Line data Source code
1 : //# PBMath1D.cc: Implementation for PBMath1D
2 : //# Copyright (C) 1996,1997,1998,1999,2000,2001,2002,2003
3 : //# Associated Universities, Inc. Washington DC, USA.
4 : //#
5 : //# This library is free software; you can redistribute it and/or modify it
6 : //# under the terms of the GNU Library General Public License as published by
7 : //# the Free Software Foundation; either version 2 of the License, or (at your
8 : //# option) any later version.
9 : //#
10 : //# This library is distributed in the hope that it will be useful, but WITHOUT
11 : //# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 : //# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public
13 : //# License for more details.
14 : //#
15 : //# You should have received a copy of the GNU Library General Public License
16 : //# along with this library; if not, write to the Free Software Foundation,
17 : //# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
18 : //#
19 : //# Correspondence concerning AIPS++ should be adressed as follows:
20 : //# Internet email: casa-feedback@nrao.edu.
21 : //# Postal address: AIPS++ Project Office
22 : //# National Radio Astronomy Observatory
23 : //# 520 Edgemont Road
24 : //# Charlottesville, VA 22903-2475 USA
25 : //#
26 : //#
27 : //# $Id$
28 :
29 : #include <casacore/casa/aips.h>
30 : #include <casacore/casa/BasicSL/Complex.h>
31 : #include <casacore/casa/Arrays/Matrix.h>
32 : #include <casacore/casa/Arrays/Vector.h>
33 : #include <synthesis/TransformMachines/PBMath1D.h>
34 :
35 : #include <casacore/images/Regions/ImageRegion.h>
36 : #include <casacore/images/Images/ImageInterface.h>
37 :
38 : #include <components/ComponentModels/SkyComponent.h>
39 : #include <components/ComponentModels/Flux.h>
40 : #include <components/ComponentModels/ComponentShape.h>
41 :
42 : #include <casacore/lattices/Lattices/LatticeIterator.h>
43 : #include <casacore/lattices/Lattices/LatticeStepper.h>
44 : #include <casacore/lattices/LRegions/LCSlicer.h>
45 : #include <casacore/casa/Arrays/IPosition.h>
46 :
47 : #include <casacore/measures/Measures.h>
48 : #include <casacore/measures/Measures/MeasConvert.h>
49 :
50 : #include <casacore/coordinates/Coordinates/CoordinateSystem.h>
51 : #include <casacore/coordinates/Coordinates/DirectionCoordinate.h>
52 : #include <casacore/coordinates/Coordinates/SpectralCoordinate.h>
53 : #include <casacore/coordinates/Coordinates/StokesCoordinate.h>
54 : #include <casacore/coordinates/Coordinates/Projection.h>
55 : #include <casacore/coordinates/Coordinates/CoordinateUtil.h>
56 :
57 : #include <casacore/casa/BasicSL/String.h>
58 : #include <casacore/casa/Utilities/Assert.h>
59 : #include <casacore/casa/Exceptions/Error.h>
60 :
61 :
62 :
63 : using namespace casacore;
64 : namespace casa { //# NAMESPACE CASA - BEGIN
65 :
66 290 : PBMath1D::PBMath1D()
67 290 : : composite_p(2048)
68 : {
69 290 : };
70 :
71 :
72 2439 : PBMath1D::PBMath1D(Quantity maximumRadius,
73 : Quantity refFreq,
74 : Bool isThisVP,
75 : BeamSquint squint,
76 2439 : Bool useSymmetricBeam) :
77 : PBMathInterface(isThisVP, squint, useSymmetricBeam),
78 2439 : wideFit_p(false),maximumRadius_p(maximumRadius),
79 2439 : refFreq_p(refFreq),
80 4878 : composite_p(2048)
81 : {
82 2439 : fScale_p = refFreq_p.getValue("GHz"); // scale is ratio of refFreq_p to 1GHz
83 2439 : refFreq_p = Quantity( 1.0, "GHz"); // internal Ref Freq is now 1GHz
84 : // convert instantiation parameters to GHz*arcmin reference
85 2439 : maximumRadius_p = maximumRadius_p * fScale_p;
86 2439 : scale_p = 1.0/(C::arcmin * C::giga);
87 2439 : };
88 :
89 2707 : PBMath1D::~PBMath1D()
90 : {
91 2707 : };
92 :
93 :
94 :
95 :
96 : ImageRegion*
97 0 : PBMath1D::extent (const ImageInterface<Complex>& in, const MDirection& pointDir,
98 : const Int row, const Float fPad, const Int iChan,
99 : const SkyJones::SizeType sizeType)
100 : {
101 : if (row) {} // Not used yet
102 :
103 0 : CoordinateSystem coords=in.coordinates();
104 :
105 0 : Vector<Float> blc(4);
106 0 : Vector<Float> trc(4);
107 0 : blc.set(0.0);
108 0 : trc.set(0.0);
109 : {
110 : Int stokesIndex, k1, k2;
111 0 : CoordinateUtil::findStokesAxis(stokesIndex, k1, k2, coords);
112 0 : blc(stokesIndex) = 0.0;
113 0 : trc(stokesIndex) = in.shape()(stokesIndex)-1;
114 0 : Int spectralIndex=CoordinateUtil::findSpectralAxis(coords);
115 0 : blc(spectralIndex) = 0.0;
116 0 : trc(spectralIndex) = in.shape()(spectralIndex)-1;
117 : }
118 0 : extentguts(coords, pointDir, fPad, iChan, blc, trc);
119 0 : refineSize(blc, trc, in.shape(), sizeType);
120 0 : LCSlicer lcs( blc, trc );
121 0 : return ( new ImageRegion(lcs) );
122 0 : };
123 : ImageRegion*
