LCOV - code coverage report
Current view: top level - msvis/MSVis - VisBuffer.cc (source / functions) Hit Total Coverage
Test: casacpp_coverage.info Lines: 228 1763 12.9 %
Date: 2024-10-04 16:51:10 Functions: 34 156 21.8 %

          Line data    Source code
       1             : //# VisBuffer.cc: buffer for iterating through MS in large blocks
       2             : //# Copyright (C) 1996,1997,1998,1999,2000,2002,2003
       3             : //# Associated Universities, Inc. Washington DC, USA.
       4             : //#
       5             : //# This library is free software; you can redistribute it and/or modify it
       6             : //# under the terms of the GNU Library General Public License as published by
       7             : //# the Free Software Foundation; either version 2 of the License, or (at your
       8             : //# option) any later version.
       9             : //#
      10             : //# This library is distributed in the hope that it will be useful, but WITHOUT
      11             : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
      12             : //# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Library General Public
      13             : //# License for more details.
      14             : //#
      15             : //# You should have received a copy of the GNU Library General Public License
      16             : //# along with this library; if not, write to the Free Software Foundation,
      17             : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
      18             : //#
      19             : //# Correspondence concerning AIPS++ should be addressed as follows:
      20             : //#        Internet email: casa-feedback@nrao.edu.
      21             : //#        Postal address: AIPS++ Project Office
      22             : //#                        National Radio Astronomy Observatory
      23             : //#                        520 Edgemont Road
      24             : //#                        Charlottesville, VA 22903-2475 USA
      25             : //#
      26             : //# $Id$
      27             : 
      28             : #include <msvis/MSVis/VisibilityIterator.h>
      29             : #include <msvis/MSVis/VisBuffer.h>
      30             : #include <msvis/MSVis/VisBufferAsyncWrapper.h>
      31             : #include <stdcasa/UtilJ.h>
      32             : #include <casacore/casa/Arrays/ArrayMath.h>
      33             : #include <casacore/casa/Arrays/ArrayLogical.h>
      34             : #include <casacore/casa/Arrays/MaskedArray.h>
      35             : #include <casacore/casa/Arrays/MaskArrMath.h>
      36             : #include <casacore/casa/Arrays/ArrayUtil.h>
      37             : #include <casacore/casa/OS/Path.h>
      38             : #include <casacore/casa/Utilities/Assert.h>
      39             : #include <casacore/casa/Utilities/GenSort.h>
      40             : #include <casacore/casa/OS/Timer.h>
      41             : #include <casacore/ms/MeasurementSets/MSColumns.h>
      42             : #include <casacore/ms/MeasurementSets/MSIter.h>
      43             : 
      44             : #define CheckVisIter() checkVisIter (__func__, __FILE__, __LINE__)
      45             : #define CheckVisIter1(s) checkVisIter (__func__, __FILE__, __LINE__,s)
      46             : #define CheckVisIterBase() checkVisIterBase (__func__, __FILE__, __LINE__)
      47             : 
      48             : 
      49             : // For debugging; remove/comment-out when working
      50             : //#include "VLAT.h"
      51             : //#define Log(level, ...) \
      52             : //    {if (VlaData::loggingInitialized_p && level <= VlaData::logLevel_p) \
      53             : //         Logger::log (__VA_ARGS__);};
      54             : 
      55             : using namespace casacore;
      56             : 
      57             : namespace casa { //# NAMESPACE CASA - BEGIN
      58             : 
      59           0 : VisBuffer::VisBuffer()
      60           0 :     : corrSorted_p(false),
      61           0 :       lastPointTableRow_p(0),
      62           0 :       This(this),
      63           0 :       twoWayConnection_p(false),
      64           0 :       visIter_p(static_cast<ROVisibilityIterator *>(0))
      65             : {
      66           0 :     validate();
      67           0 :     oldMSId_p = -1;
      68             : 
      69           0 :     std::unique_ptr<casa::VisModelDataI> check(VisModelDataI::create());
      70           0 :     if (check)
      71           0 :         visModelData_p = check.release();
      72           0 : }
      73             : 
      74           2 : VisBuffer::VisBuffer(ROVisibilityIterator & iter)
      75           2 :     : This(this),
      76           2 :       visIter_p(&iter)
      77             : {
      78           2 :     iter.attachVisBuffer(*this);
      79           2 :     twoWayConnection_p = true;
      80           2 :     oldMSId_p = -1;
      81           2 :     corrSorted_p = false;
      82             : 
      83           2 :     std::unique_ptr<casa::VisModelDataI> check(VisModelDataI::create());
      84           2 :     if (check)
      85           1 :         visModelData_p = check.release();
      86           2 : }
      87             : 
      88           0 : VisBuffer::VisBuffer(const VisBuffer & vb)
      89           0 :     : This(this),
      90           0 :       visIter_p(static_cast<ROVisibilityIterator *>(0))
      91             : {
      92           0 :     corrSorted_p = false;
      93           0 :     operator=(vb);
      94           0 : }
      95             : 
      96           0 : VisBuffer & VisBuffer::operator=(const VisBuffer & other)
      97             : {
      98           0 :     if (this != &other) {
      99           0 :         assign(other);
     100           0 :         oldMSId_p = -1;
     101             :     }
     102           0 :     return *this;
     103             : }
     104             : 
     105             : VisBuffer &
     106           0 : VisBuffer::assign(const VisBuffer & other, Bool copy)
     107             : {
     108           0 :     if (not other.visModelData_p.null()) visModelData_p = other.visModelData_p->clone();
     109             : 
     110           0 :     if (other.corrSorted_p) {
     111           0 :         throw(AipsError("Cannot assign a VisBuffer that has had correlations sorted!"));
     112             :     }
     113             : 
     114           0 :     if (this != &other) {
     115           0 :         if (visIter_p != static_cast<ROVisibilityIterator *>(0) &&
     116           0 :             twoWayConnection_p &&
     117           0 :             visIter_p != other.getVisibilityIterator()) {
     118             : 
     119             :             // If this VB is attached to it's visibility iterator and the
     120             :             // assignment will result in association with a different VI then
     121             :             // detach it.
     122             : 
     123           0 :             visIter_p->detachVisBuffer(*this);
     124             :         }
     125             : 
     126           0 :         visIter_p = other.getVisibilityIterator ();
     127           0 :         other.copyMsInfo(oldMSId_p, msOK_p, newMS_p);
     128             : 
     129           0 :         twoWayConnection_p = false;
     130             : 
     131           0 :         if (visIter_p == static_cast<ROVisibilityIterator *>(0)) {
     132           0 :             validate();
     133           0 :             copyCache (other, true);  // force copying
     134           0 :         } else if (copy) {
     135           0 :             copyCache (other, false); // copy only if there's something there
     136             :         } else {
     137           0 :             invalidate();
     138             :         }
     139             : 
     140             :     }
     141           0 :     return *this;
     142             : }
     143             : 
     144             : 
     145           0 : void VisBuffer::copyCoordInfo(const VisBuffer& other, Bool force)
     146             : {
     147             :   // Just do the nominally non-row-dep values
     148           0 :   cacheCopyNormal(arrayIdOK_p, other.arrayIdOK(), arrayId_p, other, &VisBuffer::arrayId, force);
     149           0 :   cacheCopyNormal(dataDescriptionIdOK_p, other.dataDescriptionIdOK(), dataDescriptionId_p, other, &VisBuffer::dataDescriptionId, force);
     150           0 :   cacheCopyNormal(fieldIdOK_p, other.fieldIdOK(), fieldId_p, other, &VisBuffer::fieldId, force);
     151           0 :   cacheCopyNormal(spectralWindowOK_p, other.spectralWindowOK(), spectralWindow_p, other,
     152             :                   &VisBuffer::spectralWindow, force);
     153           0 :   cacheCopyNormal(nCorrOK_p, other.nCorrOK(), nCorr_p, other, &VisBuffer::nCorr, force);
     154           0 :   cacheCopyNormal(nChannelOK_p, other.nChannelOK(), nChannel_p, other, &VisBuffer::nChannel, force);
     155           0 :   cacheCopyArray(frequencyOK_p, other.frequencyOK(), frequency_p, other, &VisBuffer::frequency, force);
     156           0 : }
     157             : 
     158             : void
     159           0 : VisBuffer::copyCache (const VisBuffer & other, Bool force)
     160             : {
     161             :     // Copies cache status from the other VisBuffer and if the status is true
     162             :     // then the cached values are copied over from the other VisBuffer as well.
     163             : 
     164             :     // Keep in order so that finding omitted ones will be easier
     165             :     // in the future
     166             : 
     167           0 :     cacheCopyArray  (antenna1OK_p, other.antenna1OK (), antenna1_p, other, & VisBuffer::antenna1, force);
     168           0 :     cacheCopyArray  (antenna2OK_p, other.antenna2OK (), antenna2_p, other, & VisBuffer::antenna2, force);
     169           0 :     cacheCopyNormal (arrayIdOK_p, other.arrayIdOK (), arrayId_p, other, & VisBuffer::arrayId, force);
     170             :     ////cacheCopyArray  (chanAveBoundsOK_p, other.chanAveBoundsOK (), chanAveBounds_p, other, & VisBuffer::chanAveBounds, force);
     171           0 :     cacheCopyArray  (channelOK_p, other.channelOK (), channel_p, other, & VisBuffer::channel, force);
     172           0 :     cacheCopyArray  (cjonesOK_p, other.cjonesOK (), cjones_p, other, & VisBuffer::CJones, force);
     173           0 :     cacheCopyArray  (correctedVisCubeOK_p, other.correctedVisCubeOK (),
     174           0 :                      correctedVisCube_p, other, & VisBuffer::correctedVisCube, force);
     175           0 :     cacheCopyArray  (correctedVisibilityOK_p, other.correctedVisibilityOK (),
     176           0 :                      correctedVisibility_p, other, & VisBuffer::correctedVisibility, force);
     177           0 :     cacheCopyArray  (corrTypeOK_p, other.corrTypeOK (), corrType_p, other, & VisBuffer::corrType, force);
     178           0 :     cacheCopyNormal (dataDescriptionIdOK_p, other.dataDescriptionIdOK(), dataDescriptionId_p, other, & VisBuffer::dataDescriptionId, force);
     179           0 :     cacheCopyArray  (direction1OK_p, other.direction1OK (), direction1_p, other, & VisBuffer::direction1, force);
     180           0 :     cacheCopyArray  (direction2OK_p, other.direction2OK (), direction2_p, other, & VisBuffer::direction2, force);
     181           0 :     cacheCopyArray  (exposureOK_p, other.exposureOK (), exposure_p, other, & VisBuffer::exposure, force);
     182           0 :     cacheCopyArray  (feed1OK_p, other.feed1OK (), feed1_p, other, & VisBuffer::feed1, force);
     183           0 :     cacheCopyArray  (feed1_paOK_p, other.feed1_paOK (), feed1_pa_p, other, & VisBuffer::feed1_pa, force);
     184           0 :     cacheCopyArray  (feed2OK_p, other.feed2OK (), feed2_p, other, & VisBuffer::feed2, force);
     185           0 :     cacheCopyArray  (feed2_paOK_p, other.feed2_paOK (), feed2_pa_p, other, & VisBuffer::feed2_pa, force);
     186           0 :     cacheCopyNormal (fieldIdOK_p, other.fieldIdOK (), fieldId_p, other, & VisBuffer::fieldId, force);
     187           0 :     cacheCopyArray  (flagOK_p, other.flagOK (), flag_p, other, & VisBuffer::flag, force);
     188           0 :     cacheCopyArray  (flagCategoryOK_p, other.flagCategoryOK (), flagCategory_p, other, & VisBuffer::flagCategory, force);
     189           0 :     cacheCopyArray  (flagCubeOK_p, other.flagCubeOK (), flagCube_p, other, & VisBuffer::flagCube, force);
     190           0 :     cacheCopyArray  (flagRowOK_p, other.flagRowOK (), flagRow_p, other, & VisBuffer::flagRow, force);
     191           0 :     cacheCopyArray  (floatDataCubeOK_p, other.floatDataCubeOK (), floatDataCube_p, other, & VisBuffer::floatDataCube, force);
     192           0 :     cacheCopyArray  (frequencyOK_p, other.frequencyOK (), frequency_p, other, & VisBuffer::frequency, force);
     193           0 :     cacheCopyArray  (imagingWeightOK_p, other.imagingWeightOK (), imagingWeight_p, other, & VisBuffer::imagingWeight, force);
     194             :     //cacheCopyArray  (lsrFrequencyOK_p, other.lsrFrequencyOK (), lsrFrequency_p, other, & VisBuffer::lsrFrequency, force);
     195           0 :     cacheCopyArray  (modelVisCubeOK_p, other.modelVisCubeOK (), modelVisCube_p, other, & VisBuffer::modelVisCube, force);
     196           0 :     cacheCopyArray  (modelVisibilityOK_p, other.modelVisibilityOK (),
     197           0 :                      modelVisibility_p, other, & VisBuffer::modelVisibility, force);
     198           0 :     cacheCopyNormal (nChannelOK_p, other.nChannelOK (), nChannel_p, other, & VisBuffer::nChannel, force);
     199           0 :     cacheCopyNormal (nCorrOK_p, other.nCorrOK (), nCorr_p, other, & VisBuffer::nCorr, force);
     200             :     //cacheCopyNormal (nCatOK_p, other.nCatOK (), nCat_p, other, & VisBuffer::nCat, force);
     201           0 :     cacheCopyNormal (nRowOK_p, other.nRowOK (), nRow_p, other, & VisBuffer::nRow, force);
     202           0 :     cacheCopyArray  (observationIdOK_p, other.observationIdOK (), observationId_p, other, & VisBuffer::observationId, force);
     203           0 :     cacheCopyNormal (phaseCenterOK_p, other.phaseCenterOK (), phaseCenter_p, other, & VisBuffer::phaseCenter, force);
     204           0 :     cacheCopyNormal (polFrameOK_p, other.polFrameOK (), polFrame_p, other, & VisBuffer::polFrame, force);
     205           0 :     cacheCopyArray  (processorIdOK_p, other.processorIdOK (), processorId_p, other, & VisBuffer::processorId, force);
     206           0 :     cacheCopyArray  (rowIdsOK_p, other.rowIdsOK (), rowIds_p, other, & VisBuffer::rowIds, force);
     207           0 :     cacheCopyArray  (scanOK_p, other.scanOK (), scan_p, other, & VisBuffer::scan, force);
     208           0 :     cacheCopyArray  (sigmaOK_p, other.sigmaOK (), sigma_p, other, & VisBuffer::sigma, force);
     209           0 :     cacheCopyArray  (sigmaMatOK_p, other.sigmaMatOK (), sigmaMat_p, other, & VisBuffer::sigmaMat, force);
     210           0 :     cacheCopyNormal (spectralWindowOK_p, other.spectralWindowOK (), spectralWindow_p, other, & VisBuffer::spectralWindow, force);
     211           0 :     cacheCopyArray  (stateIdOK_p, other.stateIdOK (), stateId_p, other, & VisBuffer::stateId, force);
     212           0 :     cacheCopyArray  (timeOK_p, other.timeOK (), time_p, other, & VisBuffer::time, force);
     213           0 :     cacheCopyArray  (timeCentroidOK_p, other.timeCentroidOK (), timeCentroid_p, other, & VisBuffer::timeCentroid, force);
     214           0 :     cacheCopyArray  (timeIntervalOK_p, other.timeIntervalOK (), timeInterval_p, other, & VisBuffer::timeInterval, force);
     215           0 :     cacheCopyArray  (uvwOK_p, other.uvwOK (), uvw_p, other, & VisBuffer::uvw, force);
     216           0 :     cacheCopyArray  (uvwMatOK_p, other.uvwMatOK (), uvwMat_p, other, & VisBuffer::uvwMat, force);
     217           0 :     cacheCopyArray  (visCubeOK_p, other.visCubeOK (), visCube_p, other, & VisBuffer::visCube, force);
     218           0 :     cacheCopyArray  (visibilityOK_p, other.visibilityOK (), visibility_p, other, & VisBuffer::visibility, force);
     219           0 :     cacheCopyArray  (weightOK_p, other.weightOK (), weight_p, other, & VisBuffer::weight, force);
     220             :     ////cacheCopyArray  (weightCubeOK_p, other.weightCubeOK (), weightCube_p, other, & VisBuffer::weightCube, force);
     221           0 :     cacheCopyArray  (weightMatOK_p, other.weightMatOK (), weightMat_p, other, & VisBuffer::weightMat, force);
     222           0 :     cacheCopyArray  (weightSpectrumOK_p, other.weightSpectrumOK (),
     223           0 :                      weightSpectrum_p, other, & VisBuffer::weightSpectrum, force);
     224             : 
     225           0 : }
     226             : 
     227           1 : VisBuffer::~VisBuffer()
     228             : {
     229           1 :     if (visIter_p != static_cast<ROVisibilityIterator *>(0) && twoWayConnection_p) {
     230           1 :         visIter_p->detachVisBuffer(*this);
     231             :     }
     232           1 : }
     233             : 
     234             : VisBuffer &
     235           0 : VisBuffer::operator-=(const VisBuffer & vb)
     236             : {
     237             :     // check the shapes
     238           0 :     AlwaysAssert(nRow_p == vb.nRow(), AipsError);
     239           0 :     AlwaysAssert(nChannel_p == vb.nChannel(), AipsError);
     240           0 :     AlwaysAssert(nCorr_p == vb.nCorr(), AipsError);
     241             :     // make sure flag and flagRow are current
     242           0 :     flag();
     243           0 :     flagRow();
     244             :     // flagCategory?
