445 :
1446 0 : if(type==FTMachine::COVERAGE) {
1447 0 : logIO() << "Type COVERAGE not defined for Fourier transforms" << LogIO::EXCEPTION;
1448 : }
1449 :
1450 :
1451 :
1452 :
1453 : // Loop over all visibilities and pixels
1454 0 : vi::VisBuffer2* vb=vi.getVisBuffer();
1455 :
1456 : // Initialize put (i.e. transform to Sky) for this model
1457 0 : vi.origin();
1458 :
1459 0 : if(vb->polarizationFrame()==MSIter::Linear) {
1460 0 : StokesImageUtil::changeCStokesRep(theImage, StokesImageUtil::LINEAR);
1461 : }
1462 : else {
1463 0 : StokesImageUtil::changeCStokesRep(theImage, StokesImageUtil::CIRCULAR);
1464 : }
1465 :
1466 0 : initializeToSky(theImage,weight,*vb);
1467 :
1468 : // Loop over the visibilities, putting VisBuffers
1469 0 : for (vi.originChunks();vi.moreChunks();vi.nextChunk()) {
1470 0 : for (vi.origin(); vi.more(); vi.next()) {
1471 :
1472 0 : switch(type) {
1473 0 : case FTMachine::RESIDUAL:
1474 0 : vb->setVisCube(vb->visCubeCorrected()-vb->visCubeModel());
1475 0 : put(*vb, -1, false);
1476 0 : break;
1477 0 : case FTMachine::MODEL:
1478 0 : vb->setVisCube(vb->visCubeModel());
1479 0 : put(*vb, -1, false);
1480 0 : break;
1481 0 : case FTMachine::CORRECTED:
1482 0 : vb->setVisCube(vb->visCubeCorrected());
1483 0 : put(*vb, -1, false);
1484 0 : break;
1485 0 : case FTMachine::PSF:
1486 0 : vb->setVisCube(Complex(1.0,0.0));
1487 0 : put(*vb, -1, true);
1488 0 : break;
1489 0 : case FTMachine::OBSERVED:
1490 : default:
1491 0 : put(*vb, -1, false);
1492 0 : break;
1493 : }
1494 : }
1495 : }
1496 0 : finalizeToSky();
1497 : // Normalize by dividing out weights, etc.
1498 0 : getImage(weight, true);
1499 0 : }
1500 :
1501 0 : String GridFT::name() const {
1502 :
1503 0 : return machineName_p;
1504 :
1505 :
1506 : }
1507 :
1508 : }//End of namespace refim
1509 : } //# NAMESPACE CASA - END
1510 :
|