124 0 : PBMath1D::extent (const ImageInterface<Float>& in, const MDirection& pointDir,
125 : const Int row, const Float fPad, const Int iChan,
126 : const SkyJones::SizeType sizeType)
127 : {
128 : if (row) {} // unused
129 0 : CoordinateSystem coords=in.coordinates();
130 0 : Vector<Float> blc(4);
131 0 : Vector<Float> trc(4);
132 0 : blc.set(0.0);
133 0 : trc.set(0.0);
134 : {
135 : Int stokesIndex, k1, k2;
136 0 : CoordinateUtil::findStokesAxis(stokesIndex, k1, k2, coords);
137 0 : blc(stokesIndex) = 0.0;
138 0 : trc(stokesIndex) = in.shape()(stokesIndex)-1;
139 0 : Int spectralIndex=CoordinateUtil::findSpectralAxis(coords);
140 0 : blc(spectralIndex) = 0.0;
141 0 : trc(spectralIndex) = in.shape()(spectralIndex)-1;
142 : }
143 0 : extentguts(coords, pointDir, fPad, iChan, blc, trc);
144 0 : refineSize(blc, trc, in.shape(), sizeType);
145 0 : LCSlicer lcs( blc, trc );
146 0 : return ( new ImageRegion(lcs) );
147 0 : };
148 :
149 :
150 :
151 390 : Int PBMath1D::support(const CoordinateSystem& cs){
152 390 : Int directionIndex=cs.findCoordinate(Coordinate::DIRECTION);
153 390 : AlwaysAssert(directionIndex>=0, AipsError);
154 : DirectionCoordinate
155 390 : directionCoord=cs.directionCoordinate(directionIndex);
156 :
157 390 : Vector<String> dirunit=directionCoord.worldAxisUnits();
158 :
159 : Double freq;
160 : {
161 390 : Int spectralIndex=cs.findCoordinate(Coordinate::SPECTRAL);
162 390 : AlwaysAssert(spectralIndex>=0, AipsError);
163 : SpectralCoordinate
164 390 : spectralCoord=cs.spectralCoordinate(spectralIndex);
165 :
166 :
167 390 : Vector<String> units(1);
168 390 : units = "Hz";
169 390 : spectralCoord.setWorldAxisUnits(units);
170 :
171 390 : Vector<Double> spectralWorld(1);
172 390 : Vector<Double> spectralPixel(1);
173 390 : spectralPixel(0) = 0;
174 390 : spectralCoord.toWorld(spectralWorld, spectralPixel);
175 390 : freq = spectralWorld(0);
176 390 : }
177 :
178 :
179 :
180 : // maximumRadius_p: maximum radius at 1 GHz frequency
181 : //Double delta = maximumRadius_p.getValue("rad") * 1.0e+9 / freq;
182 :
183 :
184 : //Number of pix at freq
185 390 : Double numpix=maximumRadius_p.getValue(dirunit(0))/fabs(directionCoord.increment()(0))*2.0*1.0e9/freq ;
186 :
187 :
188 390 : return Int(floor(numpix));
189 :
190 :
191 390 : }
192 0 : void PBMath1D::refineSize(Vector<Float>& blc, Vector<Float>& trc, const IPosition& shape,
193 : SkyJones::SizeType sizeType)
194 : {
195 : // Round Down and Up for BLC and TRC, make them integers
196 0 : Vector<Bool> blcTrouble(blc.nelements(), false);
197 0 : Vector<Bool> trcTrouble(blc.nelements(), false);
198 0 : Vector<Float> d1(2);
199 0 : Vector<Float> d2(2);
200 :
201 0 : for (Int i=0; i<2; i++) {
202 :
203 0 : blc(i) = (Int)(blc(i));
204 0 : trc(i) = (Int)(trc(i)+0.99); // OK, its ALMOST rounding up
205 :
206 0 : if (blc(i) < 0) {
207 0 : blc(i) = 0;
208 0 : blcTrouble(i) = true;
209 : }
210 0 : if (trc(i) > shape(i)-1) {
211 0 : trc(i) = shape(i)-1;
212 0 : trcTrouble(i) = true;
213 : }
214 :
215 0 : d1(i) = trc(i) - blc(i) + 1;
216 :
217 0 : if (sizeType == SkyJones::POWEROF2) {
218 0 : d2(i) = (Int)( pow( 2.0, (Double)(Int)(log((Double)d1(i))/log(2.0) + 1.0) )+0.01);
219 0 : } else if (sizeType == SkyJones::COMPOSITE) {
220 0 : d2(i) = composite_p.nextLarger( (Int)d1(i) );
221 : } else {
222 0 : d2(i) = d1(i);
223 : }
224 :
225 : // Deal with cases:
226 :
227 0 : if (d2(i) >= shape(i)) {
228 : // requested size doesn't even fit into image:
229 : // ----- revert to image size
230 0 : blc(i) = 0; trc(i) = shape(i)-1;
231 :
232 0 : } else if (blcTrouble(i)) {
233 : // requseted size fits, but buts up against the "bottom";
234 : // ----- make full adjustment to the "top"
235 0 : blc(i) = 0; trc(i) = d2(i)-1;
236 :
237 0 : } else if (trcTrouble(i)) {
238 : // requseted size fits, but buts up against the "top";
239 : // ----- make full adjustment to the "bottom"
240 0 : trc(i) = shape(i)-1; blc(i) = shape(i) - d2(i);
241 :
242 : } else {
243 : // requested subimage does not exceed starting image
244 : // ----- do appropriate thing, based on even or odd
245 0 : Float diff = d2(i) - d1(i);
246 0 : Bool even = (Bool)( (Int)diff == 2 * (Int)(diff/2) );
247 0 : if (even) {
248 0 : blc(i) = blc(i) - diff/2;
249 0 : trc(i) = trc(i) + diff/2;
250 : } else {
251 0 : blc(i) = blc(i) - diff/2 + 0.5;
252 0 : trc(i) = trc(i) + diff/2 + 0.5;
253 : }
254 : }
255 : }
256 0 : };
257 :
258 :
259 :
260 :
261 : void
262 0 : PBMath1D::extentguts (const CoordinateSystem& coords, const MDirection& pointDir,
263 : const Float fPad, const Int iChan, Vector<Float>& blc, Vector<Float>& trc)
264 :
265 : {
266 0 : Int directionIndex=coords.findCoordinate(Coordinate::DIRECTION);