     245             : 
     246             :     // do the subtraction, or'ing the flags
     247           0 :     Int nRows = nRow ();
     248           0 :     Int nChannels = nChannel ();
     249           0 :     for (Int row = 0; row < nRows; row++) {
     250           0 :         if (vb.flagRow()(row)) {
     251           0 :             flagRow_p(row) = true;
     252             :         }
     253           0 :         if (!flagRow_p(row)) {
     254           0 :             for (Int chn = 0; chn < nChannels; chn++) {
     255           0 :                 if (vb.flag()(chn, row)) {
     256           0 :                     flag_p(chn, row) = true;
     257             :                 }
     258           0 :                 if (!flag_p(chn, row)) {
     259           0 :                     visibility_p(chn, row) -= vb.visibility()(chn, row);
     260             :                 }
     261             :             }
     262             :         }
     263             :     }
     264           0 :     return *this;
     265             : }
     266             : 
     267             : void
     268           0 : VisBuffer::attachToVisIter(ROVisibilityIterator & iter)
     269             : {
     270           0 :     if (visIter_p != static_cast<ROVisibilityIterator *>(0) && twoWayConnection_p) {
     271           0 :         visIter_p->detachVisBuffer(*this);
     272             :     }
     273           0 :     visIter_p = &iter;
     274           0 :     iter.attachVisBuffer(*this);
     275           0 :     twoWayConnection_p = true;
     276           0 : }
     277             : 
     278             : void
     279           0 : VisBuffer::detachFromVisIter ()
     280             : {
     281           0 :     if (visIter_p != NULL) {
     282           0 :         visIter_p->detachVisBuffer(* this);
     283             : 
     284           0 :         visIter_p = NULL;
     285             :     }
     286           0 : }
     287             : 
     288         271 : void VisBuffer::invalidate()
     289             : {
     290             : 
     291         271 :     setAllCacheStatuses (false);
     292         271 :     lastPointTableRow_p = 0;
     293         271 : }
     294             : 
     295           0 : void VisBuffer::validate()
     296             : {
     297           0 :     setAllCacheStatuses (true);
     298           0 : }
     299             : 
     300             : Int
     301           0 : VisBuffer::getOldMsId () const
     302             : {
     303           0 :     return oldMSId_p;
     304             : }
     305             : 
     306           0 : String VisBuffer::msName(Bool stripPath) const{
     307           0 :   String name="";
     308           0 :   if(visIter_p != NULL){
     309           0 :     name=visIter_p->ms().antenna().tableName();
     310           0 :     name.erase(name.length()-8);
     311           0 :     if(stripPath){
     312           0 :       Path path(name);
     313           0 :       return path.baseName();
     314           0 :     }
     315             :     
     316             :   }
     317             :   
     318           0 :   return name;
     319           0 : }
     320             : 
     321             : ROVisibilityIterator *
     322         200 : VisBuffer::getVisibilityIterator () const
     323             : {
     324         200 :     return visIter_p;
     325             : }
     326             : 
     327             : Matrix<Float> &
     328           0 : VisBuffer::imagingWeight ()
     329             : {
     330           0 :     static_cast<const VisBuffer *> (this) -> imagingWeight ();
     331             : 
     332           0 :     return imagingWeight_p;
     333             : }
     334             : 
     335             : const Matrix<Float> &
     336         200 : VisBuffer::imagingWeight () const
     337             : {
     338         200 :     const VisImagingWeight & weightGenerator = getVisibilityIterator()->getImagingWeightGenerator ();
     339             : 
     340         200 :     return imagingWeight (weightGenerator);
     341             : }
     342             : 
     343             : const Matrix<Float> &
     344         200 : VisBuffer::imagingWeight (const VisImagingWeight & weightGenerator) const
     345             : {
     346         200 :     if (imagingWeightOK_p){
     347           0 :         return imagingWeight_p;
     348             :     }
     349             : 
     350         200 :     if (weightGenerator.getType () == "none") {
     351           0 :         throw (AipsError ("Programmer Error... imaging weights not set"));
     352             :     }
     353             : 
     354             :     // Extract data weights correctly [nchan,nrow]
     355             :     //   NB:  VB::weight() yields corr-,chan-indep row weights
     356         200 :     Matrix<Float> wtm;
     357         200 :     if (weightSpectrum().nelements()==0) 
     358         200 :       wtm.reference(weight().reform(IPosition(2,1,nRow()))); // add degenerate chan axis
     359             :     else 
     360           0 :       weightGenerator.unPolChanWeight(wtm,weightSpectrum());  
     361             : 
     362         200 :     Matrix<Bool> flagmat = flag ();
     363         200 :     imagingWeight_p.resize (flagmat.shape ());
     364             : 
     365         200 :     Vector<Double> fvec;
     366         200 :     Matrix<Double> uvwmat;
     367             : 
     368         200 :     String type = weightGenerator.getType();
     369         200 :     if (weightGenerator.doFilter() || type == "uniform" || type == "radial"){
     370           0 :         fvec = frequency ();
     371           0 :         uvwmat = uvwMat ();
     372             :     }
     373             : 
     374         200 :     if (weightGenerator.getType () == "uniform") {
     375             : 
     376           0 :         weightGenerator.weightUniform (imagingWeight_p, flagmat, uvwmat, fvec, wtm, msId (), fieldId ());
     377             : 
     378         200 :     } else if (weightGenerator.getType () == "radial") {
     379             : 
     380           0 :         weightGenerator.weightRadial (imagingWeight_p, flagmat, uvwmat, fvec, wtm);
     381             : 
     382             :     } else {
     383             : 
     384         200 :         weightGenerator.weightNatural (imagingWeight_p, flagmat, wtm);
     385             :     }
     386             : 
     387         200 :     if (weightGenerator.doFilter ()) {
     388             : 
     389           0 :         weightGenerator.filter (imagingWeight_p, flagmat, uvwmat, fvec, wtm);
     390             :     }
     391             : 
     392         200 :     This->imagingWeightOK_p = true;
     393             : 
     394         200 :     return imagingWeight_p;
     395         200 : }
     396             : 
     397             : 
     398             : //const Matrix<Float> &
     399             : //VisBuffer::imagingWeight () const
     400             : //{
     401             : //    return imagingWeight ();
     402             : //}
     403             : 
     404             : Bool
     405           0 : VisBuffer::newArrayId () const
     406             : {
     407           0 :     CheckVisIter ();
     408           0 :     return visIter_p->newArrayId ();
     409             : }
     410             : 
     411             : Bool
     412           0 : VisBuffer::newFieldId () const
     413             : {
     414           0 :     CheckVisIter ();
     415           0 :     return visIter_p->newFieldId ();
     416             : }
     417             : 
     418             : Bool
     419           0 : VisBuffer::newSpectralWindow () const
     420             : {
     421           0 :     CheckVisIter ();
     422           0 :     return visIter_p->newSpectralWindow ();
     423             : }
     424             : 
     425             : 
     426             : 
     427             : 
     428             : void
     429         271 : VisBuffer::setAllCacheStatuses (bool status)
     430             : {
     431         271 :     antenna1OK_p = status;
     432         271 :     antenna2OK_p = status;
     433         271 :     arrayIdOK_p = status;
     434         271 :     channelOK_p = status;
     435         271 :     cjonesOK_p = status;
     436         271 :     correctedVisCubeOK_p = status;
     437         271 :     correctedVisibilityOK_p = status;
     438         271 :     corrTypeOK_p = status;
     439         271 :     dataDescriptionIdOK_p = status;
     440         271 :     direction1OK_p = status;
     441         271 :     firstDirection1OK_p=status;
     442         271 :     direction2OK_p = status;
     443         271 :     exposureOK_p  = status;
     444         271 :     feed1_paOK_p = status;
     445         271 :     feed1OK_p = status;
     446         271 :     feed2_paOK_p = status;
     447         271 :     feed2OK_p = status;
     448         271 :     fieldIdOK_p = status;
     449         271 :     flagCubeOK_p = status;
     450         271 :     flagOK_p = status;
     451         271 :     flagRowOK_p = status;
     452         271 :     flagCategoryOK_p = status;
     453         271 :     floatDataCubeOK_p  = status;
     454         271 :     frequencyOK_p = status;
     455         271 :     imagingWeightOK_p = status;
     456             :     ///////////lsrFrequencyOK_p = status;
     457         271 :     modelVisCubeOK_p = status;
     458         271 :     modelVisibilityOK_p = status;
     459         271 :     msOK_p = status;
     460         271 :     nChannelOK_p = status;
     461         271 :     nCorrOK_p = status;
     462             :     //    nCatOK_p = status;
     463         271 :     nRowOK_p = status;
     464         271 :     observationIdOK_p  = status;
     465         271 :     phaseCenterOK_p = status;
     466         271 :     polFrameOK_p = status;
     467         271 :     processorIdOK_p  = status;
     468         271 :     rowIdsOK_p = status;
     469         271 :     scanOK_p = status;
     470         271 :     sigmaMatOK_p = status;
     471         271 :     sigmaOK_p = status;
     472         271 :     spectralWindowOK_p = status;
     473         271 :     stateIdOK_p  = status;
     474         271 :     timeCentroidOK_p  = status;
     475         271 :     timeIntervalOK_p = status;
     476         271 :     timeOK_p = status;
     477         271 :     uvwMatOK_p = status;
     478         271 :     uvwOK_p = status;
     479         271 :     visCubeOK_p = status;
     480         271 :     visibilityOK_p = status;
     481         271 :     weightMatOK_p = status;
     482         271 :     weightOK_p = status;
     483         271 :     weightSpectrumOK_p = status;
     484             :     
     485         271 : }
     486             : 
     487           0 : Cube<Complex>& VisBuffer::dataCube(const MS::PredefinedColumns whichcol)
     488             : {
     489           0 :   switch(whichcol){
     490           0 :   case MS::DATA:
     491           0 :     return This->visCube();
     492           0 :   case MS::MODEL_DATA:
     493           0 :     return This->modelVisCube();
     494           0 :   case MS::CORRECTED_DATA:
     495           0 :     return This->correctedVisCube();
     496           0 :   default:
     497           0 :     throw(AipsError(MS::columnName(whichcol) + " is not supported as a data Cube."));
     498             :   }
     499             : }
     500             : 
     501           0 : const Cube<Complex>& VisBuffer::dataCube(const MS::PredefinedColumns whichcol) const
     502             : {
     503           0 :   switch(whichcol){
     504           0 :   case MS::DATA:
     505           0 :     return This->visCube();
     506           0 :   case MS::MODEL_DATA:
     507           0 :     return This->modelVisCube();
     508           0 :   case MS::CORRECTED_DATA:
     509           0 :     return This->correctedVisCube();
     510           0 :   default:
     511           0 :     throw(AipsError(MS::columnName(whichcol) + " is not supported as a data Cube."));
     512             :   }
     513             : }
     514             : 
     515           0 : void VisBuffer::freqAverage()
     516             : {
     517           0 :     Matrix<CStokesVector> newVisibility(1, nRow());
     518           0 :     Matrix<Bool> newFlag(1, nRow());
     519           0 :     newFlag = true;
     520             :     Double newFrequency;
     521           0 :     newFrequency = 0;
     522           0 :     Int nfreq = 0;
     523           0 :     Int nChan = nChannel();
     524           0 :     for (Int row = 0; row < nRow(); row++) {
     525           0 :         if (!flagRow()(row)) {
     526           0 :             Int n = 0;
     527           0 :             for (Int chn = 0; chn < nChan; chn++) {
     528           0 :                 if (!flag()(chn, row)) {
     529           0 :                     newVisibility(0, row) += visibility()(chn, row);
     530           0 :                     newFlag(0, row) = false;
     531           0 :                     newFrequency += frequency()(chn);
     532           0 :                     n++;
     533           0 :                     nfreq++;
     534             :                 }
     535             :             }
     536           0 :             if (n == 0) {
     537           0 :                 flagRow()(row) = true;
     538             :             }
     539           0 :             if (n > 0) {
     540           0 :                 newVisibility(0, row) *= 1.0f / n;
     541             :             }
     542             :         }
     543             :     }
     544             :     // Average frequency for this buffer (should really be row based)
     545           0 :     if (nfreq > 0) {
     546           0 :         newFrequency /= Double(nfreq);
     547             :     }
     548           0 :     nChannel_p = 1;
     549           0 :     flag_p.reference(newFlag);
     550           0 :     visibility_p.reference(newVisibility);
     551           0 :     frequency_p.resize(1);
     552           0 :     frequency_p(0) = newFrequency;
     553           0 : }
     554             : 
     555           0 : void VisBuffer::freqAveCubes()
     556             : {
     557             :     // TBD: Use weightSpec, if present, and update weightMat accordingly
     558             :     // TBD: Provide partial decimation option
     559             : 
     560             :     // Ensure visCube filled, at least
     561           0 :     visCube();
     562             : 
     563             :     // Freq-averaged shape
     564           0 :     IPosition csh = visCube().shape();
     565           0 :     csh(1) = 1; // One channel in output
     566             : 
     567           0 :     Cube<Complex> newVisCube(csh);
     568           0 :     newVisCube = Complex(0.0);
     569           0 :     Matrix<Bool> newFlag(1, nRow());
     570           0 :     newFlag = true;
     571             :     Double newFrequency;
     572           0 :     newFrequency = 0;
     573           0 :     Int nfreq = 0;
     574           0 :     Int nChan = nChannel();
     575           0 :     Int nCor = nCorr();
     576           0 :     for (Int row = 0; row < nRow(); row++) {
     577           0 :         if (!flagRow()(row)) {
     578           0 :             Int n = 0;
     579           0 :             for (Int chn = 0; chn < nChan; chn++) {
     580           0 :                 if (!flag()(chn, row)) {
     581           0 :                     newFlag(0, row) = false;
     582           0 :                     newFrequency += frequency()(chn);
     583           0 :                     for (Int cor = 0; cor < nCor; cor++) {
     584           0 :                         newVisCube(cor, 0, row) += visCube()(cor, chn, row);
     585             :                     }
     586           0 :                     n++;
     587           0 :                     nfreq++;
     588             : 
     589           0 :                     if (row == -1)
     590           0 :                         cout << "V: "
     591           0 :                              << chn << " " << n << " "
     592           0 :                              << visCube()(0, chn, row) << " "
     593           0 :                              << newVisCube(0, 0, row) << " "
     594           0 :                              << endl;
     595             : 
     596             : 
     597             :                 }
     598             :             }
     599           0 :             if (n == 0) {
     600           0 :                 flagRow()(row) = true;
     601             :             }
     602           0 :             if (n > 0) {
     603           0 :                 Matrix<Complex> nVC;
     604           0 :                 nVC.reference(newVisCube.xyPlane(row));
     605           0 :                 nVC *= Complex(1.0f / n);
     606             : 
     607           0 :                 if (row == -1) {
     608           0 :                     cout << "V:-----> " << n << " " << newVisCube(0, 0, row) << endl;
     609             :                 }
     610             : 
     611             : 
     612           0 :             }
     613             :         }
     614             :     }
     615           0 :     visCube_p.reference(newVisCube);
     616             : 
     617             :     // Now do model, if present
     618           0 :     if (modelVisCubeOK_p) {
     619             : 
     620           0 :         Cube<Complex> newModelVisCube(csh);
     621           0 :         newModelVisCube = Complex(0.0);
     622           0 :         for (Int row = 0; row < nRow(); row++) {
     623           0 :             if (!flagRow()(row)) {
     624           0 :                 Int n = 0;
     625           0 :                 for (Int chn = 0; chn < nChan; chn++) {
     626           0 :                     if (!flag()(chn, row)) {
     627             : 
     628           0 :                         n++;
     629           0 :                         for (Int cor = 0; cor < nCor; cor++) {
     630           0 :                             newModelVisCube(cor, 0, row) += modelVisCube()(cor, chn, row);
     631             :                         }
     632             : 
     633           0 :                         if (row == -1)
     634           0 :                             cout << "M: "
     635           0 :                                  << chn << " " << n << " "
     636           0 :                                  << modelVisCube()(0, chn, row) << " "
     637           0 :                                  << newModelVisCube(0, 0, row) << " "
     638           0 :                                  << endl;
     639             : 
     640             :                     }
     641             :                 }
     642           0 :                 if (n == 0) {
     643           0 :                     flagRow()(row) = true;
     644             :                 }
     645           0 :                 if (n > 0) {
     646           0 :                     Matrix<Complex> nMVC;
     647           0 :                     nMVC.reference(newModelVisCube.xyPlane(row));
     648           0 :                     nMVC *= Complex(1.0f / n);
     649             : 
     650           0 :                     if (row == -1) {
     651           0 :                         cout << "M:-----> " << n << " " << newModelVisCube(0, 0, row) << endl;
     652             :                     }
     653           0 :                 }
     654             :             }
     655             :         }
     656           0 :         modelVisCube_p.reference(newModelVisCube);
     657           0 :     }
     658             : 
     659             :     // Use averaged flags
     660           0 :     flag_p.reference(newFlag);
     661             : 
     662             :     // Average frequency for this buffer
     663             :     //  (Strictly, this should really be row based, but doing this
     664             :     //   average here suggests frequency precision isn't so important)
     665           0 :     if (nfreq > 0) {
     666           0 :         newFrequency /= Double(nfreq);
     667             :     }
     668           0 :     nChannel_p = 1;
     669           0 :     frequency_p.resize(1);
     670           0 :     frequency_p(0) = newFrequency;
     671             : 
     672           0 : }
     673             : 
     674           0 : void VisBuffer::formStokes()
     675             : {
     676             : 
     677             :     // We must form the weights and flags correctly
     678           0 :     formStokesWeightandFlag();
     679             : 
     680             :     // Now do whatever data is present
     681           0 :     if (visCubeOK_p) {
     682           0 :         formStokes(visCube_p);
     683             :     }
     684             : 
     685           0 :     if (modelVisCubeOK_p) {
     686           0 :         formStokes(modelVisCube_p);
     687             :     }
     688             : 
     689           0 :     if (correctedVisCubeOK_p) {
     690           0 :         formStokes(correctedVisCube_p);
     691             :     }
     692             : 
     693           0 :     if (floatDataCubeOK_p) {
     694           0 :         formStokes(floatDataCube_p);
     695             :     }
     696           0 : }
     697             : 
     698             : void
     699           1 : VisBuffer::lsrFrequency(const Int & spw, Vector<Double>& freq, Bool & convert,
     700             :                         const Bool ignoreconv) const
     701             : {
     702           1 :     CheckVisIter ();
     703           1 :     visIter_p->lsrFrequency(spw, freq, convert, ignoreconv);
     704           1 : }
     705             : 
     706             : 
     707           0 : void VisBuffer::formStokesWeightandFlag()
     708             : {
     709             : 
     710             :     // Ensure corrType, weightMat and flagCube are filled
     711           0 :     corrType();
     712           0 :     weightMat();
     713           0 :     flagCube();
     714             : 
     715           0 :     switch (nCorr()) {
     716           0 :     case 4: {
     717             : 
     718           0 :         Slice all = Slice();
     719           0 :         Slice pp(0, 1, 1), pq(1, 1, 1), qp(2, 1, 1), qq(3, 1, 1);
     720           0 :         Slice a(0, 1, 1), b(1, 1, 1), c(2, 1, 1), d(3, 1, 1);
     721             : 
     722             :         // Sort for linears
     723           0 :         if (polFrame() == MSIter::Linear) {
     724           0 :             d = Slice(1, 1, 1); // Q
     725           0 :             b = Slice(2, 1, 1); // U
     726           0 :             c = Slice(3, 1, 1); // V
     727             :         }
     728             : 
     729           0 :         Matrix<Float> newWtMat(weightMat_p.shape());
     730           0 :         newWtMat(a, all) = newWtMat(d, all) = (weightMat_p(pp, all) + weightMat_p(qq, all));
     731           0 :         newWtMat(b, all) = newWtMat(c, all) = (weightMat_p(pq, all) + weightMat_p(qp, all));
     732           0 :         weightMat_p.reference(newWtMat);
     733             : 
     734           0 :         Cube<Bool> newFlagCube(flagCube_p.shape());
     735           0 :         newFlagCube(a, all, all) = newFlagCube(d, all, all) = (flagCube_p(pp, all, all) | flagCube_p(qq, all, all));
     736           0 :         newFlagCube(b, all, all) = newFlagCube(c, all, all) = (flagCube_p(pq, all, all) | flagCube_p(qp, all, all));
     737           0 :         flagCube_p.reference(newFlagCube);
     738             : 
     739           0 :         corrType_p(0) = Stokes::I;
     740           0 :         corrType_p(1) = Stokes::Q;
     741           0 :         corrType_p(2) = Stokes::U;
     742           0 :         corrType_p(3) = Stokes::V;
     743             : 
     744           0 :         break;
     745           0 :     }
     746           0 :     case 2: {
     747             :         // parallel hands only
     748           0 :         Slice all = Slice();
     749           0 :         Slice pp(0, 1, 1), qq(1, 1, 1);
     750           0 :         Slice a(0, 1, 1), d(1, 1, 1);
     751             : 
     752           0 :         Matrix<Float> newWtMat(weightMat_p.shape());
     753           0 :         newWtMat(a, all) = newWtMat(d, all) = weightMat_p(pp, all) + weightMat_p(qq, all);
     754           0 :         weightMat_p.reference(newWtMat);
     755             : 
     756           0 :         Cube<Bool> newFlagCube(flagCube_p.shape());
     757           0 :         newFlagCube(a, all, all) = newFlagCube(d, all, all) = flagCube_p(pp, all, all) | flagCube_p(qq, all, all);
     758           0 :         flagCube_p.reference(newFlagCube);
     759             : 
     760           0 :         corrType_p(0) = Stokes::I;
     761           0 :         corrType_p(1) = ((polFrame() == MSIter::Circular) ? Stokes::V : Stokes::Q);
     762             : 
     763           0 :         break;
     764           0 :     }
     765           0 :     case 1: {
     766             : 
     767             :         // Just need to re-label as I
     768           0 :         corrType_p(0) = Stokes::I;
     769             : 
     770             :     }
     771           0 :     default: {
     772           0 :         cout << "Insufficient correlations to form Stokes" << endl;
     773           0 :         break;
     774             :     }
     775             :     }
     776             : 
     777           0 : }
     778             : 
     779             : 
     780             : 
     781           0 : void VisBuffer::formStokes(Cube<Complex>& vis)
     782             : {
     783             : 
     784           0 :     Cube<Complex> newvis(vis.shape());
     785           0 :     newvis.set(0.0);
     786           0 :     Slice all = Slice();
     787             : 
     788           0 :     switch (nCorr()) {
     789           0 :     case 4: {
     790             : 
     791           0 :         Slice pp(0, 1, 1), pq(1, 1, 1), qp(2, 1, 1), qq(3, 1, 1);
     792           0 :         Slice a(0, 1, 1), b(1, 1, 1), c(2, 1, 1), d(3, 1, 1);
     793             : 
     794           0 :         if (polFrame() == MSIter::Linear) {
     795           0 :             d = Slice(1, 1, 1); // Q
     796           0 :             b = Slice(2, 1, 1); // U
     797           0 :             c = Slice(3, 1, 1); // V
     798             :         }
     799             : 
     800           0 :         newvis(a, all, all) = (vis(pp, all, all) + vis(qq, all, all)); //  I / I
     801           0 :         newvis(d, all, all) = (vis(pp, all, all) - vis(qq, all, all)); //  V / Q
     802             : 
     803           0 :         newvis(b, all, all) = (vis(pq, all, all) + vis(qp, all, all)); //  Q / U
     804           0 :         newvis(c, all, all) = (vis(pq, all, all) - vis(qp, all, all)) / Complex(0.0, 1.0); //  U / V
     805           0 :         newvis /= Complex(2.0);
     806             : 
     807           0 :         vis.reference(newvis);
     808             : 
     809           0 :         break;
     810             :     }
     811           0 :     case 2: {
     812             :         // parallel hands only
     813           0 :         Slice pp(0, 1, 1), qq(1, 1, 1);
     814           0 :         Slice a(0, 1, 1), d(1, 1, 1);
     815             : 
     816           0 :         newvis(a, all, all) = (vis(pp, all, all) + vis(qq, all, all)); //  I / I
     817           0 :         newvis(d, all, all) = (vis(pp, all, all) - vis(qq, all, all)); //  V / Q
     818           0 :         newvis /= Complex(2.0);
     819             : 
     820           0 :         vis.reference(newvis);
     821             : 
     822           0 :         break;
     823             :     }
     824           0 :     case 1: {
     825             :         // need do nothing for single correlation case
     826           0 :         break;
     827             :     }
     828           0 :     default: {
     829           0 :         cout << "Insufficient correlations to form Stokes" << endl;
     830           0 :         break;
     831             :     }
     832             :     }
     833           0 : }
     834             : 
     835           0 : void VisBuffer::formStokes(Cube<Float>& fcube)
     836             : {
     837           0 :     Cube<Float> newfcube(fcube.shape());
     838           0 :     newfcube.set(0.0);
     839           0 :     Slice all = Slice();
     840             : 
     841           0 :     switch (nCorr()) {
     842           0 :     case 4: {
     843           0 :         throw(AipsError(
     844           0 :                   "Forming all 4 Stokes parameters out of FLOAT_DATA is not supported."));
     845             : 
     846             :         Slice pp(0, 1, 1), pq(1, 1, 1), qp(2, 1, 1), qq(3, 1, 1);
     847             :         Slice a(0, 1, 1), b(1, 1, 1), c(2, 1, 1), d(3, 1, 1);
     848             : 
     849             :         if (polFrame() == MSIter::Linear) {
     850             :             d = Slice(1, 1, 1); // Q
     851             :             b = Slice(2, 1, 1); // U
     852             :             c = Slice(3, 1, 1); // V
     853             :         }
     854             : 
     855             :         newfcube(a, all, all) = (fcube(pp, all, all) + fcube(qq, all, all)); //  I / I
     856             :         newfcube(d, all, all) = (fcube(pp, all, all) - fcube(qq, all, all)); //  V / Q
     857             : 
     858             :         newfcube(b, all, all) = (fcube(pq, all, all) + fcube(qp, all, all)); //  Q / U
     859             : 
     860             :         ////  U / V
     861             :         // This clearly isn't going to work.  AFAICT it is impossible to
     862             :         // simultaneously measure all 4 polarizations with the same feed, so
     863             :         // FLOAT_DATA shouldn't come with 4 polarizations.
     864             :         //newfcube(c,all,all)=(fcube(pq,all,all)-fcube(qp,all,all))/Complex(0.0,1.0);
     865             :         newfcube(c, all, all) = (fcube(pq, all, all) - fcube(qp, all, all));
     866             : 
     867             :         // The cast is necessary to stop the compiler from promoting it to a Complex.
     868             :         newfcube *= static_cast<Float>(0.5);
     869             : 
     870             :         fcube.reference(newfcube);
     871             : 
     872             :         break;
     873             :     }
     874           0 :     case 2: {
     875             :         // parallel hands only
     876           0 :         Slice pp(0, 1, 1), qq(1, 1, 1);
     877           0 :         Slice a(0, 1, 1), d(1, 1, 1);
     878             : 
     879           0 :         newfcube(a, all, all) = (fcube(pp, all, all) + fcube(qq, all, all)); //  I / I
     880           0 :         newfcube(d, all, all) = (fcube(pp, all, all) - fcube(qq, all, all)); //  V / Q
     881             : 
     882             :         // The cast is necessary to stop the compiler from promoting it to a Complex.
     883           0 :         newfcube *= static_cast<Float>(0.5);
     884             : 
     885           0 :         fcube.reference(newfcube);
     886             : 
     887           0 :         break;
     888             :     }
     889           0 :     case 1: {
     890             :         // need do nothing for single correlation case
     891           0 :         break;
     892             :     }
     893           0 :     default: {
     894           0 :         cout << "Insufficient correlations to form Stokes" << endl;
     895           0 :         break;
     896             :     }
     897             :     }
     898           0 : }
     899             : 
     900           0 : void VisBuffer::channelAve(const Matrix<Int>& chanavebounds,Bool calmode)
     901             : {
     902             : 
     903             :     // TBD:
     904             :     //  a. nChanAve examination
     905             :     //  b. calmode=T  DONE
     906             :     //  c. doWtSp clauses and rowWtFac (not needed?)
     907             :     //  d. divide-by-zero safety  DONE
     908             :     //  e. no-averaging case   sigma<->weight
     909             : 
     910             : 
     911             :     //  Only do something if there is something to do
     912           0 :     if ( chanavebounds.nelements()>0 ) {
     913             : 
     914             :         // refer to the supplied chanavebounds
     915           0 :         chanAveBounds_p.reference(chanavebounds);
     916             : 
     917             :         // Examine chanAveBounds_p for consistency, detect nChanAve
     918             :         //   TBD: improve actual examination...
     919           0 :         Int nChanAve = abs(chanAveBounds_p(0,1)-chanAveBounds_p(0,0))+1;
     920           0 :         nChanAve = max(1,nChanAve);  // ensure >0
     921             : 
     922           0 :         Int nChanOut(chanAveBounds_p.nrow());
     923           0 :         Vector<Int> chans(channel()); // Ensure channels pre-filled
     924             : 
     925             :         // Row weight and sigma currently refer to the number of channels in the
     926             :         // MS, regardless of any selection.
     927             :         //Int nAllChan0 = visIter_p->msColumns().spectralWindow().numChan()(spectralWindow());
     928             : 
     929           0 :         const Bool doWtSp(visIter_p->existsWeightSpectrum());
     930             : 
     931             :         // Apply averaging to whatever data is present
     932           0 :         if (visCubeOK_p)          chanAveVisCube(visCube(),nChanOut);
     933           0 :         if (modelVisCubeOK_p)     chanAveVisCube(modelVisCube(),nChanOut);
     934           0 :         if (correctedVisCubeOK_p) chanAveVisCube(correctedVisCube(),nChanOut);
     935           0 :         if (floatDataCubeOK_p)    chanAveVisCube(floatDataCube(), nChanOut);
     936             : 
     937           0 :         uInt nCor = nCorr();
     938           0 :         uInt nrows = nRow();
     939           0 :         Matrix<Float> rowWtFac(nCor, nrows);
     940             : 
     941           0 :         uInt nch = flagCube().shape()(1);   // # of selected channels
     942             :         //Double selChanFac;
     943             : 
     944           0 :         if(doWtSp){                                    // Get the total weight spectrum
     945           0 :             const Cube<Float>& wtsp(weightSpectrum());   // while it is unaveraged.
     946             : 
     947           0 :             for(uInt row = 0; row < nrows; ++row){
     948           0 :                 for(uInt icor = 0; icor < nCor; ++icor){
     949           0 :                     rowWtFac(icor, row) = 0.0;
     950           0 :                     for(uInt ichan = 0; ichan < nch; ++ichan)
     951             :                         // Presumably the input row weight was set without taking flagging
     952             :                         // into account.
     953           0 :                         rowWtFac(icor, row) += wtsp(icor, ichan, row);
     954             :                 }
     955             :             }
     956             :         }
     957             :         else
     958           0 :             rowWtFac = 1.0;
     959             : 
     960             :         // The false makes it leave weightSpectrum() averaged if it is present.
     961           0 :         if(flagCubeOK_p)          chanAveFlagCube(flagCube(), nChanOut, false);
     962             : 
     963           0 :         if(flagCategoryOK_p)
     964           0 :             chanAveFlagCategory(flagCategory(), nChanOut);
     965             : 
     966             :         // Collapse the frequency values themselves, and count the number of
     967             :         // selected channels.
     968             :         // TBD: move this up to bounds calculation loop?
     969           0 :         Vector<Double> newFreq(nChanOut,0.0);
     970           0 :         Vector<Int> newChan(nChanOut,0);
     971           0 :         frequency(); // Ensure frequencies pre-filled
     972           0 :         Int nChan0(chans.nelements());
     973           0 :         Int ichan=0;
     974           0 :         Int totn = 0;
     975           0 :         for(Int ochan = 0; ochan < nChanOut; ++ochan){
     976           0 :             Int n = 0;
     977             : 
     978           0 :             while(chans[ichan] >= chanAveBounds_p(ochan, 0) &&
     979           0 :                     chans[ichan] <= chanAveBounds_p(ochan, 1) &&
     980             :                     ichan < nChan0){
     981           0 :                 ++n;
     982           0 :                 newFreq[ochan] += (frequency()[ichan] - newFreq[ochan]) / n;
     983           0 :                 newChan[ochan] += chans[ichan];
     984           0 :                 ichan++;
     985             :             }
     986           0 :             if (n>0) {
     987           0 :                 newChan[ochan] /= n;
     988           0 :                 totn += n;
     989             :             }
     990             :         }
     991             : 
     992             :         // Install the new values
     993           0 :         frequency().reference(newFreq);
     994           0 :         channel().reference(newChan);
     995           0 :         nChannel()=nChanOut;
     996             : 
     997           0 :         if(doWtSp){
     998             :             // chanAccCube(weightSpectrum(), nChanOut); already done.
     999           0 :             const Cube<Float>& wtsp(weightSpectrum());
    1000             : 
    1001           0 :             for(uInt row = 0; row < nrows; ++row){
    1002           0 :                 for(uInt icor = 0; icor < nCor; ++icor){
    1003           0 :                     Float totwtsp = rowWtFac(icor, row);
    1004             : 
    1005           0 :                     rowWtFac(icor, row) = 0.0;
    1006           0 :                     for(Int ochan = 0; ochan < nChanOut; ++ochan){
    1007           0 :                         Float oswt = wtsp(icor, ochan, row);       // output spectral
    1008             :                         // weight
    1009           0 :                         if(oswt > 0.0)
    1010           0 :                             rowWtFac(icor, row) += oswt;
    1011             :                         else
    1012           0 :                             flagCube()(icor, ochan, row) = true;
    1013             :                     }
    1014           0 :                     if(totwtsp > 0.0)
    1015           0 :                         rowWtFac(icor, row) /= totwtsp;
    1016             :                 }
    1017             :             }
    1018             :         }
    1019             :         // This is slightly fudgy because it ignores the unselected part of
    1020             :         // weightSpectrum.  Unfortunately now that selection is applied to
    1021             :         // weightSpectrum, we can't get at the unselected channel weights.
    1022             :         //Float selChanFac = static_cast<Float>(totn) / nAllChan0;
    1023             : 
    1024           0 :         for(uInt row = 0; row < nrows; ++row){
    1025           0 :             for(uInt icor = 0; icor < nCor; ++icor){
    1026             :                 // Float rwfcr = rowWtFac(icor, row);
    1027             : 
    1028           0 :                 if (calmode) {
    1029             : 
    1030             :                     // Downstream processing in calibration will use weightMat only
    1031             : 
    1032             :                     // Just magnify by channal averaging factor
    1033           0 :                     weightMat()(icor, row) *= nChanAve;
    1034             : 
    1035             :                     /*
    1036             :           if(totn < nAllChan0)
    1037             :             weightMat()(icor, row) *= selChanFac * rwfcr;
    1038             :           if(rwfcr > 0.0)          // Unlike WEIGHT, SIGMA is for a single chan.
    1039             :             sigmaMat()(icor, row) /= sqrt(nch * rwfcr / nChanOut);
    1040             :                      */
    1041             :                 }
    1042             :                 else {
    1043             : 
    1044             : 
    1045             :                     // selectively update sigma and weight info according to which
    1046             :                     //   columns were processed
    1047             : 
    1048           0 :                     if (visCubeOK_p || floatDataCubeOK_p) {
    1049             :                         // update sigmaMat by inverse sqrt of number of channels averaged
    1050           0 :                         sigmaMat()(icor,row) /= sqrt(Double(nChanAve));   // nChanAve>0 already ensured
    1051             : 
    1052           0 :                         if (!correctedVisCubeOK_p) {
    1053             :                             // calc weightMat from sigmaMat
    1054           0 :                             Float &s= sigmaMat()(icor,row);
    1055           0 :                             weightMat()(icor,row)= (s>0.0 ? 1./square(s) : FLT_EPSILON);
    1056             :                         }
    1057             :                     }
    1058             : 
    1059           0 :                     if (correctedVisCubeOK_p || modelVisCubeOK_p) {
    1060             :                         // update weightMat
    1061           0 :                         weightMat()(icor,row)*=Double(nChanAve);
    1062           0 :                         if (!visCubeOK_p) {
    1063             :                             // calc sigmaMat from weightMat
    1064           0 :                             Float &w = weightMat()(icor,row);
    1065           0 :                             sigmaMat()(icor,row)= ( w>0.0 ? 1./sqrt(w) : FLT_MAX );
    1066             :                         }
    1067             :                     }
    1068             : 
    1069             :                 } // calmode
    1070             : 
    1071             :             }
    1072             :         }
    1073           0 :     } // chanavebounds
    1074             : 
    1075             :     // do we need to do something here that is datacolumn-specific to get sigma/weight reconciled?
    1076             : 
    1077           0 : }
    1078             : 
    1079           0 : void VisBuffer::chanAveFlagCube(Cube<Bool>& flagcube, Int nChanOut,
    1080             :                                 const Bool restoreWeightSpectrum)
    1081             : {
    1082           0 :   IPosition csh(flagcube.shape());
    1083           0 :   Int nChan0 = csh(1);
    1084           0 :   csh(1) = nChanOut;
    1085             : 
    1086           0 :   if(nChan0 < nChanOut)
    1087             :     // It's possible that data has already been averaged.  I could try
    1088             :     // refilling data if I knew which column to use, but I don't.
    1089             :     // Chuck it to the caller.
    1090           0 :     throw(AipsError("Can't average " + String(nChan0) + " channels to " +
    1091           0 :                     String(nChanOut) + " channels!"));
    1092             : 
    1093           0 :   Vector<Int>& chans(channel());
    1094           0 :   if(nChan0 == nChanOut && chans.nelements() > 0 && chans[0] == 0)
    1095           0 :     return;    // No-op.
    1096             : 
    1097           0 :   Cube<Bool> newFlag(csh);
    1098           0 :   newFlag = true;
    1099             : 
    1100           0 :   const Bool doWtSp(visIter_p->existsWeightSpectrum());
    1101             : 
    1102             :   // weightSpectrum could be either averaged or unaveraged.  Choose averaged.