267 0 : AlwaysAssert(directionIndex>=0, AipsError);
268 : DirectionCoordinate
269 0 : directionCoord=coords.directionCoordinate(directionIndex);
270 0 : Vector<String> units(2); units = "deg";
271 0 : directionCoord.setWorldAxisUnits(units);
272 :
273 : // convert to the EPOCH of these coords
274 0 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
275 0 : MDirection pointDirE;
276 0 : if (t2 != directionCoord.directionType()) {
277 0 : MDirection::Convert converter;
278 0 : ObsInfo oi=coords.obsInfo();
279 0 : converter.setOut(MDirection::Ref(directionCoord.directionType(),
280 0 : MeasFrame(oi.obsDate(), oi.telescopePosition())));
281 0 : pointDirE = converter(pointDir);
282 0 : } else {
283 0 : pointDirE = pointDir;
284 : }
285 :
286 : Double freq;
287 : {
288 0 : Int spectralIndex=coords.findCoordinate(Coordinate::SPECTRAL);
289 0 : AlwaysAssert(spectralIndex>=0, AipsError);
290 : SpectralCoordinate
291 0 : spectralCoord=coords.spectralCoordinate(spectralIndex);
292 :
293 0 : units.resize(1);
294 0 : units = "Hz";
295 0 : spectralCoord.setWorldAxisUnits(units);
296 :
297 0 : Vector<Double> spectralWorld(1);
298 0 : Vector<Double> spectralPixel(1);
299 0 : spectralPixel(0) = iChan;
300 0 : spectralCoord.toWorld(spectralWorld, spectralPixel);
301 0 : freq = spectralWorld(0);
302 0 : }
303 :
304 0 : Vector<Double> edgeWorld(2);
305 0 : Vector<Double> edge1Pixel(2);
306 0 : Vector<Double> edge2Pixel(2);
307 :
308 :
309 : // maximumRadius_p: maximum radius at 1 GHz frequency
310 0 : Double delta = maximumRadius_p.getValue("rad") * 1.0e+9 / freq;
311 : {
312 0 : MDirection edgeDir( pointDirE );
313 0 : edgeDir.shift( delta, 0.0, true);
314 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
315 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
316 0 : directionCoord.toPixel(edge1Pixel, edgeWorld);
317 0 : }
318 : {
319 0 : MDirection edgeDir( pointDirE );
320 0 : edgeDir.shift( -delta, 0.0, true);
321 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
322 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
323 0 : directionCoord.toPixel(edge2Pixel, edgeWorld);
324 0 : }
325 0 : blc(0) = min( edge1Pixel(0), edge2Pixel(0) );
326 0 : trc(0) = max( edge1Pixel(0), edge2Pixel(0) );
327 0 : if (fPad > 0.1) {
328 0 : Float pad = (trc(0) - blc(0)) * (fPad - 1.0)/2;
329 0 : blc(0) = blc(0) - pad;
330 0 : trc(0) = trc(0) + pad;
331 : }
332 : {
333 0 : MDirection edgeDir( pointDirE );
334 0 : edgeDir.shift( 0.0, delta, true);
335 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
336 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
337 0 : directionCoord.toPixel(edge1Pixel, edgeWorld);
338 0 : }
339 : {
340 0 : MDirection edgeDir( pointDirE );
341 0 : edgeDir.shift( 0.0, -delta, true);
342 0 : edgeWorld(0) = edgeDir.getAngle().getValue("deg")(0);
343 0 : edgeWorld(1) = edgeDir.getAngle().getValue("deg")(1);
344 0 : directionCoord.toPixel(edge2Pixel, edgeWorld);
345 0 : }
346 0 : blc(1) = min( edge1Pixel(1), edge2Pixel(1) );
347 0 : trc(1) = max( edge1Pixel(1), edge2Pixel(1) );
348 0 : if (fPad > 0.1) {
349 0 : Float pad = (trc(1) - blc(1)) * (fPad - 1.0)/2;
350 0 : blc(1) = blc(1) - pad;
351 0 : trc(1) = trc(1) + pad;
352 : }
353 0 : };
354 :
355 :
356 :
357 :
358 1184 : void PBMath1D::symmetrizeSquintedBeam()
359 : {
360 : // eventually we need to create the 2D squinted RR and LL
361 : // beams and average them. For now, we just return the
362 : // unsquinted beams
363 :
364 1184 : if (vp_p.nelements() == 0) {
365 0 : fillPBArray();
366 : }
367 1184 : esvp_p = vp_p;
368 1184 : };
369 :
370 : ImageInterface<Complex>&
371 3429 : PBMath1D::apply(const ImageInterface<Complex>& in,
372 : ImageInterface<Complex>& out,
373 : const MDirection& pointDir,
374 : const Quantity parAngle,
375 : const BeamSquint::SquintType doSquint,
376 : Bool inverse,
377 : Bool conjugate,
378 : Int iPower,
379 : Float cutoff,
380 : Bool forward)
381 : {
382 6858 : LogIO os(LogOrigin("PBMath1D", "apply"));
383 : // Check that in and out are comparable:
384 3429 : if (in.shape() != out.shape()) {
385 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different shapes"));
386 : }
387 3429 : CoordinateSystem coords=in.coordinates();
388 3429 : if (!coords.near(out.coordinates()) ) {
389 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different coordinates"));
390 : }
391 :
392 3429 : Int directionIndex=coords.findCoordinate(Coordinate::DIRECTION);
393 3429 : AlwaysAssert(directionIndex>=0, AipsError);
394 : DirectionCoordinate
395 3429 : directionCoord=coords.directionCoordinate(directionIndex);
396 3429 : Vector<String> units(2); units = "deg";