    1103           0 :   if(doWtSp && weightSpectrum().shape()[1] > nChanOut)
    1104           0 :     chanAccCube(weightSpectrum(), nChanOut);
    1105             : 
    1106           0 :   Int nCor = nCorr();
    1107             :   Int ichan;
    1108           0 :   for (Int row=0; row<nRow(); row++) {
    1109           0 :     if (!flagRow()(row)) {
    1110           0 :       ichan = 0;
    1111           0 :       for (Int ochan = 0; ochan < nChanOut; ++ochan) {
    1112           0 :         while (chans[ichan] >= chanAveBounds_p(ochan, 0) &&
    1113           0 :                chans[ichan] <= chanAveBounds_p(ochan, 1) &&
    1114             :                ichan < nChan0) {
    1115           0 :           for(Int icor = 0; icor < nCor; ++icor){
    1116           0 :             if(!flagcube(icor, ichan, row)) 
    1117           0 :               newFlag(icor, ochan, row) = false;
    1118             :           }
    1119           0 :           ++ichan;
    1120             :         }
    1121             :       }
    1122             :     }
    1123             :   }
    1124             :   // Use averaged flags
    1125           0 :   flagcube.reference(newFlag);
    1126             : 
    1127           0 :   if(doWtSp && restoreWeightSpectrum)
    1128           0 :     fillWeightSpectrum();
    1129           0 : }
    1130             : 
    1131           0 : void VisBuffer::chanAveFlagCategory(Array<Bool>& flagcat, const Int nChanOut)
    1132             : {
    1133           0 :   if(flagcat.nelements() == 0)      // Averaging a degenerate Array is fast,
    1134           0 :     return;                         // and avoids the conformance check below.
    1135             : 
    1136           0 :   IPosition csh(flagcat.shape());
    1137           0 :   Int nChan0 = csh(1);
    1138           0 :   csh(1) = nChanOut;
    1139             : 
    1140           0 :   if(nChan0 < nChanOut)
    1141             :     // It's possible that data has already been averaged.  I could try
    1142             :     // refilling data if I knew which column to use, but I don't.
    1143             :     // Chuck it to the caller.
    1144           0 :     throw(AipsError("Can't average " + String(nChan0) + " channels to " +
    1145           0 :                     String(nChanOut) + " channels!"));
    1146             : 
    1147           0 :   Vector<Int>& chans(channel());
    1148           0 :   if(nChan0 == nChanOut && chans.nelements() > 0 && chans[0] == 0)
    1149           0 :     return;    // No-op.
    1150             : 
    1151           0 :   Array<Bool> newFC(csh);
    1152           0 :   newFC = true;
    1153             : 
    1154           0 :   Int nCor = nCorr();
    1155           0 :   Int nCat = csh(2);
    1156             :   Int ichan;
    1157           0 :   for(Int row = 0; row < nRow(); ++row){
    1158           0 :     ichan = 0;
    1159           0 :     for(Int ochan = 0; ochan < nChanOut; ++ochan){
    1160           0 :       while(chans[ichan] >= chanAveBounds_p(ochan, 0) &&
    1161           0 :             chans[ichan] <= chanAveBounds_p(ochan, 1) &&
    1162             :             ichan < nChan0) {
    1163           0 :         for(Int icor = 0; icor < nCor; ++icor){
    1164           0 :           for(Int icat = 0; icat < nCat; ++icat){
    1165           0 :             if(!flagcat(IPosition(4, icor, ichan, icat, row))) 
    1166           0 :               newFC(IPosition(4, icor, ochan, icat, row)) = false;
    1167             :           }
    1168             :         }
    1169           0 :         ++ichan;
    1170             :       }
    1171             :     }
    1172             :   }
    1173             :   // Use averaged flag Categories
    1174           0 :   flagcat.reference(newFC);
    1175           0 : }
    1176             : 
    1177             : // Sort correlations: (PP,QQ,PQ,QP) -> (PP,PQ,QP,QQ)
    1178           0 : void VisBuffer::sortCorr()
    1179             : {
    1180             : 
    1181             :   // This method is for temporarily sorting the correlations
    1182             :   //  into canonical order if the MS data is out-of-order
    1183             :   // NB: Always sorts the weightMat()
    1184             :   // NB: Only works on the visCube-style data
    1185             :   // NB: It only sorts the data columns which are already present
    1186             :   //     (so make sure the ones you need are already read!)
    1187             :   // NB: It is the user's responsibility to run unSortCorr
    1188             :   //     after using the sorted data to put it back in order
    1189             :   // NB: corrType_p is NOT changed to match the sorted
    1190             :   //     correlations (it is expected that this sort is
    1191             :   //     temporary, and that we will run unSortCorr
    1192             :   // NB: This method does nothing if no sort required
    1193             : 
    1194             :   // If nominal order is non-canonical (only for nCorr=4)
    1195             :   //   and data not yet sorted
    1196           0 :   if (nonCanonCorr() && !corrSorted_p) {
    1197             : 
    1198             : 
    1199             :     // First, do weightMat
    1200             :     {
    1201           0 :       weightMat();    // (ensures it is filled)
    1202             : 
    1203           0 :       Vector<Float> wtmp(nRow());
    1204           0 :       Vector<Float> w1, w2, w3;
    1205           0 :       IPosition wblc(2, 0, 0), wtrc(2, 0, nRow() - 1), vec(1, nRow());
    1206             : 
    1207           0 :       wblc(0) = wtrc(0) = 1;
    1208           0 :       w1.reference(weightMat_p(wblc, wtrc).reform(vec));
    1209           0 :       wblc(0) = wtrc(0) = 2;
    1210           0 :       w2.reference(weightMat_p(wblc, wtrc).reform(vec));
    1211           0 :       wblc(0) = wtrc(0) = 3;
    1212           0 :       w3.reference(weightMat_p(wblc, wtrc).reform(vec));
    1213           0 :       wtmp = w1;
    1214           0 :       w1 = w2;
    1215           0 :       w2 = w3;
    1216           0 :       w3 = wtmp;
    1217           0 :     }
    1218             : 
    1219             :     // Now do data:
    1220             : 
    1221             :     // Work space, references, coords
    1222           0 :     Matrix<Complex> tmp(nChannel(), nRow());
    1223           0 :     Matrix<Complex> p1, p2, p3;
    1224           0 :     IPosition blc(3, 0, 0, 0), trc(3, 0, nChannel() - 1, nRow() - 1), mat(2, nChannel(), nRow());
    1225             : 
    1226             :     // Do visCube if present
    1227           0 :     if (visCubeOK_p && visCube_p.nelements() > 0) {
    1228           0 :       blc(0) = trc(0) = 1;
    1229           0 :       p1.reference(visCube_p(blc, trc).reform(mat));
    1230           0 :       blc(0) = trc(0) = 2;
    1231           0 :       p2.reference(visCube_p(blc, trc).reform(mat));
    1232           0 :       blc(0) = trc(0) = 3;
    1233           0 :       p3.reference(visCube_p(blc, trc).reform(mat));
    1234           0 :       tmp = p1;
    1235           0 :       p1 = p2;
    1236           0 :       p2 = p3;
    1237           0 :       p3 = tmp;
    1238             :     }
    1239             :     // Do modelVisCube if present
    1240           0 :     if (modelVisCubeOK_p && modelVisCube_p.nelements() > 0) {
    1241           0 :       blc(0) = trc(0) = 1;
    1242           0 :       p1.reference(modelVisCube_p(blc, trc).reform(mat));
    1243           0 :       blc(0) = trc(0) = 2;
    1244           0 :       p2.reference(modelVisCube_p(blc, trc).reform(mat));
    1245           0 :       blc(0) = trc(0) = 3;
    1246           0 :       p3.reference(modelVisCube_p(blc, trc).reform(mat));
    1247           0 :       tmp = p1;
    1248           0 :       p1 = p2;
    1249           0 :       p2 = p3;
    1250           0 :       p3 = tmp;
    1251             :     }
    1252             :     // Do correctedVisCube if present
    1253           0 :     if (correctedVisCubeOK_p && correctedVisCube_p.nelements() > 0) {
    1254           0 :       blc(0) = trc(0) = 1;
    1255           0 :       p1.reference(correctedVisCube_p(blc, trc).reform(mat));
    1256           0 :       blc(0) = trc(0) = 2;
    1257           0 :       p2.reference(correctedVisCube_p(blc, trc).reform(mat));
    1258           0 :       blc(0) = trc(0) = 3;
    1259           0 :       p3.reference(correctedVisCube_p(blc, trc).reform(mat));
    1260           0 :       tmp = p1;
    1261           0 :       p1 = p2;
    1262           0 :       p2 = p3;
    1263           0 :       p3 = tmp;
    1264             :     }
    1265             :     // Do floatDataCube if present
    1266           0 :     if (floatDataCubeOK_p && floatDataCube_p.nelements() > 0) {
    1267           0 :       Matrix<Float> tmp(nChannel(), nRow());
    1268           0 :       Matrix<Float> p1, p2, p3;
    1269             : 
    1270           0 :       blc(0) = trc(0) = 1;
    1271           0 :       p1.reference(floatDataCube_p(blc, trc).reform(mat));
    1272           0 :       blc(0) = trc(0) = 2;
    1273           0 :       p2.reference(floatDataCube_p(blc, trc).reform(mat));
    1274           0 :       blc(0) = trc(0) = 3;
    1275           0 :       p3.reference(floatDataCube_p(blc, trc).reform(mat));
    1276           0 :       tmp = p1;
    1277           0 :       p1 = p2;
    1278           0 :       p2 = p3;
    1279           0 :       p3 = tmp;
    1280           0 :     }
    1281             : 
    1282             :     // Data is now sorted into canonical order
    1283           0 :     corrSorted_p = true;
    1284           0 :   }
    1285             : 
    1286           0 : }
    1287             : 
    1288             : // Unsort correlations: (PP,PQ,QP,QQ) -> (PP,QQ,PQ,QP)
    1289           0 : void VisBuffer::unSortCorr()
    1290             : {
    1291             :   // This method is for restoring the non-canonical correlation
    1292             :   //  sort order so that the data matches the order indicated
    1293             :   //  by corrType()
    1294             :   // NB: Always unsorts the weightMat()
    1295             :   // NB: Only works on the visCube-style data
    1296             :   // NB: It only unsorts the data columns which are already present
    1297             :   //     (so make sure sortCorr sorted the ones you needed!)
    1298             :   // NB: This method is a no-op if no sort required, or if
    1299             :   //     sortCorr hadn't been run since the last unSortCorr
    1300             : 
    1301             :   // If nominal order is non-canonical (only for nCorr=4)
    1302             :   //   and if data has been sorted
    1303           0 :   if (nonCanonCorr() && corrSorted_p) {
    1304             : 
    1305             :     // First, do weights
    1306             :     {
    1307           0 :       Vector<Float> wtmp(nRow());
    1308           0 :       Vector<Float> w1, w2, w3;
    1309           0 :       IPosition wblc(1, 0, 0), wtrc(3, 0, nRow() - 1), vec(1, nRow());
    1310             : 
    1311           0 :       wblc(0) = wtrc(0) = 1;
    1312           0 :       w1.reference(weightMat_p(wblc, wtrc).reform(vec));
    1313           0 :       wblc(0) = wtrc(0) = 2;
    1314           0 :       w2.reference(weightMat_p(wblc, wtrc).reform(vec));
    1315           0 :       wblc(0) = wtrc(0) = 3;
    1316           0 :       w3.reference(weightMat_p(wblc, wtrc).reform(vec));
    1317           0 :       wtmp = w3;
    1318           0 :       w3 = w2;
    1319           0 :       w2 = w1;
    1320           0 :       w1 = wtmp;
    1321           0 :     }
    1322             :     // Now do data:
    1323             : 
    1324             :     // Work space, references, coords
    1325           0 :     Matrix<Complex> tmp(nChannel(), nRow());
    1326           0 :     Matrix<Complex> p1, p2, p3;
    1327           0 :     IPosition blc(3, 0, 0, 0), trc(3, 0, nChannel() - 1, nRow() - 1), mat(2, nChannel(), nRow());
    1328             : 
    1329             :     // Do visCube if present
    1330           0 :     if (visCubeOK_p && visCube_p.nelements() > 0) {
    1331           0 :       blc(0) = trc(0) = 1;
    1332           0 :       p1.reference(visCube_p(blc, trc).reform(mat));
    1333           0 :       blc(0) = trc(0) = 2;
    1334           0 :       p2.reference(visCube_p(blc, trc).reform(mat));
    1335           0 :       blc(0) = trc(0) = 3;
    1336           0 :       p3.reference(visCube_p(blc, trc).reform(mat));
    1337           0 :       tmp = p3;
    1338           0 :       p3 = p2;
    1339           0 :       p2 = p1;
    1340           0 :       p1 = tmp;
    1341             :     }
    1342             :     // Do modelVisCube if present
    1343           0 :     if (modelVisCubeOK_p && modelVisCube_p.nelements() > 0) {
    1344           0 :       blc(0) = trc(0) = 1;
    1345           0 :       p1.reference(modelVisCube_p(blc, trc).reform(mat));
    1346           0 :       blc(0) = trc(0) = 2;
    1347           0 :       p2.reference(modelVisCube_p(blc, trc).reform(mat));
    1348           0 :       blc(0) = trc(0) = 3;
    1349           0 :       p3.reference(modelVisCube_p(blc, trc).reform(mat));
    1350           0 :       tmp = p3;
    1351           0 :       p3 = p2;
    1352           0 :       p2 = p1;
    1353           0 :       p1 = tmp;
    1354             :     }
    1355             :     // Do correctedVisCube if present
    1356           0 :     if (correctedVisCubeOK_p && correctedVisCube_p.nelements() > 0) {
    1357           0 :       blc(0) = trc(0) = 1;
    1358           0 :       p1.reference(correctedVisCube_p(blc, trc).reform(mat));
    1359           0 :       blc(0) = trc(0) = 2;
    1360           0 :       p2.reference(correctedVisCube_p(blc, trc).reform(mat));
    1361           0 :       blc(0) = trc(0) = 3;
    1362           0 :       p3.reference(correctedVisCube_p(blc, trc).reform(mat));
    1363           0 :       tmp = p3;
    1364           0 :       p3 = p2;
    1365           0 :       p2 = p1;
    1366           0 :       p1 = tmp;
    1367             :     }
    1368             :     // Do floatDataCube if present
    1369           0 :     if (floatDataCubeOK_p && floatDataCube_p.nelements() > 0) {
    1370           0 :       Matrix<Float> tmp(nChannel(), nRow());
    1371           0 :       Matrix<Float> p1, p2, p3;
    1372             : 
    1373           0 :       blc(0) = trc(0) = 1;
    1374           0 :       p1.reference(floatDataCube_p(blc, trc).reform(mat));
    1375           0 :       blc(0) = trc(0) = 2;
    1376           0 :       p2.reference(floatDataCube_p(blc, trc).reform(mat));
    1377           0 :       blc(0) = trc(0) = 3;
    1378           0 :       p3.reference(floatDataCube_p(blc, trc).reform(mat));
    1379           0 :       tmp = p3;
    1380           0 :       p3 = p2;
    1381           0 :       p2 = p1;
    1382           0 :       p1 = tmp;
    1383           0 :     }
    1384             : 
    1385             :     // Data is now back to corrType order
    1386           0 :     corrSorted_p = false;
    1387           0 :   }
    1388             : 
    1389           0 : }
    1390             : 
    1391           0 : Bool VisBuffer::nonCanonCorr()
    1392             : {
    1393           0 :   Vector<Int>& corrs(corrType());
    1394             :   // Only a meaningful question is all 4 corrs present
    1395           0 :   if (corrs.nelements() == 4)
    1396             :     // (assumes corrs(0) is RR or XX)
    1397             :     {
    1398           0 :       return (corrs(1) == Stokes::LL || corrs(1) == Stokes::YY);
    1399             :     } else
    1400             :     // Assumed OK (fewer than 4 elements, or in canonical order already)
    1401             :     {
    1402           0 :       return false;
    1403             :     }
    1404             : }
    1405             : 
    1406             : // Fill weight matrix from sigma matrix
    1407           0 : void VisBuffer::resetWeightMat()
    1408             : {
    1409             : 
    1410             :   // fill sigmaMat_p, size weightMat_p storage
    1411           0 :   sigmaMat();
    1412           0 :   IPosition ip(sigmaMat_p.shape());
    1413           0 :   weightMat_p.resize(ip);
    1414             : 
    1415           0 :   Int nPol(ip(0));
    1416           0 :   Int nRow(ip(1));
    1417             : 
    1418             :   // Weight is inverse square of sigma (or zero[?])
    1419           0 :   Float * w = weightMat_p.data();
    1420           0 :   Float * s = sigmaMat_p.data();
    1421           0 :   for (Int irow = 0; irow < nRow; ++irow)
    1422           0 :     for (Int ipol = 0; ipol < nPol; ++ipol, ++w, ++s)
    1423           0 :       if (*s > 0.0f) {
    1424           0 :         *w = 1.0f / square(*s);
    1425             :       } else {
    1426           0 :         *w = 0.0f;
    1427             :       }
    1428             : 
    1429             :   // As of 2014, we define wt = 1/sigma**2 (indep of nchan)
    1430             :   // Scale by (unselected!) # of channels
    1431             :   //  (to stay aligned with original nominal weights)
    1432             :   //  Int nchan = msColumns().spectralWindow().numChan()(spectralWindow());
    1433             :   //  weightMat_p *= Float(nchan);
    1434             : 
    1435             :   // weightMat_p now OK
    1436           0 :   weightMatOK_p = true;
    1437             : 
    1438           0 : }
    1439             : 
    1440             : 
    1441             : // Rotate visibility phase for phase center offsets
    1442           0 : void VisBuffer::phaseCenterShift(const Vector<Double>& phase)
    1443             : {
    1444             : 
    1445           0 :   AlwaysAssert(static_cast<Int>(phase.nelements()) == nRow(), AipsError);
    1446             : 
    1447             :   // phase is in metres 
    1448             :   // phase*(-2*pi*f/c) gives phase for the channel of the given baseline in radian
    1449             :   //   sign convention will _correct_ data
    1450             : 
    1451           0 :   Vector<Double> freq(frequency());
    1452             :   Double ph, udx;
    1453           0 :   Complex cph;
    1454             : 
    1455           0 :   for (Int irow = 0; irow < nRow(); ++irow){
    1456             : 
    1457           0 :     udx = phase(irow) * -2.0 * C::pi/C::c; // in radian/Hz
    1458             : 
    1459           0 :     for (Int ichn = 0; ichn < nChannel(); ++ichn) {
    1460             :       // Calculate the Complex factor for this row and channel
    1461           0 :       ph = udx * freq(ichn);
    1462             : 
    1463           0 :       if(ph!=0.){
    1464           0 :         cph = Complex(cos(ph), sin(ph));
    1465             :         // Shift each correlation:
    1466           0 :         for (Int icor = 0; icor < nCorr(); ++icor) {
    1467           0 :           if (visCubeOK_p) {
    1468           0 :             visCube_p(icor, ichn, irow) *= cph;
    1469             :           }
    1470           0 :           if (modelVisCubeOK_p) {
    1471           0 :             modelVisCube_p(icor, ichn, irow) *= cph;
    1472             :           }
    1473           0 :           if (correctedVisCubeOK_p) {
    1474           0 :             correctedVisCube_p(icor, ichn, irow) *= cph;
    1475             :           }
    1476             :           // Of course floatDataCube does not have a phase to rotate.
    1477             :         }
    1478             :       }
    1479             : 
    1480             :     }
    1481             :   }
    1482             : 
    1483           0 : }
    1484             : 
    1485             : // Rotate visibility phase for phase center offsets
    1486           0 : void VisBuffer::phaseCenterShift(Double dx, Double dy)
    1487             : {
    1488             : 
    1489             :   // no-op if no net shift
    1490           0 :   if (!(abs(dx) > 0 || abs(dy) > 0)) {
    1491           0 :     return;
    1492             :   }
    1493             : 
    1494             :   // Offsets in radians (input is arcsec)
    1495           0 :   dx *= (C::pi / 180.0 / 3600.0);
    1496           0 :   dy *= (C::pi / 180.0 / 3600.0);
    1497             : 
    1498             :   // Extra path as fraction of U and V
    1499           0 :   Vector<Double> udx;
    1500           0 :   udx = uvwMat().row(0);
    1501           0 :   Vector<Double> vdy;
    1502           0 :   vdy = uvwMat().row(1);
    1503           0 :   udx *= dx;  // in m
    1504           0 :   vdy *= dy;
    1505             : 
    1506             :   // Combine axes
    1507           0 :   udx += vdy;
    1508             : 
    1509           0 :   phaseCenterShift(udx);
    1510             : 
    1511           0 : }
    1512             : 
    1513             : 
    1514             : 
    1515             : // Divide visCube by modelVisCube
    1516           0 : void VisBuffer::normalize(const Bool & /* phaseOnly */)
    1517             : {
    1518             : 
    1519             :   // NB: phase-only now handled by SolvableVisCal
    1520             :   //   (we will remove phaseOnly parameter later)
    1521             : 
    1522             : 
    1523             :   // NB: Handles pol-dep weights in chan-indep way
    1524             :   // TBD: optimizations?
    1525             :   // TBD: Handle channel-dep weights?
    1526             : 
    1527             :   // Only if all relevant columns are present
    1528           0 :   if (visCubeOK_p && modelVisCubeOK_p && weightMatOK_p) {
    1529             : 
    1530             :     //    cout << "Normalizing!----------------------------" << endl;
    1531             : 
    1532           0 :     Int nCor = nCorr();
    1533             : 
    1534             :     // Amplitude data
    1535           0 :     Float amp(1.0);
    1536           0 :     Vector<Float> ampCorr(nCor);
    1537           0 :     Vector<Int> n(nCor);
    1538             : 
    1539           0 :     Bool * flR = flagRow().data();
    1540           0 :     Bool * fl = flag().data();
    1541             : 
    1542           0 :     for (Int irow = 0; irow < nRow(); irow++, flR++) {
    1543           0 :       if (!*flR) {
    1544           0 :         ampCorr = 0.0f;
    1545           0 :         n = 0;
    1546           0 :         for (Int ich = 0; ich < nChannel(); ich++, fl++) {
    1547           0 :           if (!*fl) {
    1548           0 :             for (Int icorr = 0; icorr < nCor; icorr++) {
    1549           0 :               amp = abs(modelVisCube_p(icorr, ich, irow));
    1550           0 :               if (amp > 0.0f) {
    1551           0 :                 visCube_p(icorr, ich, irow) = Complex( DComplex(visCube_p(icorr, ich, irow)) /
    1552           0 :                                                        DComplex(modelVisCube_p(icorr, ich, irow)) );
    1553             : 
    1554           0 :                 modelVisCube_p(icorr, ich, irow) = Complex(1.0);
    1555           0 :                 ampCorr(icorr) += amp;
    1556           0 :                 n(icorr)++;
    1557             :               } else
    1558             :                 // zero data if model is zero
    1559             :                 {
    1560           0 :                   visCube_p(icorr, ich, irow) = 0.0;
    1561             :                 }
    1562             :             }
    1563             :           }
    1564             :         }
    1565             : 
    1566           0 :         for (Int icorr = 0; icorr < nCor; icorr++) {
    1567           0 :           if (n(icorr) > 0) {
    1568           0 :             weightMat_p(icorr, irow) *= square(ampCorr(icorr) / Float(n(icorr)));
    1569             :           } else {
    1570           0 :             weightMat_p(icorr, irow) = 0.0f;
    1571             :           }
    1572             :         }
    1573             : 
    1574             :       } else {
    1575             :         // Zero weight on this flagged row
    1576           0 :         weightMat_p.column(irow) = 0.0f;
    1577             : 
    1578             :         // Advance fl over this row
    1579           0 :         fl += nChannel();
    1580             :       }
    1581             :     }
    1582           0 :   } else {
    1583           0 :     throw(AipsError("Failed to normalize data by model!"));
    1584             :   }
    1585           0 : }
    1586             : 
    1587           0 : Vector<Int> VisBuffer::vecIntRange(const MSCalEnums::colDef & calEnum) const
    1588             : {
    1589             :   // Return a column range for a generic integer column as
    1590             :   // identified by the enum specification in class MSCalEnums
    1591             : 
    1592             :   // Prepare the flag column masking
    1593           0 :   LogicalArray mask(!flagRow());
    1594             :   MaskedArray<Int>* maskArray;
    1595             : 
    1596             :   // A dummy vector for columns not yet supported (returns a value of [-1]);
    1597           0 :   Vector<Int> nullIndex(antenna1().shape(), -1);
    1598             : 
    1599           0 :   switch (calEnum) {
    1600             :     // ANTENNA1
    1601           0 :   case MSC::ANTENNA1: {
    1602           0 :     maskArray = new MaskedArray<Int>(antenna1(), mask);
    1603           0 :     break;
    1604             :   };
    1605             :     // ANTENNA2
    1606           0 :   case MSC::ANTENNA2: {
    1607           0 :     maskArray = new MaskedArray<Int>(antenna2(), mask);
    1608           0 :     break;
    1609             :   };
    1610             :     // FEED1
    1611           0 :   case MSC::FEED1: {
    1612           0 :     maskArray = new MaskedArray<Int>(feed1(), mask);
    1613           0 :     break;
    1614             :   };
    1615             :     // FIELD_ID
    1616           0 :   case MSC::FIELD_ID: {
    1617           0 :     Vector<Int> fieldIdVec(antenna1().shape(), fieldId());
    1618           0 :     maskArray = new MaskedArray<Int>(fieldIdVec, mask);
    1619           0 :     break;
    1620           0 :   };
    1621             :     // ARRAY_ID
    1622           0 :   case MSC::ARRAY_ID: {
    1623           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1624           0 :     break;
    1625             :   };
    1626             :     // OBSERVATION_ID
    1627           0 :   case MSC::OBSERVATION_ID: {
    1628           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1629           0 :     break;
    1630             :   };
    1631             :     // SCAN_NUMBER
    1632           0 :   case MSC::SCAN_NUMBER: {
    1633           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1634           0 :     break;
    1635             :   };
    1636             :     // PROCESSOR_ID
    1637           0 :   case MSC::PROCESSOR_ID: {
    1638           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1639           0 :     break;
    1640             :   };
    1641             :     // PHASE_ID
    1642           0 :   case MSC::PHASE_ID: {
    1643           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1644           0 :     break;
    1645             :   };
    1646             :     // STATE_ID
    1647           0 :   case MSC::STATE_ID: {
    1648           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1649           0 :     break;
    1650             :   };
    1651             :     // PULSAR_BIN
    1652           0 :   case MSC::PULSAR_BIN: {
    1653           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1654           0 :     break;
    1655             :   };
    1656             :     // PULSAR_GATE_ID
    1657           0 :   case MSC::PULSAR_GATE_ID: {
    1658           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1659           0 :     break;
    1660             :   };
    1661             :     // FREQ_GROUP
    1662           0 :   case MSC::FREQ_GROUP: {
    1663           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1664           0 :     break;
    1665             :   };
    1666             :     // CALIBRATION_GROUP
    1667           0 :   case MSC::CALIBRATION_GROUP: {
    1668           0 :     maskArray = new MaskedArray<Int>(nullIndex, mask);
    1669           0 :     break;
    1670             :   };
    1671             : 
    1672           0 :   default: {
    1673           0 :     throw(AipsError("Request for non-existent uv-data column"));
    1674             :   };
    1675             :   };
    1676             : 
    1677             :   // Return only unique indices
    1678           0 :   Vector<Int> retval = unique(maskArray->getCompressedArray());
    1679           0 :   if (maskArray) {
    1680           0 :     delete(maskArray);
    1681             :   }
    1682             : 
    1683           0 :   return retval;
    1684           0 : };
    1685             : 
    1686           0 : Vector<Int> VisBuffer::antIdRange() const
    1687             : {
    1688             :   // Return a column range for ANTENNA_ID, including the
    1689             :   // union of the ANTENNA1 and ANTENNA2 columns indices
    1690             : 
    1691           0 :   Vector<Int> ant1 = vecIntRange(MSC::ANTENNA1);
    1692           0 :   Vector<Int> ant2 = vecIntRange(MSC::ANTENNA2);
    1693           0 :   Vector<Int> ant12 = concatenateArray(ant1, ant2);
    1694             : 
    1695             :   // Return only unique index values
    1696           0 :   return unique(ant12);
    1697           0 : };
    1698             : 
    1699           0 : Bool VisBuffer::timeRange(MEpoch & rTime, MVEpoch & rTimeEP,
    1700             :                           MVEpoch & rInterval) const
    1701             : {
    1702             :   // Return the time range of data in the vis buffer
    1703             :   // (makes simplistic assumptions in the absence of
    1704             :   // interval information for now)
    1705             : 
    1706             :   // Initialization
    1707           0 :   Bool retval = false;
    1708             : 
    1709           0 :   if (nRow() > 0) {
    1710           0 :     retval = true;
    1711           0 :     LogicalArray mask(!flagRow());
    1712           0 :     MaskedArray<Double> maskTime(time(), mask);
    1713           0 :     Double minTime = min(maskTime);
    1714           0 :     Double maxTime = max(maskTime);
    1715             :     // Mean time
    1716           0 :     rTime = MEpoch(Quantity((minTime + maxTime) / 2, "s"));
    1717             :     // Extra precision time is always null for now
    1718           0 :     rTimeEP = MVEpoch(Quantity(0, "s"));
    1719             :     // Interval
    1720           0 :     rInterval = MVEpoch(Quantity(maxTime - minTime, "s"));
    1721           0 :   };
    1722           0 :   return retval;
    1723             : };
    1724             : 
    1725             : 
    1726           0 : Vector<casacore::rownr_t>& VisBuffer::rowIds()
    1727             : {
    1728           0 :   if (!rowIdsOK_p) {
    1729             : 
    1730           0 :     rowIdsOK_p = true;
    1731           0 :     visIter_p->rowIds(rowIds_p);
    1732             :   }
    1733           0 :   return rowIds_p;
    1734             : }
    1735             : 
    1736             : 
    1737             : void
    1738           0 : VisBuffer::updateCoordInfo(const VisBuffer * vb, const  Bool dirDependent )
    1739             : {
    1740           0 :     updateCoord (vb, vb->antenna1OK (), & VisBuffer::antenna1, antenna1_p, antenna1OK_p);
    1741           0 :     updateCoord (vb, vb->antenna2OK (), & VisBuffer::antenna2, antenna2_p, antenna2OK_p);
    1742           0 :     updateCoordS (vb, vb->arrayIdOK (), & VisBuffer::arrayId, arrayId_p, arrayIdOK_p);
    1743           0 :     updateCoordS (vb, vb->dataDescriptionIdOK(), & VisBuffer::dataDescriptionId, dataDescriptionId_p, dataDescriptionIdOK_p);
    1744           0 :     updateCoordS (vb, vb->fieldIdOK (), & VisBuffer::fieldId, fieldId_p, fieldIdOK_p);
    1745           0 :     updateCoordS (vb, vb->spectralWindowOK (), & VisBuffer::spectralWindow, spectralWindow_p, spectralWindowOK_p);
    1746           0 :     updateCoord (vb, vb->timeOK (), & VisBuffer::time, time_p, timeOK_p);
    1747           0 :     updateCoord (vb, vb->frequencyOK (), & VisBuffer::frequency, frequency_p, frequencyOK_p);
    1748           0 :     updateCoordS (vb, vb->nRowOK (), & VisBuffer::nRow, nRow_p, nRowOK_p);
    1749             : 
    1750           0 :     vb->copyMsInfo (oldMSId_p, msOK_p, newMS_p);
    1751             : 
    1752           0 :     updateCoord (vb, vb->feed1OK (), & VisBuffer::feed1, feed1_p, feed1OK_p);
    1753           0 :     updateCoord (vb, vb->feed2OK (), & VisBuffer::feed2, feed2_p, feed2OK_p);
    1754             : 
    1755           0 :     if(dirDependent){
    1756           0 :         updateCoord (vb, vb->feed1_paOK (), & VisBuffer::feed1_pa, feed1_pa_p, feed1_paOK_p);
    1757           0 :         updateCoord (vb, vb->feed2_paOK (), & VisBuffer::feed2_pa, feed2_pa_p, feed2_paOK_p);
    1758           0 :         updateCoord (vb, vb->direction1OK (), & VisBuffer::direction1, direction1_p, direction1OK_p);
    1759           0 :         updateCoord (vb, vb->direction2OK (), & VisBuffer::direction2, direction2_p, direction2OK_p);
    1760             :     }
    1761             : 
    1762           0 : }
    1763             : 
    1764           0 : void VisBuffer::setVisCube(Complex c)
    1765             : {
    1766           0 :   visCube_p.resize(visIter_p->visibilityShape());
    1767           0 :   visCube_p.set(c);
    1768           0 :   visCubeOK_p = true;
    1769           0 : }
    1770           0 : void VisBuffer::setModelVisCube(Complex c)
    1771             : {
    1772           0 :   modelVisCube_p.resize(visIter_p->visibilityShape());
    1773           0 :   modelVisCube_p.set(c);
    1774           0 :   modelVisCubeOK_p = true;
    1775           0 : }
    1776           0 : void VisBuffer::setCorrectedVisCube(Complex c)
    1777             : {
    1778           0 :   correctedVisCube_p.resize(visIter_p->visibilityShape());
    1779           0 :   correctedVisCube_p.set(c);
    1780           0 :   correctedVisCubeOK_p = true;
    1781           0 : }
    1782         200 : void VisBuffer::setVisCube(const Cube<Complex>& vis)
    1783             : {
    1784         200 :   visCube_p.resize(vis.shape());
    1785         200 :   visCube_p = vis;
    1786         200 :   visCubeOK_p = true;
    1787         200 : }
    1788           0 : void VisBuffer::setModelVisCube(const Cube<Complex>& vis)
    1789             : {
    1790           0 :   modelVisCube_p.resize(vis.shape());
    1791           0 :   modelVisCube_p = vis;
    1792           0 :   modelVisCubeOK_p = true;
    1793           0 : }
    1794             : 
    1795           0 : void VisBuffer::setModelVisCube(const Vector<Float>& stokes)
    1796             : {
    1797             : 
    1798             :   /*
    1799             :     cout << "Specified Stokes Parameters: " << stokes << endl;
    1800             : 
    1801             :     cout << "polFrame() = " << polFrame()
    1802             :     << " " << MSIter::Circular
    1803             :     << " " << MSIter::Linear
    1804             :     << endl;
    1805             :   */
    1806             : 
    1807             :   // Stokes parameters, nominally unpolarized, unit I
    1808           0 :   Float I(1.0), Q(0.0), U(0.0), V(0.0);
    1809             : 
    1810             :   // Only fill as many as are specified, up to 4 (unspecified will be assumed zero)
    1811           0 :   for (uInt i = 0; i < stokes.nelements(); ++i)
    1812           0 :     switch (i) {
    1813           0 :     case 0: {
    1814           0 :       I = stokes(i);
    1815           0 :       break;
    1816             :     }
    1817           0 :     case 1: {
    1818           0 :       Q = stokes(i);
    1819           0 :       break;
    1820             :     }
    1821           0 :     case 2: {
    1822           0 :       U = stokes(i);
    1823           0 :       break;
    1824             :     }
    1825           0 :     case 3: {
    1826           0 :       V = stokes(i);
    1827           0 :       break;
    1828             :     }
    1829           0 :     default: {
    1830           0 :       break;
    1831             :     }
    1832             :     }
    1833             : 
    1834             :   // Convert to correlations, according to basis
    1835           0 :   Vector<Complex> stkvis(4, Complex(0.0)); // initially all zero
    1836           0 :   switch (polFrame()) {
    1837           0 :   case MSIter::Circular: {
    1838           0 :     stkvis(0) = Complex(I + V);
    1839           0 :     stkvis(1) = Complex(Q, U);
    1840           0 :     stkvis(2) = Complex(Q, -U);
    1841           0 :     stkvis(3) = Complex(I - V);
    1842           0 :     break;
    1843             :   }
    1844           0 :   case MSIter::Linear: {
    1845           0 :     stkvis(0) = Complex(I + Q);
    1846           0 :     stkvis(1) = Complex(U, V);
    1847           0 :     stkvis(2) = Complex(U, -V);
    1848           0 :     stkvis(3) = Complex(I - Q);
    1849           0 :     break;
    1850             :   }
    1851           0 :   default:
    1852           0 :     throw(AipsError("Model-setting only works for CIRCULAR and LINEAR bases, for now."));
    1853             :     break;
    1854             :   }
    1855             : 
    1856             :   // A map onto the actual correlations in the VisBuffer
    1857           0 :   Vector<Int> corrmap;
    1858           0 :   corrmap = corrType();
    1859           0 :   corrmap -= corrmap(0);
    1860             :   // This MUST yield indices < 4
    1861           0 :   if (max(corrmap) > 3) {
    1862           0 :     throw(AipsError("HELP! The correlations in the data are not normal!"));
    1863             :   }
    1864             : 
    1865             : 
    1866             :   // Set the modelVisCube accordingly
    1867           0 :   modelVisCube_p.resize(visIter_p->visibilityShape());
    1868           0 :   modelVisCube_p.set(0.0);
    1869           0 :   for (Int icorr = 0; icorr < nCorr(); ++icorr)
    1870           0 :     if (abs(stkvis(corrmap(icorr))) > 0.0) {
    1871           0 :       modelVisCube_p(Slice(icorr, 1, 1), Slice(), Slice()).set(stkvis(corrmap(icorr)));
    1872             :     }
    1873           0 :   modelVisCubeOK_p = true;
    1874             : 
    1875             :   // Lookup flux density calibrator scaling, and apply it per channel...