397 3429 : directionCoord.setWorldAxisUnits(units);
398 :
399 : // convert to the EPOCH of these coords
400 3429 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
401 3429 : MDirection pointDirE;
402 :
403 :
404 3429 : if (t2 != directionCoord.directionType()) {
405 0 : MDirection::Convert converter;
406 0 : ObsInfo oi=coords.obsInfo();
407 0 : converter.setOut(MDirection::Ref(directionCoord.directionType(),
408 0 : MeasFrame(oi.obsDate(), oi.telescopePosition())));
409 0 : pointDirE = converter(pointDir);
410 0 : } else {
411 3429 : pointDirE = pointDir;
412 : }
413 :
414 3429 : Int stokesIndex=coords.findCoordinate(Coordinate::STOKES);
415 3429 : AlwaysAssert(stokesIndex>=0, AipsError);
416 : StokesCoordinate
417 3429 : stokesCoord=coords.stokesCoordinate(stokesIndex);
418 :
419 3429 : Int spectralIndex=coords.findCoordinate(Coordinate::SPECTRAL);
420 3429 : AlwaysAssert(spectralIndex>=0, AipsError);
421 : SpectralCoordinate
422 3429 : spectralCoord=coords.spectralCoordinate(spectralIndex);
423 :
424 3429 : units.resize(1);
425 3429 : units = "Hz";
426 3429 : spectralCoord.setWorldAxisUnits(units);
427 :
428 3429 : Int nchan=in.shape()(3);
429 :
430 3429 : Vector<Double> pointingCenterWorld(2);
431 3429 : Vector<Double> pointingCenterPixel(2);
432 3429 : Vector<Double> directionPixel(2);
433 :
434 3429 : pointingCenterWorld(0) = pointDirE.getAngle().getValue("deg")(0);
435 3429 : pointingCenterWorld(1) = pointDirE.getAngle().getValue("deg")(1);
436 3429 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
437 3429 : MDirection newpointDirE;
438 3429 : Vector<Double> nonSquintedPointingPixel = pointingCenterPixel.copy();
439 :
440 3429 : os << "pointingCenterWorld " << pointingCenterWorld << LogIO::DEBUGGING;
441 3429 : os << "pointingCenterPixel " << pointingCenterPixel << LogIO::DEBUGGING;
442 :
443 : // Fill in a cache of the frequencies & squints
444 3429 : Vector<Double> spectralWorld(1);
445 3429 : Vector<Double> spectralPixel(1);
446 3429 : Matrix<Double> xSquintPixCache(2, nchan);
447 3429 : Matrix<Double> ySquintPixCache(2, nchan);
448 3429 : Vector<Double> spectralCache(nchan);
449 :
450 : {
451 8823 : for(Int chan=0;chan<nchan;chan++) {
452 5394 : spectralPixel(0)=chan;
453 5394 : if(!spectralCoord.toWorld(spectralWorld, spectralPixel)) {
454 0 : os << "Cannot find frequency for this plane" << LogIO::EXCEPTION;
455 : }
456 5394 : spectralCache(chan)=spectralWorld(0);
457 :
458 :
459 5394 : if (doSquint == BeamSquint::RR || doSquint == BeamSquint::GOFIGURE) {
460 71 : squint_p.getPointingDirection (pointDirE,
461 : parAngle,
462 142 : Quantity(spectralWorld(0),"Hz"),
463 : BeamSquint::RR, newpointDirE);
464 71 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
465 71 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
466 71 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
467 71 : xSquintPixCache(0, chan) = pointingCenterPixel(0);
468 71 : ySquintPixCache(0, chan) = pointingCenterPixel(1);
469 : } else {
470 5323 : xSquintPixCache(0, chan) = nonSquintedPointingPixel(0);
471 5323 : ySquintPixCache(0, chan) = nonSquintedPointingPixel(1);
472 : }
473 5394 : if (doSquint == BeamSquint::LL || doSquint == BeamSquint::GOFIGURE) {
474 65 : squint_p.getPointingDirection (pointDirE,
475 : parAngle,
476 130 : Quantity(spectralWorld(0),"Hz"),
477 : BeamSquint::LL, newpointDirE);
478 65 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
479 65 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
480 65 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
481 65 : xSquintPixCache(1, chan) = pointingCenterPixel(0);
482 65 : ySquintPixCache(1, chan) = pointingCenterPixel(1);
483 : } else {
484 5329 : xSquintPixCache(1, chan) = nonSquintedPointingPixel(0);
485 5329 : ySquintPixCache(1, chan) = nonSquintedPointingPixel(1);
486 : }
487 : }
488 : }
489 :
490 : /*
491 : cout << "pointingCenterPixel x,y = " << nonSquintedPointingPixel << endl;
492 : cout << "squinted pointingCenterPixel x,y RR = " << xSquintPixCache(0, 0) << ", "
493 : << ySquintPixCache(0, 0) << endl;
494 : cout << "squinted pointingCenterPixel x,y LL = " << xSquintPixCache(1, 0) << ", "
495 : << ySquintPixCache(1, 0) << endl;
496 : */
497 :
498 : // Iterate through in minimum IO/Memory chunks
499 : //IPosition ncs = in.niceCursorShape();
500 3429 : IPosition ncs=in.shape();
501 3429 : ncs(2) = 1; ncs(3) = 1;
502 6858 : RO_LatticeIterator<Complex> li(in, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3) ) );
503 6858 : LatticeIterator<Complex> oli(out, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3)) );
504 :
505 : // taper no longer appears to be used
506 : //Complex taper;
507 : //Float r2=0.0;