    1876             :   //  TBD
    1877             : 
    1878             : 
    1879           0 : }
    1880             : 
    1881             : Int
    1882           0 : VisBuffer::nRowChunk() const
    1883             : {
    1884           0 :     CheckVisIter ();
    1885           0 :     return visIter_p->nRowChunk ();
    1886             : }
    1887             : 
    1888             : 
    1889           0 : Int VisBuffer::numberCoh () const
    1890             : {
    1891           0 :   CheckVisIter ();
    1892             : 
    1893           0 :   return visIter_p -> numberCoh ();
    1894             : }
    1895             : 
    1896             : 
    1897             : void
    1898        4712 : VisBuffer::checkVisIter (const char * func, const char * file, int line, const char * extra) const
    1899             : {
    1900        4712 :   checkVisIterBase (func, file, line, extra);
    1901        4712 : }
    1902             : 
    1903             : void
    1904        4712 : VisBuffer::checkVisIterBase (const char * func, const char * file, int line, const char * extra) const
    1905             : {
    1906        4712 :   if (visIter_p == NULL) {
    1907           0 :     throw AipsError (String ("No VisibilityIterator is available to fill this field in (") +
    1908           0 :                      func + extra + ")", file, line);
    1909             :   }
    1910        4712 : }
    1911             : 
    1912             : 
    1913           0 : void VisBuffer::setCorrectedVisCube(const Cube<Complex>& vis)
    1914             : {
    1915           0 :   correctedVisCube_p.resize(vis.shape());
    1916           0 :   correctedVisCube_p = vis;
    1917           0 :   correctedVisCubeOK_p = true;
    1918           0 : }
    1919             : 
    1920           0 : void VisBuffer::setFloatDataCube(const Cube<Float>& fcube)
    1921             : {
    1922           0 :   floatDataCube_p.resize(fcube.shape());
    1923           0 :   floatDataCube_p = fcube;
    1924           0 :   floatDataCubeOK_p = true;
    1925           0 : }
    1926             : 
    1927           0 : void VisBuffer::refModelVis(const Matrix<CStokesVector>& mvis)
    1928             : {
    1929           0 :   modelVisibility_p.resize();
    1930           0 :   modelVisibility_p.reference(mvis);
    1931           0 :   modelVisibilityOK_p = true;
    1932           0 : }
    1933             : 
    1934           0 : void VisBuffer::removeScratchCols()
    1935             : {
    1936             :   // removes scratch data from the vb
    1937           0 :   modelVisibility_p.resize();
    1938           0 :   modelVisibilityOK_p = false;
    1939           0 :   correctedVisibility_p.resize();
    1940           0 :   correctedVisibilityOK_p = false;
    1941           0 : }
    1942             : 
    1943           0 : Int& VisBuffer::fillnCorr()
    1944             : {
    1945           0 :   CheckVisIter ();
    1946           0 :   nCorrOK_p = true;
    1947           0 :   nCorr_p = corrType().nelements();
    1948           0 :   return nCorr_p;
    1949             : }
    1950             : 
    1951           0 : Vector<Int>& VisBuffer::fillObservationId()
    1952             : {
    1953           0 :   CheckVisIter();
    1954           0 :   observationIdOK_p = true;
    1955           0 :   return visIter_p->observationId(observationId_p);
    1956             : }
    1957             : 
    1958           0 : Vector<Int>& VisBuffer::fillProcessorId()
    1959             : {
    1960           0 :   CheckVisIter();
    1961           0 :   processorIdOK_p = true;
    1962           0 :   return visIter_p->processorId(processorId_p);
    1963             : }
    1964             : 
    1965           0 : Vector<Int>& VisBuffer::fillStateId()
    1966             : {
    1967           0 :   CheckVisIter();
    1968           0 :   stateIdOK_p = true;
    1969           0 :   return visIter_p->stateId(stateId_p);
    1970             : }
    1971             : 
    1972           0 : Array<Bool>& VisBuffer::fillFlagCategory()
    1973             : {
    1974           0 :   CheckVisIter();
    1975           0 :   flagCategoryOK_p = true;
    1976           0 :   return visIter_p->flagCategory(flagCategory_p);
    1977             : }
    1978             : 
    1979         260 : Int& VisBuffer::fillnChannel()
    1980             : {
    1981         260 :   CheckVisIter ();
    1982         260 :   nChannelOK_p = true;
    1983             :   //  nChannel_p=visIter_p->channelGroupSize();
    1984         260 :   nChannel_p = channel().nelements();
    1985         260 :   return nChannel_p;
    1986             : }
    1987             : 
    1988         260 : Vector<Int>& VisBuffer::fillChannel()
    1989             : {
    1990         260 :   CheckVisIter ();
    1991         260 :   channelOK_p = true;
    1992         260 :   return visIter_p->channel(channel_p);
    1993             : }
    1994             : 
    1995         260 : Int& VisBuffer::fillnRow()
    1996             : {
    1997         260 :   CheckVisIter ();
    1998         260 :   nRowOK_p = true;
    1999         260 :   nRow_p = visIter_p->nRow();
    2000         260 :   return nRow_p;
    2001             : }
    2002             : 
    2003         200 : Vector<Int>& VisBuffer::fillAnt1()
    2004             : {
    2005         200 :   CheckVisIter ();
    2006         200 :   antenna1OK_p = true;
    2007         200 :   return visIter_p->antenna1(antenna1_p);
    2008             : }
    2009             : 
    2010         200 : Vector<Int>& VisBuffer::fillAnt2()
    2011             : {
    2012         200 :   CheckVisIter ();
    2013         200 :   antenna2OK_p = true;
    2014         200 :   return visIter_p->antenna2(antenna2_p);
    2015             : }
    2016             : 
    2017           0 : Vector<Int>& VisBuffer::fillFeed1()
    2018             : {
    2019           0 :   CheckVisIter ();
    2020           0 :   feed1OK_p = true;
    2021           0 :   return visIter_p->feed1(feed1_p);
    2022             : }
    2023             : 
    2024           0 : Vector<Int>& VisBuffer::fillFeed2()
    2025             : {
    2026           0 :   CheckVisIter ();
    2027           0 :   feed2OK_p = true;
    2028           0 :   return visIter_p->feed2(feed2_p);
    2029             : }
    2030             : 
    2031           0 : Vector<SquareMatrix<Complex, 2> >& VisBuffer::fillCjones()
    2032             : {
    2033           0 :   CheckVisIter ();
    2034           0 :   cjonesOK_p = true;
    2035           0 :   return visIter_p->CJones(cjones_p);
    2036             : }
    2037             : 
    2038         201 : Vector<Int>& VisBuffer::fillCorrType()
    2039             : {
    2040         201 :   CheckVisIter ();
    2041         201 :   corrTypeOK_p = true;
    2042         201 :   return visIter_p->corrType(corrType_p);
    2043             : }
    2044             : 
    2045             : // calling fillFeed1_pa or fillFeed2_pa will fill antenna, feed
    2046             : // and time caches automatically
    2047           0 : Vector<Float>& VisBuffer::fillFeed1_pa()
    2048             : {
    2049           0 :   CheckVisIterBase ();
    2050             : 
    2051             :   // fill feed, antenna and time caches, if not filled before
    2052           0 :   feed1();
    2053           0 :   antenna1();
    2054           0 :   time();
    2055           0 :   feed1_paOK_p = true;
    2056           0 :   feed1_pa_p.resize(antenna1_p.nelements()); // could also use nRow()
    2057             : 
    2058             :   // now actual calculations
    2059           0 :   for (uInt row = 0; row < feed1_pa_p.nelements(); ++row) {
    2060           0 :     const Vector<Float>& ant_pa = feed_pa(time_p(row)); // caching inside
    2061             :     // ROVisibilityIterator, if the time doesn't change. Otherwise
    2062             :     // we should probably fill both buffers for feed1 and feed2
    2063             :     // simultaneously to speed up things.
    2064             : 
    2065           0 :     DebugAssert((uInt(antenna1_p(row)) < ant_pa.nelements()), AipsError);
    2066           0 :     DebugAssert(antenna1_p(row) >= 0, AipsError);
    2067           0 :     feed1_pa_p(row) = ant_pa(antenna1_p(row));
    2068             :     // currently feed_pa returns only the first feed position angle
    2069             :     // we need to add an offset if this row corresponds to a
    2070             :     // different feed
    2071           0 :     if (feed1_p(row))  // an if-statement to avoid unnecessary operations
    2072             :       // in the single feed case, everything would
    2073             :       // work without it.
    2074           0 :       feed1_pa_p(row) += visIter_p->receptorAngles()(0,
    2075           0 :                                                      antenna1_p(row), feed1_p(row)) -
    2076           0 :         visIter_p->receptorAngles()(0, antenna1_p(row), 0);
    2077           0 :   }
    2078           0 :   return feed1_pa_p;
    2079             : }
    2080             : 
    2081           0 : Vector<Float>& VisBuffer::fillFeed2_pa()
    2082             : {
    2083           0 :   CheckVisIterBase ();
    2084             : 
    2085             :   // fill feed, antenna and time caches, if not filled before
    2086           0 :   feed2();
    2087           0 :   antenna2();
    2088           0 :   time();
    2089           0 :   feed2_paOK_p = true;
    2090           0 :   feed2_pa_p.resize(antenna2_p.nelements()); // could also use nRow()
    2091             : 
    2092             :   // now actual calculations
    2093           0 :   for (uInt row = 0; row < feed2_pa_p.nelements(); ++row) {
    2094           0 :     const Vector<Float>& ant_pa = feed_pa(time_p(row)); // caching inside
    2095             :     // ROVisibilityIterator, if the time doesn't change. Otherwise
    2096             :     // we should probably fill both buffers for feed1 and feed2
    2097             :     // simultaneously to speed up things.
    2098           0 :     DebugAssert((uInt(antenna2_p(row)) < ant_pa.nelements()), AipsError);
    2099           0 :     DebugAssert(antenna2_p(row) >= 0, AipsError);
    2100           0 :     feed2_pa_p(row) = ant_pa(antenna2_p(row));
    2101             :     // currently feed_pa returns only the first feed position angle
    2102             :     // we need to add an offset if this row correspods to a
    2103             :     // different feed
    2104           0 :     if (feed2_p(row))  // an if-statement to avoid unnecessary operations
    2105             :       // in the single feed case, everything would
    2106             :       // work without it.
    2107           0 :       feed2_pa_p(row) += visIter_p->receptorAngles()(0,
    2108           0 :                                                      antenna2_p(row), feed2_p(row)) -
    2109           0 :         visIter_p->receptorAngles()(0, antenna2_p(row), 0);
    2110           0 :   }
    2111           0 :   return feed2_pa_p;
    2112             : }
    2113             : 
    2114           0 : Vector<MDirection>& VisBuffer::fillDirection1()
    2115             : {
    2116             :   //Timer tim;
    2117             :   //tim.mark();
    2118           0 :   CheckVisIterBase ();
    2119             :   // fill feed1_pa cache, antenna, feed and time will be filled automatically
    2120             :   //feed1_pa();
    2121             :   // commented above as it calculates the Par-angle for all antennas when
    2122             :   //it may not be used at all...a 300% speedup on some large pointing table
    2123           0 :   antenna1();
    2124           0 :   feed1();
    2125           0 :   time();
    2126           0 :   direction1OK_p = true;
    2127           0 :   firstDirection1OK_p=true;
    2128           0 :   direction1_p.resize(antenna1_p.nelements()); // could also use nRow()
    2129           0 :   const MSPointingColumns & mspc = msColumns().pointing();
    2130           0 :   lastPointTableRow_p = mspc.pointingIndex(antenna1()(0),
    2131           0 :                                            time()(0), lastPointTableRow_p);
    2132           0 :   if (visIter_p->allBeamOffsetsZero() && lastPointTableRow_p < 0) {
    2133             :     // if no true pointing information is found
    2134             :     // just return the phase center from the field table
    2135           0 :     direction1_p.set(phaseCenter());
    2136           0 :     lastPointTableRow_p = 0;
    2137           0 :     return direction1_p;
    2138             :   }
    2139           0 :   for (uInt row = 0; row < antenna1_p.nelements(); ++row) {
    2140           0 :     DebugAssert(antenna1_p(row) >= 0, AipsError);
    2141           0 :     DebugAssert(feed1_p(row) >= 0, AipsError);
    2142           0 :     Int pointIndex1 = mspc.pointingIndex(antenna1()(row), time()(row), lastPointTableRow_p);
    2143             : 
    2144             :     //cout << "POINTINDEX " << pointIndex1 << endl;
    2145             :     // if no true pointing information is found
    2146             :     // use the phase center from the field table
    2147           0 :     if (pointIndex1 >= 0) {
    2148           0 :       lastPointTableRow_p = pointIndex1;
    2149           0 :       direction1_p(row) = mspc.directionMeas(pointIndex1, timeInterval()(row));
    2150             :     } else {
    2151           0 :       direction1_p(row) = phaseCenter();
    2152             :     }
    2153           0 :     if (!visIter_p->allBeamOffsetsZero()) {
    2154             :       //Now we can calculate the Par-angles
    2155           0 :       feed1_pa();
    2156             :       RigidVector<Double, 2> beamOffset =
    2157           0 :         visIter_p->getBeamOffsets()(0, antenna1_p(row), feed1_p(row));
    2158           0 :       if (visIter_p->antennaMounts()(antenna1_p(row)) == "ALT-AZ" ||
    2159           0 :           visIter_p->antennaMounts()(antenna1_p(row)) == "alt-az") {
    2160           0 :         SquareMatrix<Double, 2> xform(SquareMatrix<Double, 2>::General);
    2161             :         // SquareMatrix' default constructor is a bit strange.
    2162             :         // We will probably need to change it in the future
    2163           0 :         Double cpa = cos(feed1_pa_p(row));
    2164           0 :         Double spa = sin(feed1_pa_p(row));
    2165           0 :         xform(0, 0) = cpa;
    2166           0 :         xform(1, 1) = cpa;
    2167           0 :         xform(0, 1) = -spa;
    2168           0 :         xform(1, 0) = spa;
    2169           0 :         beamOffset *= xform; // parallactic angle rotation
    2170           0 :       }
    2171             :       // x direction is flipped to convert az-el type frame to ra-dec
    2172           0 :       direction1_p(row).shift(-beamOffset(0), beamOffset(1), true);
    2173             :     }
    2174             :   }
    2175             :   //tim.show("fill dir1");
    2176             :   //cerr << "allbeamOff " << visIter_p->allBeamOffsetsZero() << endl;
    2177           0 :   firstDirection1_p=direction1_p[0];
    2178           0 :   return direction1_p;
    2179             : }
    2180             : 
    2181           0 : MDirection& VisBuffer::fillFirstDirection1()
    2182             : {
    2183             :   //Timer tim;
    2184             :   //tim.mark();
    2185           0 :   CheckVisIterBase ();
    2186             :   // fill feed1_pa cache, antenna, feed and time will be filled automatically
    2187           0 :   feed1();
    2188           0 :   time();
    2189           0 :   antenna1();
    2190             :   
    2191             :   //feed1_pa();
    2192           0 :   firstDirection1OK_p=true;
    2193           0 :   const MSPointingColumns & mspc = msColumns().pointing();
    2194           0 :   lastPointTableRow_p = mspc.pointingIndex(antenna1()(0),
    2195           0 :                                            time()(0), lastPointTableRow_p);
    2196           0 :   if (visIter_p->allBeamOffsetsZero() && lastPointTableRow_p < 0) {
    2197             :     // if no true pointing information is found
    2198             :     // just return the phase center from the field table
    2199           0 :     firstDirection1_p=phaseCenter();
    2200           0 :     lastPointTableRow_p = 0;
    2201           0 :     return firstDirection1_p;
    2202             :   }
    2203             : 
    2204           0 :   Int pointIndex1=lastPointTableRow_p;
    2205             : 
    2206             :     //cout << "POINTINDEX " << pointIndex1 << endl;
    2207             :     // if no true pointing information is found
    2208             :     // use the phase center from the field table
    2209           0 :   if (pointIndex1 >= 0) {
    2210             :     
    2211           0 :     firstDirection1_p = mspc.directionMeas(pointIndex1, timeInterval()(0));
    2212             :   } else {
    2213           0 :     firstDirection1_p = phaseCenter();
    2214             :   }
    2215           0 :   if (!visIter_p->allBeamOffsetsZero()) {
    2216           0 :     feed1_pa();
    2217             :     RigidVector<Double, 2> beamOffset =
    2218           0 :       visIter_p->getBeamOffsets()(0, antenna1_p(0), feed1_p(0));
    2219           0 :     if (visIter_p->antennaMounts()(antenna1_p(0)) == "ALT-AZ" ||
    2220           0 :         visIter_p->antennaMounts()(antenna1_p(0)) == "alt-az") {
    2221           0 :       SquareMatrix<Double, 2> xform(SquareMatrix<Double, 2>::General);
    2222             :       // SquareMatrix' default constructor is a bit strange.
    2223             :       // We will probably need to change it in the future
    2224           0 :       Double cpa = cos(feed1_pa_p(0));
    2225           0 :       Double spa = sin(feed1_pa_p(0));
    2226           0 :       xform(0, 0) = cpa;
    2227           0 :       xform(1, 1) = cpa;
    2228           0 :       xform(0, 1) = -spa;
    2229           0 :       xform(1, 0) = spa;
    2230           0 :       beamOffset *= xform; // parallactic angle rotation
    2231           0 :     }
    2232             :     // x direction is flipped to convert az-el type frame to ra-dec
    2233           0 :     firstDirection1_p.shift(-beamOffset(0), beamOffset(1), true);
    2234             :     }
    2235             :     
    2236           0 :   return firstDirection1_p;
    2237             : }
    2238           0 : Vector<MDirection>& VisBuffer::fillDirection2()
    2239             : {
    2240           0 :   CheckVisIterBase ();
    2241             :   // fill feed2_pa cache, antenna, feed and time will be filled automatically
    2242           0 :   feed2_pa();
    2243           0 :   direction2OK_p = true;
    2244           0 :   direction2_p.resize(antenna2_p.nelements()); // could also use nRow()
    2245           0 :   const MSPointingColumns & mspc = msColumns().pointing();
    2246           0 :   lastPointTableRow_p = mspc.pointingIndex(antenna2()(0), time()(0), lastPointTableRow_p);
    2247           0 :   if (visIter_p->allBeamOffsetsZero() && lastPointTableRow_p < 0) {
    2248             :     // if no true pointing information is found
    2249             :     // just return the phase center from the field table
    2250           0 :     direction2_p.set(phaseCenter());
    2251           0 :     lastPointTableRow_p = 0;
    2252           0 :     return direction2_p;
    2253             :   }
    2254           0 :   for (uInt row = 0; row < antenna2_p.nelements(); ++row) {
    2255           0 :     DebugAssert(antenna2_p(row) >= 0, AipsError);
    2256           0 :     DebugAssert(feed2_p(row) >= 0, AipsError);
    2257           0 :     Int pointIndex2 = mspc.pointingIndex(antenna2()(row), time()(row), lastPointTableRow_p);
    2258             :     // if no true pointing information is found
    2259             :     // use the phase center from the field table
    2260           0 :     if (pointIndex2 >= 0) {
    2261           0 :       lastPointTableRow_p = pointIndex2;
    2262           0 :       direction2_p(row) = mspc.directionMeas(pointIndex2, timeInterval()(row));
    2263             :     } else {
    2264           0 :       direction2_p(row) = phaseCenter();
    2265             :     }
    2266           0 :     if (!visIter_p->allBeamOffsetsZero()) {
    2267             :       RigidVector<Double, 2> beamOffset =
    2268           0 :         visIter_p->getBeamOffsets()(0, antenna2_p(row), feed2_p(row));
    2269           0 :       if (visIter_p->antennaMounts()(antenna2_p(row)) == "ALT-AZ" ||
    2270           0 :           visIter_p->antennaMounts()(antenna2_p(row)) == "alt-az") {
    2271           0 :         SquareMatrix<Double, 2> xform(SquareMatrix<Double, 2>::General);
    2272             :         // SquareMatrix' default constructor is a bit strange.