508 : //Float r=0.0;
509 :
510 3429 : Vector<Double> increment = directionCoord.increment();
511 3429 : Int rrplane = -1;
512 3429 : Int llplane = -1;
513 3429 : stokesCoord.toPixel( rrplane, Stokes::RR );
514 3429 : stokesCoord.toPixel( llplane, Stokes::LL );
515 :
516 : /*
517 : cout << "stokes types in image = " << stokesCoord.stokes() << endl;
518 : cout << "rr plane = " << rrplane << " ll plane = " << llplane << endl;
519 :
520 : */
521 : Double xPixel; Double yPixel;
522 :
523 3429 : Int laststokes = -1;
524 3429 : Int lastChan = -1;
525 : Int ichan;
526 : Int istokes;
527 : Int ix0, iy0;
528 : //Int indx;
529 9104 : for(li.reset(),oli.reset();!li.atEnd();li++,oli++) {
530 :
531 5675 : IPosition itsShape(li.matrixCursor().shape());
532 5675 : IPosition loc(li.position());
533 :
534 5675 : ichan = loc(3);
535 5675 : istokes = loc(2);
536 5675 : iy0 = loc(1);
537 5675 : ix0 = loc(0);
538 :
539 : // determine the pointing: RR, LL, or Center? We make a slight mistake
540 : // here since we ignore the difference between the RR beam and the
541 : // RL beam, say. The latter is slightly smaller because of the
542 : // squint. Hence this code should be deprecated in favor of the
543 : // correct 2D version (when mosaicing in polarization)
544 5675 : if ((doSquint == BeamSquint::RR) ||
545 65 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == rrplane)) ) {
546 6 : xPixel = xSquintPixCache(0, ichan);
547 6 : yPixel = ySquintPixCache(0, ichan);
548 5669 : } else if ((doSquint == BeamSquint::LL) ||
549 65 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == llplane)) ) {
550 0 : xPixel = xSquintPixCache(1, ichan);
551 0 : yPixel = ySquintPixCache(1, ichan);
552 : } else {
553 5669 : xPixel = nonSquintedPointingPixel(0);
554 5669 : yPixel = nonSquintedPointingPixel(1);
555 : }
556 :
557 5675 : if (istokes != laststokes) {
558 : //cerr << "Stokes = " << istokes << " pix = " << xPixel << ", " << yPixel << endl;
559 3755 : laststokes = istokes;
560 : }
561 :
562 5675 : Double factor = 60.0 * spectralCache(ichan)/1.0e+9 ; // arcminutes * GHz
563 5675 : Double rmax2 = square( maximumRadius_p.getValue("'") / factor );
564 5675 : if (wideFit_p) {
565 : // fill vp with interpolated values for current frequency
566 1348 : if (ichan!=lastChan) {
567 1348 : nearestVPArray(spectralCache(ichan));
568 1348 : lastChan=ichan;
569 : }
570 : }
571 :
572 5675 : Vector<Float> rx2(itsShape(0));
573 5675 : Vector<Float> ry2(itsShape(1));
574 3915254 : for(Int ix=0;ix<itsShape(0);ix++) {
575 3909579 : rx2(ix) = square( increment(0)*((Double)(ix+ix0) - xPixel) );
576 : }
577 2794972 : for(Int iy=0;iy<itsShape(1);iy++) {
578 2789297 : ry2(iy) = square( increment(1)*((Double)(iy+iy0) - yPixel) );
579 : }
580 :
581 5675 : const Matrix<Complex>& inmat = li.matrixCursor();
582 5675 : Matrix<Complex>& outmat=oli.rwMatrixCursor();
583 :
584 : Bool incopy, outcopy, del;
585 5675 : const Complex * inpoint = inmat.getStorage(incopy);
586 5675 : Complex *outpoint =outmat.getStorage(outcopy);
587 5675 : Float * rx2point = rx2.getStorage(del);
588 5675 : Float * ry2point= ry2.getStorage(del);
589 5675 : Complex* vppoint=vp_p.getStorage(del);
590 5675 : Int nx=itsShape(0);
591 5675 : Int ny=itsShape(1);
592 5675 : Double inverseIncrementRadius=inverseIncrementRadius_p;
593 5675 : #pragma omp parallel default(none) firstprivate(inpoint, outpoint, rx2point, ry2point, vppoint, iPower, conjugate, inverse, forward, nx, ny, rmax2, factor, inverseIncrementRadius, cutoff)
594 : {
595 : #pragma omp for
596 : for(Int iy=0;iy<ny;iy++) {
597 : Float ry2val=ry2point[iy];
598 : applyXLine(inpoint, outpoint , rx2point , vppoint , ry2val, iPower, conjugate, inverse, forward, nx, iy, rmax2,
599 : factor, inverseIncrementRadius, cutoff);
600 : /*for(Int ix=0;ix<itsShape(0);ix++) {
601 :
602 : r2 = rx2(ix) + ry2(iy);
603 :
604 : if (r2 > rmax2) {
605 : oli.rwMatrixCursor()(ix, iy) = 0.0;
606 : } else {
607 : r = sqrt(r2) * factor;
608 : indx = Int(r*inverseIncrementRadius_p);
609 : if (norm(vp_p(indx)) > 0.0) {
610 : if(iPower==2) {
611 : taper = vp_p(indx) * conj(vp_p(indx));
612 : }
613 : else {
614 : taper = vp_p(indx);
615 : }
616 : } else {
617 : taper = 0.0;
618 : }
619 : if (conjugate) {
620 : taper = conj(taper);
621 : }
622 : // Differentiate between forward (Sky->UV) and
623 : // inverse (UV->Sky) - these need different
624 : // applications of the PB
625 : if(!forward) {
626 : taper = conj(taper);
627 : }
628 : if (inverse) {
629 : if (abs(taper) < cutoff ) {
630 : oli.rwMatrixCursor()(ix, iy) = 0.0;
631 : } else {
632 : oli.rwMatrixCursor()(ix, iy) = li.matrixCursor()(ix, iy) / taper ;
633 : }
634 : } else { // not inverse!
635 : oli.rwMatrixCursor()(ix, iy) = li.matrixCursor()(ix, iy) * taper;
636 : }
637 : }
638 : }
639 : */
640 : }
641 : } //end pragma
642 5675 : outmat.putStorage(outpoint, outcopy);
643 5675 : inmat.freeStorage(inpoint, incopy);
644 5675 : }
645 :
646 3429 : return out;
647 :
648 3429 : };
649 :
650 2789297 : void PBMath1D::applyXLine(const Complex*& in, Complex*& out, Float*& rx2, Complex*& vp, const Float ry2, const Int ipower, const Bool conjugate, const Bool inverse, const Bool forward, const Int nx, const Int iy, const Double rmax2, const Double factor, const Double inverseIncrementRadius, const Float cutoff)
651 : {
652 : Float r;
653 : Int indx;
654 2789297 : Complex taper;
655 3213793498 : for(Int ix=0;ix<nx;ix++) {
656 :
657 3211004201 : Float r2 = rx2[ix] + ry2;
658 :
659 3211004201 : if (r2 > rmax2){
660 2055649396 : out[ix+iy*nx] = 0.0;
661 : }
662 : else {
663 1155354805 : r = sqrt(r2) * factor;
664 1155354805 : indx = Int(r*inverseIncrementRadius);
665 1155354805 : if (norm(vp[indx]) > 0.0) {
666 1096457653 : if(ipower==2) {
667 600004666 : taper = vp[indx] * conj(vp[indx]);
668 : }
669 : else {
670 496452987 : taper = vp[indx];
671 : }
672 : } else {
673 58897152 : taper = 0.0;
674 : }
675 1155354805 : if (conjugate) {
676 0 : taper = conj(taper);
677 : }
678 : // Differentiate between forward (Sky->UV) and
679 : // inverse (UV->Sky) - these need different
680 : // applications of the PB
681 1155354805 : if(!forward) {
682 0 : taper = conj(taper);
683 : }
684 1155354805 : if (inverse) {
685 0 : if (abs(taper) < cutoff ) {
686 0 : out[ix+iy*nx] = 0.0;
687 : } else {
688 0 : out[ix+iy*nx] = (in[ix+iy*nx]) / taper ;
689 : }
690 : } else { // not inverse!
691 1155354805 : out[ix+iy*nx] = (in[ix+iy*nx]) * taper ;
692 : }
693 : }
694 : }
695 2789297 : };
696 :
697 : ImageInterface<Float>&
698 40 : PBMath1D::apply(const ImageInterface<Float>& in,
699 : ImageInterface<Float>& out,
700 : const MDirection& pointDir,
701 : const Quantity parAngle,
702 : const BeamSquint::SquintType doSquint,
703 : Float /*cutoff*/, const Int ipower)
704 : {
705 80 : LogIO os(LogOrigin("PBMath1D", "apply"));
706 :
707 : // cout << "PBMath1D::apply: image shape: " << in.shape() << endl;
708 : // Check that in and out are comparable:
709 40 : if (in.shape() != out.shape()) {
710 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different shapes"));
711 :
712 : }
713 40 : CoordinateSystem coords=in.coordinates();
714 40 : if (!coords.near(out.coordinates())) {
715 0 : throw(AipsError("PBMath1D::apply(ImageInterface...) - in and out images have different coordinates"));
716 : }
717 :
718 40 : Int directionIndex=coords.findCoordinate(Coordinate::DIRECTION);
719 40 : AlwaysAssert(directionIndex>=0, AipsError);
720 : DirectionCoordinate
721 40 : directionCoord=coords.directionCoordinate(directionIndex);
722 40 : Vector<String> units(2); units = "deg";
723 40 : directionCoord.setWorldAxisUnits(units);
724 :
725 : // convert to the EPOCH of these coords
726 40 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
727 40 : MDirection pointDirE(pointDir);
728 :
729 40 : if (t2 != directionCoord.directionType()) {
730 0 : MDirection::Convert converter;
731 0 : ObsInfo oi=coords.obsInfo();
732 0 : converter.setOut(MDirection::Ref(directionCoord.directionType(),
733 0 : MeasFrame(oi.obsDate(), oi.telescopePosition())));
734 0 : pointDirE = converter(pointDir);
735 0 : } else {
736 40 : pointDirE = pointDir;
737 : }
738 40 : Int stokesIndex=coords.findCoordinate(Coordinate::STOKES);
739 40 : AlwaysAssert(stokesIndex>=0, AipsError);
740 : StokesCoordinate
741 40 : stokesCoord=coords.stokesCoordinate(stokesIndex);
742 :
743 40 : Int spectralIndex=coords.findCoordinate(Coordinate::SPECTRAL);
744 40 : AlwaysAssert(spectralIndex>=0, AipsError);
745 : SpectralCoordinate
746 40 : spectralCoord=coords.spectralCoordinate(spectralIndex);
747 :
748 40 : units.resize(1);
749 40 : units = "Hz";
750 40 : spectralCoord.setWorldAxisUnits(units);
751 :
752 40 : Int nchan=in.shape()(3);
753 :
754 40 : Vector<Double> pointingCenterWorld(2);
755 40 : Vector<Double> pointingCenterPixel(2);
756 40 : Vector<Double> directionPixel(2);
757 :
758 40 : pointingCenterWorld(0) = pointDirE.getAngle().getValue("deg")(0);
759 40 : pointingCenterWorld(1) = pointDirE.getAngle().getValue("deg")(1);
760 40 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
761 40 : MDirection newpointDirE;
762 40 : Vector<Double> nonSquintedPointingPixel = pointingCenterPixel.copy();
763 :
764 40 : os << "pointingCenterWorld " << pointingCenterWorld << LogIO::DEBUGGING;
765 40 : os << "pointingCenterPixel " << pointingCenterPixel << LogIO::DEBUGGING;
766 :
767 : // Fill in a cache of the frequencies & squints
768 40 : Vector<Double> spectralWorld(1);
769 40 : Vector<Double> spectralPixel(1);
770 40 : Matrix<Double> xSquintPixCache(2, nchan); // kludge: prevent errors when nchan = 1