    2273             :         // We will probably need to change it in the future
    2274           0 :         Double cpa = cos(feed2_pa_p(row));
    2275           0 :         Double spa = sin(feed2_pa_p(row));
    2276           0 :         xform(0, 0) = cpa;
    2277           0 :         xform(1, 1) = cpa;
    2278           0 :         xform(0, 1) = -spa;
    2279           0 :         xform(1, 0) = spa;
    2280           0 :         beamOffset *= xform; // parallactic angle rotation
    2281           0 :       }
    2282             :       // x direction is flipped to convert az-el type frame to ra-dec
    2283           0 :       direction2_p(row).shift(-beamOffset(0), beamOffset(1), true);
    2284             :     }
    2285             :   }
    2286           0 :   return direction2_p;
    2287             : }
    2288             : 
    2289         201 : Int& VisBuffer::fillFieldId()
    2290             : {
    2291         201 :   CheckVisIter ();
    2292         201 :   fieldIdOK_p = true;
    2293         201 :   fieldId_p = visIter_p->fieldId();
    2294         201 :   return fieldId_p;
    2295             : }
    2296             : 
    2297           0 : Int& VisBuffer::fillArrayId()
    2298             : {
    2299           0 :   CheckVisIter ();
    2300           0 :   arrayIdOK_p = true;
    2301           0 :   arrayId_p = visIter_p->arrayId();
    2302           0 :   return arrayId_p;
    2303             : }
    2304             : 
    2305           0 : Int& VisBuffer::fillDataDescriptionId ()
    2306             : {
    2307           0 :   CheckVisIter ();
    2308           0 :   dataDescriptionIdOK_p = true;
    2309           0 :   dataDescriptionId_p = visIter_p->dataDescriptionId();
    2310           0 :   return dataDescriptionId_p;
    2311             : }
    2312             : 
    2313         200 : Matrix<Bool>& VisBuffer::fillFlag()
    2314             : {
    2315         200 :   CheckVisIter ();
    2316         200 :   flagOK_p = true;
    2317         200 :   return visIter_p->flag(flag_p);
    2318             : }
    2319             : 
    2320         260 : Cube<Bool>& VisBuffer::fillFlagCube()
    2321             : {
    2322         260 :   CheckVisIter ();
    2323         260 :   flagCubeOK_p = true;
    2324         260 :   return visIter_p->flag(flagCube_p);
    2325             : }
    2326             : 
    2327         200 : Vector<Bool>& VisBuffer::fillFlagRow()
    2328             : {
    2329         200 :   CheckVisIter ();
    2330         200 :   flagRowOK_p = true;
    2331         200 :   return visIter_p->flagRow(flagRow_p);
    2332             : }
    2333             : 
    2334           0 : Vector<Int>& VisBuffer::fillScan()
    2335             : {
    2336           0 :   CheckVisIter ();
    2337           0 :   scanOK_p = true;
    2338           0 :   return visIter_p->scan(scan_p);
    2339             : }
    2340             : 
    2341         201 : Vector<Double>& VisBuffer::fillFreq()
    2342             : {
    2343         201 :   CheckVisIter ();
    2344         201 :   frequencyOK_p = true;
    2345         201 :   return visIter_p->frequency(frequency_p);
    2346             : }
    2347             : 
    2348             : //Vector<Double>& VisBuffer::fillLSRFreq()
    2349             : //{
    2350             : //  CheckVisIter ();
    2351             : //  lsrFrequencyOK_p = true;
    2352             : //  return visIter_p->lsrFrequency(lsrFrequency_p);
    2353             : //}
    2354             : 
    2355           1 : MDirection& VisBuffer::fillPhaseCenter()
    2356             : {
    2357           1 :   CheckVisIter ();
    2358           1 :   phaseCenterOK_p = true;
    2359           1 :   return phaseCenter_p = visIter_p->phaseCenter();
    2360             : }
    2361         402 : const MDirection VisBuffer::phaseCenter(const Double time) const 
    2362             : {
    2363         402 :   CheckVisIter ();
    2364             :   
    2365         402 :   return This->phaseCenter(This->fieldId(), time);
    2366             : }
    2367         402 : const MDirection VisBuffer::phaseCenter(const Int field, const Double time) const 
    2368             : {
    2369         402 :   CheckVisIter ();
    2370             :  
    2371         402 :   return visIter_p->phaseCenter(field, time);
    2372             : }
    2373             : 
    2374         201 : Int& VisBuffer::fillPolFrame()
    2375             : {
    2376         201 :   CheckVisIter ();
    2377         201 :   polFrameOK_p = true;
    2378         201 :   polFrame_p = visIter_p->polFrame();
    2379         201 :   return polFrame_p;
    2380             : }
    2381             : 
    2382           0 : Vector<Float>& VisBuffer::fillSigma()
    2383             : {
    2384           0 :   CheckVisIter ();
    2385           0 :   sigmaOK_p = true;
    2386           0 :   return visIter_p->sigma(sigma_p);
    2387             : }
    2388             : 
    2389           0 : Matrix<Float>& VisBuffer::fillSigmaMat()
    2390             : {
    2391           0 :   CheckVisIter ();
    2392           0 :   sigmaMatOK_p = true;
    2393           0 :   return visIter_p->sigmaMat(sigmaMat_p);
    2394             : }
    2395             : 
    2396         201 : Int& VisBuffer::fillSpW()
    2397             : {
    2398         201 :   CheckVisIter ();
    2399         201 :   spectralWindowOK_p = true;
    2400         201 :   spectralWindow_p = visIter_p->spectralWindow();
    2401         201 :   return spectralWindow_p;
    2402             : }
    2403             : 
    2404         201 : Vector<Double>& VisBuffer::fillTime()
    2405             : {
    2406         201 :   CheckVisIter ();
    2407         201 :   timeOK_p = true;
    2408         201 :   return visIter_p->time(time_p);
    2409             : }
    2410             : 
    2411           0 : Vector<Double>& VisBuffer::fillTimeCentroid()
    2412             : {
    2413           0 :   CheckVisIter ();
    2414           0 :   timeCentroidOK_p = true;
    2415           0 :   return visIter_p->timeCentroid(timeCentroid_p);
    2416             : }
    2417             : 
    2418           0 : Vector<Double>& VisBuffer::fillTimeInterval()
    2419             : {
    2420           0 :   CheckVisIter ();
    2421           0 :   timeIntervalOK_p = true;
    2422           0 :   return visIter_p->timeInterval(timeInterval_p);
    2423             : }
    2424             : 
    2425           0 : Vector<Double>& VisBuffer::fillExposure()
    2426             : {
    2427           0 :   CheckVisIter ();
    2428           0 :   exposureOK_p = true;
    2429           0 :   return visIter_p->exposure(exposure_p);
    2430             : }
    2431             : 
    2432             : 
    2433         200 : Vector<RigidVector<Double, 3> >& VisBuffer::filluvw()
    2434             : {
    2435         200 :   CheckVisIter ();
    2436         200 :   uvwOK_p = true;
    2437         200 :   return visIter_p->uvw(uvw_p);
    2438             : }
    2439             : 
    2440           0 : Matrix<Double>& VisBuffer::filluvwMat()
    2441             : {
    2442           0 :   CheckVisIter ();
    2443           0 :   uvwMatOK_p = true;
    2444           0 :   return visIter_p->uvwMat(uvwMat_p);
    2445             : }
    2446             : 
    2447           0 : Matrix<CStokesVector>& VisBuffer::fillVis(VisibilityIterator::DataColumn whichOne)
    2448             : {
    2449           0 :   switch (whichOne) {
    2450           0 :   case VisibilityIterator::Model:
    2451           0 :     CheckVisIter1 (" (Model)");
    2452           0 :     modelVisibilityOK_p = true;
    2453           0 :     return visIter_p->visibility(modelVisibility_p, whichOne);
    2454             :     break;
    2455           0 :   case VisibilityIterator::Corrected:
    2456           0 :     CheckVisIter1 (" (Corrected)");
    2457           0 :     correctedVisibilityOK_p = true;
    2458           0 :     return visIter_p->visibility(correctedVisibility_p, whichOne);
    2459             :     break;
    2460           0 :   case VisibilityIterator::Observed:
    2461             :   default:
    2462           0 :     CheckVisIter1 (" (Observed)");
    2463           0 :     visibilityOK_p = true;
    2464           0 :     return visIter_p->visibility(visibility_p, whichOne);
    2465             :     break;
    2466             :   }
    2467             : }
    2468             : 
    2469         260 : Cube<Complex>& VisBuffer::fillVisCube(VisibilityIterator::DataColumn whichOne)
    2470             : {
    2471         260 :   switch (whichOne) {
    2472         200 :   case VisibilityIterator::Model:
    2473             :   {
    2474         200 :           CheckVisIter1 (" (Model)");
    2475         200 :       modelVisCubeOK_p = true;
    2476         200 :           String modelkey; //=String("definedmodel_field_")+String::toString(fieldId());
    2477             :           Int snum;
    2478         200 :           Bool hasmodkey = False;
    2479         200 :           if (not visModelData_p.null()) hasmodkey = visModelData_p->isModelDefinedI(fieldId(), visIter_p->ms(), modelkey, snum);
    2480         200 :           if( hasmodkey || !(visIter_p->ms().tableDesc().isColumn("MODEL_DATA")))
    2481             :           {
    2482             :             
    2483             :                   //cerr << "HASMOD " << visModelData_p.hasModel(msId(), fieldId(), spectralWindow()) << endl;
    2484           0 :             visModelData_p->init(*this);
    2485             :             ////This bit can be removed when we do not support old model vesions saved
    2486           0 :             if(!(visModelData_p->isVersion2())){
    2487           0 :                   if(visModelData_p->hasModel(msId(), fieldId(), spectralWindow()) ==-1){
    2488           0 :                           if(hasmodkey){
    2489             :                                   //String whichrec=visIter_p->ms().keywordSet().asString(modelkey);
    2490           0 :                                   TableRecord modrec;
    2491           0 :                                   if(visModelData_p->getModelRecordI(modelkey, modrec, visIter_p->ms())){
    2492           0 :                                           visModelData_p->addModel(modrec, Vector<Int>(1, msId()), *this);
    2493             :                                   }
    2494           0 :                           }
    2495             :                   }
    2496             :             }
    2497             :             ////////////////////////////
    2498           0 :                   visModelData_p->getModelVis(*this);
    2499             :           }
    2500             :           else
    2501             :           {
    2502         200 :                   visIter_p->visibility(modelVisCube_p, whichOne);
    2503             :           }
    2504         200 :   }
    2505         200 :     return modelVisCube_p;
    2506             :     break;
    2507          60 :   case VisibilityIterator::Corrected:
    2508          60 :     CheckVisIter1 (" (Corrected)");
    2509          60 :     correctedVisCubeOK_p = true;
    2510          60 :     return visIter_p->visibility(correctedVisCube_p, whichOne);
    2511             :     break;
    2512           0 :   case VisibilityIterator::Observed:
    2513             :   default:
    2514           0 :     CheckVisIter1 (" (Observed)");
    2515           0 :     visCubeOK_p = true;
    2516           0 :     return visIter_p->visibility(visCube_p, whichOne);
    2517             :     break;
    2518             :   }
    2519             : }
    2520             : 
    2521           0 : Cube<Float>& VisBuffer::fillFloatDataCube()
    2522             : {
    2523           0 :   CheckVisIter ();
    2524           0 :   floatDataCubeOK_p = true;
    2525           0 :   return visIter_p->floatData(floatDataCube_p);
    2526             : }
    2527             : 
    2528         200 : Vector<Float>& VisBuffer::fillWeight()
    2529             : {
    2530         200 :   CheckVisIter ();
    2531         200 :   weightOK_p = true;
    2532         200 :   return visIter_p->weight(weight_p);
    2533             : }
    2534             : 
    2535           0 : Matrix<Float>& VisBuffer::fillWeightMat()
    2536             : {
    2537           0 :   CheckVisIter ();
    2538           0 :   weightMatOK_p = true;
    2539           0 :   return visIter_p->weightMat(weightMat_p);
    2540             : }
    2541             : 
    2542         200 : Cube<Float>& VisBuffer::fillWeightSpectrum()
    2543             : {
    2544         200 :   CheckVisIter ();
    2545         200 :   weightSpectrumOK_p = true;
    2546         200 :   return visIter_p->weightSpectrum(weightSpectrum_p);
    2547             : }
    2548             : 
    2549             : //Matrix<Float>& VisBuffer::fillImagingWeight()
    2550             : //{
    2551             : //  CheckVisIter ();
    2552             : //  imagingWeightOK_p = true;
    2553             : //  return visIter_p->imagingWeight(imagingWeight_p);
    2554             : //}
    2555             : 
    2556           0 : Vector<Float> VisBuffer::feed_pa(Double time) const
    2557             : {
    2558           0 :   return visIter_p->feed_pa(time);
    2559             : }
    2560             : 
    2561           0 : Float VisBuffer::parang0(Double time) const
    2562             : {
    2563           0 :   return visIter_p->parang0(time);
    2564             : }
    2565             : 
    2566           0 : Vector<Float> VisBuffer::parang(Double time) const
    2567             : {
    2568           0 :   return visIter_p->parang(time);
    2569             : }
    2570             : 
    2571           0 : Int VisBuffer::numberAnt () const
    2572             : {
    2573           0 :   return msColumns().antenna().nrow(); /* for single (sub)array only.*/
    2574             : }
    2575             : 
    2576           0 : MDirection VisBuffer::azel0(Double time) const
    2577             : {
    2578           0 :   return visIter_p->azel0(time);
    2579             : }
    2580             : 
    2581           0 : Vector<Double>& VisBuffer::azel0Vec(Double time, Vector<Double>& azelVec) const
    2582             : {
    2583           0 :   MDirection azelMeas = This->azel0(time);
    2584           0 :   azelVec.resize(2);
    2585           0 :   azelVec = azelMeas.getAngle("deg").getValue();
    2586           0 :   return azelVec;
    2587           0 : }
    2588             : 
    2589           0 : Vector<MDirection> VisBuffer::azel(Double time) const
    2590             : {
    2591           0 :   return visIter_p->azel(time);
    2592             : }
    2593             : 
    2594           0 : Matrix<Double>& VisBuffer::azelMat(Double time, Matrix<Double>& azelMat) const
    2595             : {
    2596           0 :   Vector<MDirection> azelMeas = This->azel(time);
    2597           0 :   azelMat.resize(2, azelMeas.nelements());
    2598           0 :   for (uInt iant = 0; iant < azelMeas.nelements(); ++iant) {
    2599           0 :     azelMat.column(iant) = (azelMeas(iant).getAngle("deg").getValue());
    2600             :   }
    2601           0 :   return azelMat;
    2602             : 
    2603           0 : }
    2604             : 
    2605           0 : Double VisBuffer::hourang(Double time) const
    2606             : {
    2607           0 :   return visIter_p->hourang(time);
    2608             : }
    2609             : 
    2610           0 : Vector<Int> VisBuffer::unique(const Vector<Int>& indices) const
    2611             : {
    2612             :   // Filter integer index arrays for unique values
    2613             :   //
    2614           0 :   uInt n = indices.nelements();
    2615           0 :   Vector<Int> uniqIndices(n);
    2616           0 :   if (n > 0) {
    2617             :     // Sort temporary array in place
    2618           0 :     Vector<Int> sortedIndices = indices.copy();
    2619           0 :     GenSort<Int>::sort(sortedIndices);
    2620             : 
    2621             :     // Extract unique elements
    2622           0 :     uniqIndices(0) = sortedIndices(0);
    2623           0 :     uInt nUniq = 1;
    2624           0 :     for (uInt i = 1; i < n; i++) {
    2625           0 :       if (sortedIndices(i) != uniqIndices(nUniq - 1)) {
    2626           0 :         uniqIndices(nUniq++) = sortedIndices(i);
    2627             :       };
    2628             :     };
    2629           0 :     uniqIndices.resize(nUniq, true);
    2630           0 :   };
    2631           0 :   return uniqIndices;
    2632           0 : }
    2633             : 
    2634             : void
    2635           0 : VisBuffer::copyMsInfo (Int & msID, Bool & msOk, Bool & newMs) const
    2636             : {
    2637           0 :     msID = msId();
    2638           0 :     msOk = msOK_p;
    2639           0 :     newMs = newMS_p;
    2640           0 : }
    2641             : 
    2642             : 
    2643         999 : Bool VisBuffer::checkMSId()
    2644             : {
    2645             :   //if this is not a new iteration then don't even check;
    2646             :   //Let the state be
    2647         999 :   if (msOK_p) {
    2648         798 :     return false;
    2649             :   }
    2650             : 
    2651         201 :   if (visIter_p != static_cast<ROVisibilityIterator *> (0)) {
    2652             : 
    2653         201 :     if (oldMSId_p != visIter_p->msId()) {
    2654             : 
    2655           1 :       oldMSId_p = visIter_p->msId();
    2656           1 :       newMS_p = true;
    2657             :     } else {
    2658         200 :       newMS_p = false;
    2659             :     }
    2660             : 
    2661         201 :     msOK_p = true;
    2662         201 :     return newMS_p;
    2663             : 
    2664             :   } else {
    2665           0 :     return newMS_p;
    2666             :   }
    2667             : 
    2668             :   return false;
    2669             : }
    2670             : 
    2671             : VisBuffer *
    2672           0 : VisBuffer::clone () const
    2673             : {
    2674           0 :     return new VisBuffer (* this);
    2675             : }
    2676             : 
    2677             : void
    2678           0 : VisBuffer::dirtyComponentsAdd (const VbDirtyComponents & dirtyComponents)
    2679             : {
    2680           0 :     dirtyComponents_p = dirtyComponents_p + dirtyComponents;
    2681           0 : }
    2682             : 
    2683             : void
    2684           0 : VisBuffer::dirtyComponentsAdd (VisBufferComponents::EnumType component)
    2685             : {
    2686           0 :     dirtyComponents_p = dirtyComponents_p + VbDirtyComponents::singleton (component);
    2687           0 : }
    2688             : 
    2689             : 
    2690             : void
    2691           0 : VisBuffer::dirtyComponentsClear ()
    2692             : {
    2693           0 :     dirtyComponents_p = VbDirtyComponents::none();
    2694           0 : }
    2695             : 
    2696             : VbDirtyComponents
    2697           0 : VisBuffer::dirtyComponentsGet () const
    2698             : {
    2699           0 :     return dirtyComponents_p;
    2700             : }
    2701             : 
    2702             : 
    2703             : void
    2704           0 : VisBuffer::dirtyComponentsSet (const VbDirtyComponents & dirtyComponents)
    2705             : {
    2706           0 :     dirtyComponents_p = dirtyComponents;
    2707           0 : }
    2708             : 
    2709             : void
    2710           0 : VisBuffer::dirtyComponentsSet (VisBufferComponents::EnumType component)
    2711             : {
    2712           0 :     dirtyComponents_p = VbDirtyComponents::singleton (component);
    2713           0 : }
    2714             : 
    2715           0 : Bool VisBuffer::fetch(const asyncio::PrefetchColumns *pfc)
    2716             : {
    2717           0 :   Bool success = true;
    2718             : 
    2719           0 :   for(asyncio::PrefetchColumns::const_iterator c = pfc->begin();