771 40 : Matrix<Double> ySquintPixCache(2, nchan);
772 40 : Vector<Double> spectralCache(nchan);
773 :
774 : {
775 108 : for(Int chan=0;chan<nchan;chan++) {
776 68 : spectralPixel(0)=chan;
777 68 : if(!spectralCoord.toWorld(spectralWorld, spectralPixel)) {
778 0 : os << "Cannot find frequency for this plane" << LogIO::EXCEPTION;
779 : }
780 68 : spectralCache(chan)=spectralWorld(0);
781 :
782 :
783 68 : if (doSquint == BeamSquint::RR || doSquint == BeamSquint::GOFIGURE) {
784 68 : squint_p.getPointingDirection (pointDirE,
785 : parAngle,
786 136 : Quantity(spectralWorld(0),"Hz"),
787 : BeamSquint::RR, newpointDirE);
788 68 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
789 68 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
790 68 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
791 68 : xSquintPixCache(0, chan) = pointingCenterPixel(0);
792 68 : ySquintPixCache(0, chan) = pointingCenterPixel(1);
793 : } else {
794 0 : xSquintPixCache(0, chan) = nonSquintedPointingPixel(0);
795 0 : ySquintPixCache(0, chan) = nonSquintedPointingPixel(1);
796 : }
797 68 : if (doSquint == BeamSquint::LL || doSquint == BeamSquint::GOFIGURE) {
798 68 : squint_p.getPointingDirection (pointDirE,
799 : parAngle,
800 136 : Quantity(spectralWorld(0),"Hz"),
801 : BeamSquint::LL, newpointDirE);
802 68 : pointingCenterWorld(0) = newpointDirE.getAngle().getValue("deg")(0);
803 68 : pointingCenterWorld(1) = newpointDirE.getAngle().getValue("deg")(1);
804 68 : directionCoord.toPixel(pointingCenterPixel, pointingCenterWorld);
805 68 : xSquintPixCache(1, chan) = pointingCenterPixel(0);
806 68 : ySquintPixCache(1, chan) = pointingCenterPixel(1);
807 : } else {
808 0 : xSquintPixCache(1, chan) = nonSquintedPointingPixel(0);
809 0 : ySquintPixCache(1, chan) = nonSquintedPointingPixel(1);
810 : }
811 : }
812 : }
813 :
814 :
815 : // Iterate through in minimum IO/Memory chunks
816 40 : IPosition ncs = in.niceCursorShape();
817 : // IPosition ncs=in.shape();
818 40 : ncs(2) = 1; ncs(3) = 1;
819 40 : ncs(2) = 1; ncs(3) = 1;
820 80 : RO_LatticeIterator<Float> li(in, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3) ) );
821 80 : LatticeIterator<Float> oli(out, LatticeStepper(in.shape(), ncs, IPosition(4,0,1,2,3)) );
822 :
823 : //Vector<Float> taper(vp_p.nelements());
824 40 : Float taper=0.0;
825 40 : Float r2=0.0;
826 40 : Float r=0.0;
827 :
828 40 : Vector<Double> increment = directionCoord.increment();
829 40 : Int rrplane = -1;
830 40 : Int llplane = -1;
831 40 : stokesCoord.toPixel( rrplane, Stokes::RR );
832 40 : stokesCoord.toPixel( llplane, Stokes::LL );
833 :
834 : Double xPixel; Double yPixel;
835 :
836 40 : Int laststokes = -1;
837 40 : Int lastChan = -1;
838 : Int ichan;
839 : Int istokes;
840 : Int ix0, iy0;
841 : Int indx;
842 :
843 108 : for(li.reset(),oli.reset();!li.atEnd();li++,oli++) {
844 :
845 68 : IPosition itsShape(li.matrixCursor().shape());
846 68 : IPosition loc(li.position());
847 :
848 68 : ichan = loc(3);
849 68 : istokes = loc(2);
850 68 : iy0 = loc(1);
851 68 : ix0 = loc(0);
852 :
853 : // determine the pointing: RR, LL, or Center?
854 68 : if ((doSquint == BeamSquint::RR) ||
855 68 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == rrplane)) ) {
856 0 : xPixel = xSquintPixCache(0, ichan);
857 0 : yPixel = ySquintPixCache(0, ichan);
858 68 : } else if ((doSquint == BeamSquint::LL) ||
859 68 : ((doSquint == BeamSquint::GOFIGURE) && (istokes == llplane ))) {
860 0 : xPixel = xSquintPixCache(1, ichan);
861 0 : yPixel = ySquintPixCache(1, ichan);
862 : } else {
863 68 : xPixel = nonSquintedPointingPixel(0);
864 68 : yPixel = nonSquintedPointingPixel(1);
865 : }
866 :
867 68 : if (istokes != laststokes) {
868 : // cout << "Stokes = " << istokes << " pix = " << xPixel << ", " << yPixel << endl;
869 40 : laststokes = istokes;
870 : }
871 :
872 68 : Double factor = 60.0 * spectralCache(ichan)/1.0e+9 ; // arcminutes * GHz
873 68 : Double rmax2 = square( maximumRadius_p.getValue("'") / factor );
874 68 : if (wideFit_p) {
875 : // fill vp with interpolated values for current frequency
876 0 : if (ichan!=lastChan) {
877 0 : nearestVPArray(spectralCache(ichan));
878 0 : lastChan = ichan;
879 : }
880 : }
881 :
882 : //taper.set(0.0);
883 : /*for (uInt inda=0; inda < vp_p.nelements(); ++inda){
884 : if (norm(vp_p(inda)) > 0.0) {
885 : taper[inda] = real(vp_p(inda)) * real(vp_p(inda)) + imag(vp_p(inda))*imag(vp_p(inda));
886 : if(ipower==4)
887 : taper[inda] *= taper[inda];
888 : }
889 :
890 : }
891 : */
892 :
893 68 : Vector<Float> rx2(itsShape(0));
894 68 : Vector<Float> ry2(itsShape(1));
895 135868 : for(Int ix=0;ix<itsShape(0);ix++) {
896 135800 : rx2(ix) = square( increment(0)*((Double)(ix+ix0) - xPixel) );
897 : }
898 135868 : for(Int iy=0;iy<itsShape(1);iy++) {
899 135800 : ry2(iy) = square( increment(1)*((Double)(iy+iy0) - yPixel) );