    2720           0 :       c != pfc->end(); ++c){
    2721           0 :     switch(*c){
    2722           0 :     case VisBufferComponents::Ant1:
    2723           0 :       This->antenna1();
    2724           0 :       break;
    2725           0 :     case VisBufferComponents::Ant2:
    2726           0 :       This->antenna2();
    2727           0 :       break;
    2728           0 :     case VisBufferComponents::ArrayId:
    2729           0 :       This->arrayId();
    2730           0 :       break;
    2731           0 :     case VisBufferComponents::Channel:
    2732           0 :       This->channel();
    2733           0 :       break;
    2734           0 :     case VisBufferComponents::CorrType:
    2735           0 :       This->corrType();
    2736           0 :       break;
    2737           0 :     case VisBufferComponents::Corrected:
    2738           0 :       This->correctedVisibility();
    2739           0 :       break;
    2740           0 :     case VisBufferComponents::CorrectedCube:
    2741           0 :       This->correctedVisCube();
    2742           0 :       break;
    2743           0 :     case VisBufferComponents::DataDescriptionId:
    2744           0 :       This->dataDescriptionId();
    2745           0 :       break;
    2746           0 :     case VisBufferComponents::Direction1:
    2747           0 :       This->direction1();
    2748           0 :       break;
    2749           0 :     case VisBufferComponents::Direction2:
    2750           0 :       This->direction2();
    2751           0 :       break;
    2752           0 :     case VisBufferComponents::Exposure:
    2753           0 :       This->exposure();
    2754           0 :       break;
    2755           0 :     case VisBufferComponents::Feed1:
    2756           0 :       This->feed1();
    2757           0 :       break;
    2758           0 :     case VisBufferComponents::Feed1_pa:
    2759           0 :       This->feed1_pa();
    2760           0 :       break;
    2761           0 :     case VisBufferComponents::Feed2:
    2762           0 :       This->feed2();
    2763           0 :       break;
    2764           0 :     case VisBufferComponents::Feed2_pa:
    2765           0 :       This->feed2_pa();
    2766           0 :       break;
    2767           0 :     case VisBufferComponents::FieldId:
    2768           0 :       This->fieldId();
    2769           0 :       break;
    2770           0 :     case VisBufferComponents::Flag:
    2771           0 :       This->flag();
    2772           0 :       break;
    2773           0 :     case VisBufferComponents::FlagCube:
    2774           0 :       This->flagCube();
    2775           0 :       break;
    2776           0 :     case VisBufferComponents::FlagCategory:
    2777           0 :       This->flagCategory();
    2778           0 :       break;
    2779           0 :     case VisBufferComponents::FlagRow:
    2780           0 :       This->flagRow();
    2781           0 :       break;
    2782           0 :     case VisBufferComponents::Freq:
    2783           0 :       This->frequency();
    2784           0 :       break;
    2785           0 :     case VisBufferComponents::ImagingWeight:
    2786             :       // This->imagingweight();                // do not fill this one
    2787           0 :       break;
    2788           0 :     case VisBufferComponents::Model:
    2789           0 :       This->modelVisibility();
    2790           0 :       break;
    2791           0 :     case VisBufferComponents::ModelCube:
    2792           0 :       This->modelVisCube();
    2793           0 :       break;
    2794           0 :     case VisBufferComponents::NChannel:
    2795           0 :       This->nChannel();
    2796           0 :       break;
    2797           0 :     case VisBufferComponents::NCorr:
    2798           0 :       This->nCorr();
    2799           0 :       break;
    2800           0 :     case VisBufferComponents::NRow:
    2801           0 :       This->nRow();
    2802           0 :       break;
    2803           0 :     case VisBufferComponents::ObservationId:
    2804           0 :       This->observationId();
    2805           0 :       break;
    2806           0 :     case VisBufferComponents::Observed:
    2807           0 :       This->visibility();
    2808           0 :       break;
    2809           0 :     case VisBufferComponents::ObservedCube:
    2810           0 :       This->visCube();
    2811           0 :       break;
    2812           0 :     case VisBufferComponents::PhaseCenter:
    2813           0 :       This->phaseCenter();
    2814           0 :       break;
    2815           0 :     case VisBufferComponents::PolFrame:
    2816           0 :       This->polFrame();
    2817           0 :       break;
    2818           0 :     case VisBufferComponents::ProcessorId:
    2819           0 :       This->processorId();
    2820           0 :       break;
    2821           0 :     case VisBufferComponents::Scan:
    2822           0 :       This->scan();
    2823           0 :       break;
    2824           0 :     case VisBufferComponents::Sigma:
    2825           0 :       This->sigma();
    2826           0 :       break;
    2827           0 :     case VisBufferComponents::SigmaMat:
    2828           0 :       This->sigmaMat();
    2829           0 :       break;
    2830           0 :     case VisBufferComponents::SpW:
    2831           0 :       This->spectralWindow();
    2832           0 :       break;
    2833           0 :     case VisBufferComponents::StateId:
    2834           0 :       This->stateId();
    2835           0 :       break;
    2836           0 :     case VisBufferComponents::Time:
    2837           0 :       This->time();
    2838           0 :       break;
    2839           0 :     case VisBufferComponents::TimeCentroid:
    2840           0 :       This->timeCentroid();
    2841           0 :       break;
    2842           0 :     case VisBufferComponents::TimeInterval:
    2843           0 :       This->timeInterval();
    2844           0 :       break;
    2845           0 :     case VisBufferComponents::Uvw:
    2846           0 :       This->uvw();
    2847           0 :       break;
    2848           0 :     case VisBufferComponents::UvwMat:
    2849           0 :       This->uvwMat();
    2850           0 :       break;
    2851           0 :     case VisBufferComponents::Weight:
    2852           0 :       This->weight();
    2853           0 :       break;
    2854           0 :     case VisBufferComponents::WeightMat:
    2855           0 :       This->weightMat();
    2856           0 :       break;
    2857           0 :     case VisBufferComponents::WeightSpectrum:
    2858           0 :       This->weightSpectrum();
    2859           0 :       break;
    2860           0 :     default:
    2861           0 :       throw(AipsError("Unrecognized column type"));
    2862             :     }
    2863             :   }
    2864           0 :   return success;
    2865             : }
    2866             : 
    2867           0 : VisBufferAutoPtr::VisBufferAutoPtr ()
    2868             : {
    2869           0 :     visBuffer_p = NULL;
    2870           0 : }
    2871             : 
    2872           0 : VisBufferAutoPtr::VisBufferAutoPtr (VisBufferAutoPtr & other)
    2873             : {
    2874             :     // Take ownership of the other's object
    2875             : 
    2876           0 :     visBuffer_p = other.visBuffer_p;
    2877           0 :     other.visBuffer_p = NULL;
    2878           0 : }
    2879             : 
    2880           0 : VisBufferAutoPtr::VisBufferAutoPtr (VisBuffer & vb)
    2881             : {
    2882           0 :     constructVb (& vb);
    2883           0 : }
    2884             : 
    2885           0 : VisBufferAutoPtr::VisBufferAutoPtr (VisBuffer * vb)
    2886             : {
    2887           0 :     constructVb (vb);
    2888           0 : }
    2889             : 
    2890           0 : VisBufferAutoPtr::VisBufferAutoPtr (ROVisibilityIterator & rovi)
    2891             : {
    2892           0 :     construct (& rovi, true);
    2893           0 : }
    2894             : 
    2895             : 
    2896           0 : VisBufferAutoPtr::VisBufferAutoPtr (ROVisibilityIterator * rovi)
    2897             : {
    2898           0 :     construct (rovi, true);
    2899           0 : }
    2900             : 
    2901           0 : VisBufferAutoPtr::~VisBufferAutoPtr ()
    2902             : {
    2903           0 :     delete visBuffer_p;
    2904           0 : }
    2905             : 
    2906             : VisBufferAutoPtr &
    2907           0 : VisBufferAutoPtr::operator= (VisBufferAutoPtr & other)
    2908             : {
    2909           0 :     if (this != & other){
    2910             : 
    2911           0 :         delete visBuffer_p;  // release any currently referenced object
    2912             : 
    2913             :         // Take ownership of the other's object
    2914             : 
    2915           0 :         visBuffer_p = other.visBuffer_p;
    2916           0 :         other.visBuffer_p = NULL;
    2917             :     }
    2918             : 
    2919           0 :     return * this;
    2920             : }
    2921             : 
    2922             : VisBuffer &
    2923           0 : VisBufferAutoPtr::operator* () const
    2924             : {
    2925           0 :     assert (visBuffer_p != NULL);
    2926             : 
    2927           0 :     return * visBuffer_p;
    2928             : }
    2929             : 
    2930             : VisBuffer *
    2931           0 : VisBufferAutoPtr::operator-> () const
    2932             : {
    2933           0 :     assert (visBuffer_p != NULL);
    2934             : 
    2935           0 :     return visBuffer_p;
    2936             : }
    2937             : 
    2938             : void
    2939           0 : VisBufferAutoPtr::construct (ROVisibilityIterator * rovi, Bool attachVi)
    2940             : {
    2941           0 :     if (rovi->isAsynchronous ()){
    2942             : 
    2943             :         // Create an asynchronous VisBuffer
    2944             : 
    2945             :         VisBufferAsyncWrapper * vba;
    2946             : 
    2947           0 :         if (attachVi){
    2948           0 :             vba = new VisBufferAsyncWrapper (* rovi);
    2949             :         }
    2950             :         else{
    2951           0 :             vba = new VisBufferAsyncWrapper ();
    2952             :         }
    2953             : 
    2954           0 :         visBuffer_p = vba;
    2955             :     }
    2956             :     else{
    2957             : 
    2958             :         // This is a synchronous VI so just create a synchronous VisBuffer.
    2959             : 
    2960           0 :         if (attachVi){
    2961           0 :             visBuffer_p = new VisBuffer (* rovi);
    2962             :         }
    2963             :         else{
    2964           0 :             visBuffer_p = new VisBuffer ();
    2965             :         }
    2966             :     }
    2967           0 : }
    2968             : 
    2969             : void
    2970           0 : VisBufferAutoPtr::constructVb (VisBuffer * vb)
    2971             : {
    2972           0 :     VisBufferAsync * vba = dynamic_cast<VisBufferAsync *> (vb);
    2973             : 
    2974           0 :     if (vba != NULL){
    2975             : 
    2976             :         // Create an asynchronous VisBuffer
    2977             : 
    2978           0 :         VisBufferAsyncWrapper * vbaNew = new VisBufferAsyncWrapper (* vba);
    2979             : 
    2980           0 :         visBuffer_p = vbaNew;
    2981             :     }
    2982             :     else{
    2983             : 
    2984             :         // This is a synchronous VI so just create a synchronous VisBuffer.
    2985             : 
    2986           0 :         visBuffer_p = new VisBuffer (* vb);
    2987             :     }
    2988           0 : }
    2989             : 
    2990             : VisBuffer *
    2991           0 : VisBufferAutoPtr::get () const
    2992             : {
    2993           0 :     return visBuffer_p;
    2994             : }
    2995             : 
    2996             : 
    2997             : 
    2998             : 
    2999             : VisBuffer *
    3000           0 : VisBufferAutoPtr::release ()
    3001             : {
    3002           0 :     VisBuffer * result = visBuffer_p;
    3003           0 :     visBuffer_p = NULL;
    3004             : 
    3005           0 :     return result;
    3006             : }
    3007             : 
    3008             : 
    3009             : void
    3010           0 : VisBufferAutoPtr::set (VisBuffer & vb)
    3011             : {
    3012           0 :     delete visBuffer_p;
    3013           0 :     visBuffer_p = & vb;
    3014           0 : }
    3015             : 
    3016             : void
    3017           0 : VisBufferAutoPtr::set (VisBuffer * vb)
    3018             : {
    3019           0 :     delete visBuffer_p;
    3020           0 :     visBuffer_p = vb;
    3021           0 : }
    3022             : 
    3023             : void
    3024           0 : VisBufferAutoPtr::set (ROVisibilityIterator * rovi, Bool attachIt)
    3025             : {
    3026           0 :     delete visBuffer_p;
    3027           0 :     construct (rovi, attachIt);
    3028           0 : }
    3029             : 
    3030             : void
    3031           0 : VisBufferAutoPtr::set (ROVisibilityIterator & rovi, Bool attachIt)
    3032             : {
    3033           0 :     set (& rovi, attachIt);
    3034           0 : }
    3035             : 
    3036             : const VbDirtyComponents VbDirtyComponents::all_p = initializeAll ();
    3037             : 
    3038             : VbDirtyComponents
    3039           0 : VbDirtyComponents::operator+ (const VbDirtyComponents & other) const
    3040             : {
    3041           0 :     VbDirtyComponents result = * this;
    3042             : 
    3043           0 :     result.set_p.insert (other.begin(), other.end());
    3044             : 
    3045           0 :     return result;
    3046           0 : }
    3047             : 
    3048             : 
    3049             : 
    3050             : VbDirtyComponents::const_iterator
    3051           0 : VbDirtyComponents::begin () const
    3052             : {
    3053           0 :     return set_p.begin();
    3054             : }
    3055             : 
    3056             : Bool
    3057           0 : VbDirtyComponents::contains (VisBufferComponents::EnumType component) const
    3058             : {
    3059           0 :     return utilj::containsKey (component, set_p);
    3060             : }
    3061             : 
    3062             : VbDirtyComponents::const_iterator
    3063           0 : VbDirtyComponents::end () const
    3064             : {
    3065           0 :     return set_p.end();
    3066             : }
    3067             : 
    3068             : VbDirtyComponents
    3069           0 : VbDirtyComponents::all ()
    3070             : {
    3071           0 :     return all_p;
    3072             : }
    3073             : 
    3074             : VbDirtyComponents
    3075           0 : VbDirtyComponents::exceptThese (VisBufferComponents::EnumType component, ...)
    3076             : {
    3077             :     va_list vaList;
    3078             : 
    3079           0 :     va_start (vaList, component);
    3080             : 
    3081           0 :     VisBufferComponents::EnumType c = component;
    3082           0 :     VbDirtyComponents dirtyComponents = all();
    3083             : 
    3084           0 :     while (c != VisBufferComponents::Unknown){
    3085             : 
    3086           0 :         ThrowIf (! all().contains (c), "Not a writable VB component: " + String::toString (c));
    3087             : 
    3088           0 :         dirtyComponents.set_p.erase (c);
    3089           0 :         c = (VisBufferComponents::EnumType) va_arg (vaList, Int);
    3090             :     }
    3091             : 
    3092           0 :     va_end (vaList);
    3093             : 
    3094           0 :     return dirtyComponents;
    3095             : 
    3096           0 : }
    3097             : 
    3098             : VbDirtyComponents
    3099          10 : VbDirtyComponents::initializeAll ()
    3100             : {
    3101             : 
    3102          10 :     VbDirtyComponents all;
    3103             : 
    3104             :     VisBufferComponents::EnumType
    3105          10 :     writableComponents [] = {VisBufferComponents::Corrected,
    3106             :                              VisBufferComponents::CorrectedCube,
    3107             :                              VisBufferComponents::Flag,
    3108             :                              VisBufferComponents::FlagCube,
    3109             :                              VisBufferComponents::FlagRow,
    3110             :                              VisBufferComponents::Model,
    3111             :                              VisBufferComponents::ModelCube,
    3112             :                              VisBufferComponents::Observed,
    3113             :                              VisBufferComponents::ObservedCube,
    3114             :                              VisBufferComponents::Sigma,
    3115             :                              VisBufferComponents::SigmaMat,
    3116             :                              VisBufferComponents::Weight,
    3117             :                              VisBufferComponents::WeightMat,
    3118             :                              VisBufferComponents::Unknown};
    3119             : 
    3120         140 :     for (Int i = 0; ; i++){
    3121             : 
    3122         140 :         if (writableComponents [i] == VisBufferComponents::Unknown){
    3123          10 :             break;
    3124             :         }
    3125             : 
    3126         130 :         all.set_p.insert (writableComponents [i]);
    3127             :     }
    3128             : 
    3129          20 :     return all;
    3130           0 : }
    3131             : 
    3132             : VbDirtyComponents
    3133           0 : VbDirtyComponents::none ()
    3134             : {
    3135           0 :     return VbDirtyComponents ();
    3136             : }
    3137             : 
    3138             : VbDirtyComponents
    3139           0 : VbDirtyComponents::singleton (VisBufferComponents::EnumType component)
    3140             : {
    3141           0 :     ThrowIf (! all().contains (component), "Not a writable VB component.");
    3142           0 :     VbDirtyComponents result;
    3143           0 :     result.set_p.insert (component);
    3144             : 
    3145           0 :     return result;
    3146           0 : }
    3147             : 
    3148             : VbDirtyComponents
    3149           0 : VbDirtyComponents::these (VisBufferComponents::EnumType component, ...)
    3150             : {
    3151             :     va_list vaList;
    3152             : 
    3153           0 :     va_start (vaList, component);
    3154             : 
    3155           0 :     VisBufferComponents::EnumType c = component;
    3156           0 :     VbDirtyComponents dirtyComponents;
    3157             : 
    3158           0 :     while (c != VisBufferComponents::Unknown){
    3159             : 
    3160           0 :         ThrowIf (! all().contains (c), "Not a writable VB component: " + String::toString (c));
    3161             : 
    3162           0 :         dirtyComponents.set_p.insert (c);
    3163           0 :         c = (VisBufferComponents::EnumType ) va_arg (vaList, Int);
    3164             :     }
    3165             : 
    3166           0 :     va_end (vaList);
    3167             : 
    3168           0 :     return dirtyComponents;
    3169           0 : }
    3170             : 
    3171             : 
    3172             : 
    3173             : 
    3174             : } //# NAMESPACE CASA - END
    3175             : 

Generated by: LCOV version 1.16