900 : }
901 :
902 135868 : for(Int iy=0;iy<itsShape(1);iy++) {
903 1036796200 : for(Int ix=0;ix<itsShape(0);ix++) {
904 :
905 1036660400 : r2 = rx2(ix) + ry2(iy);
906 1036660400 : if (r2 > rmax2) {
907 1032186012 : oli.rwMatrixCursor()(ix, iy) = 0.0;
908 : } else {
909 4474388 : r = sqrt(r2) * factor;
910 4474388 : indx = Int(r*inverseIncrementRadius_p);
911 4474388 : if (norm(vp_p(indx)) > 0.0) {
912 4474388 : taper = real(vp_p(indx)) * real(vp_p(indx))+ imag(vp_p(indx)) * imag(vp_p(indx));
913 4474388 : if(ipower==4)
914 4474388 : taper *= taper;
915 : }
916 : //else {
917 : // taper = 0.0;
918 : //}
919 4474388 : oli.rwMatrixCursor()(ix, iy) = li.matrixCursor()(ix,iy) * taper;
920 : }
921 : }
922 : }
923 68 : }
924 40 : return out;
925 :
926 40 : };
927 :
928 : // Behavior: doSquint == RR or LL don't make sense here
929 : //
930 : //
931 :
932 : SkyComponent&
933 2491 : PBMath1D::apply(SkyComponent& in,
934 : SkyComponent& out,
935 : const MDirection& pointDir,
936 : const Quantity frequency,
937 : const Quantity parAngle,
938 : const BeamSquint::SquintType doSquint,
939 : Bool inverse,
940 : Bool conjugate,
941 : Int iPower,
942 : Float cutoff,
943 : Bool /*forward*/)
944 : {
945 : // if ( doSquint == NONE ) we can deal with any polarisation representation
946 : // if ( doSquint == GOFIGURE) an exception is thrown if polarisation is not CIRCULAR
947 : // if ( doSquint == RR || doSquint == LL ) an exception is thrown,
948 : // as it is not valid to apply the RR or LL squint to ALL polarisations
949 :
950 : // Also: we can do nothing with spectral index models
951 :
952 :
953 : // convert to the EPOCH of these coords
954 2491 : MDirection::Types t1 = (MDirection::Types) (in.shape().refDirection().getRef().getType());
955 2491 : MDirection::Types t2 = (MDirection::Types) (pointDir.getRef().getType());
956 :
957 2491 : MDirection pointDirE;
958 2491 : if ( t1 != t2) {
959 0 : MDirection::Convert converter;
960 0 : converter.setOut( t1 );
961 0 : pointDirE = converter(pointDir);
962 0 : } else {
963 2491 : pointDirE = pointDir;
964 : }
965 :
966 2491 : if (doSquint == BeamSquint::RR || doSquint == BeamSquint::LL) {
967 0 : throw(AipsError("PBMath1D::apply(SkyComponent...) - cannot force a SkyComponent to have Squint RR or LL"));
968 : }
969 2491 : if (doSquint == BeamSquint::GOFIGURE) {
970 2491 : if (in.flux().pol() != ComponentType::CIRCULAR) {
971 397 : in.flux().convertPol(ComponentType::CIRCULAR);
972 : }
973 : }
974 :
975 2491 : Vector<DComplex> compFluxIn = in.flux().value();
976 2491 : Vector<DComplex> compFlux = out.flux().value();
977 2491 : compFlux = compFluxIn.copy();
978 :
979 : // Find the direction of the component
980 2491 : MDirection compDir = in.shape().refDirection();
981 :
982 : // Now taper all polarizations appropriately
983 :
984 : // Sort out any frequency interpolation
985 : //Int ifit=0;
986 : //Float lfit=0;
987 : //Int nFreq=wFreqs_p.nelements();
988 2491 : if (wideFit_p) {
989 0 : Double freq = frequency.getValue("Hz");
990 0 : nearestVPArray(freq);
991 : /* for (ifit=0; ifit<nFreq; ifit++) {
992 : if (freq<=wFreqs_p(ifit)) break;
993 : }
994 : if (ifit>0 && ifit<nFreq) {
995 : lfit=(freq-wFreqs_p(ifit-1)) / (wFreqs_p(ifit)-wFreqs_p(ifit-1));
996 : }
997 : */
998 : }
999 :
1000 2491 : MDirection newpointDirE;
1001 12455 : for (Int pol=0;pol<4;pol++) {
1002 9964 : Stokes::StokesTypes stokes=Stokes::type(pol+5);
1003 :
1004 9964 : if (stokes == Stokes::RR && doSquint == BeamSquint::GOFIGURE) {
1005 2491 : squint_p.getPointingDirection (pointDirE, parAngle, frequency, BeamSquint::RR,
1006 : newpointDirE );
1007 7473 : } else if (stokes == Stokes::LL && doSquint == BeamSquint::GOFIGURE) {
1008 2491 : squint_p.getPointingDirection (pointDirE, parAngle, frequency, BeamSquint::LL,
1009 : newpointDirE );
1010 : } else {
1011 4982 : newpointDirE = pointDirE;
1012 : }
1013 :
1014 9964 : MVDirection mvd1( compDir.getAngle() );
1015 9964 : MVDirection mvd2( newpointDirE.getAngle() );
1016 9964 : Quantity sep = mvd1.separation(mvd2, "'");
1017 9964 : double r = sep.getValue("'") * frequency.getValue("Hz") / 1.0e+9; // arcminutes * GHz
1018 9964 : Complex taper;
1019 9964 : Int ir = Int(r*inverseIncrementRadius_p);
1020 : //vp_p is interpolated wvp_p from above
1021 9964 : Complex vpVal = ir >= Int(vp_p.nelements()) ? Complex(0) : vp_p(ir);
1022 : /*if (wideFit_p) {
1023 : if (ifit==0) {
1024 : vpVal = wbvp_p(ir,0);
1025 : } else if (ifit==nFreq) {
1026 : vpVal = wbvp_p(ir,nFreq-1);
1027 : } else {
1028 : vpVal = wbvp_p(ir,ifit-1)*(1-lfit) + wbvp_p(ir,ifit)*lfit;
1029 : }
1030 : }
1031 : */
1032 :
1033 9964 : if (r > maximumRadius_p.getValue("'")) {
1034 192 : compFlux(pol) = 0.0;
1035 : } else {
1036 9772 : if (norm(vpVal) > 0.0) {
1037 9772 : if(iPower>1){
1038 9772 : taper=vpVal*conj(vpVal);
1039 9772 : if(iPower==4)
1040 0 : taper*=taper;
1041 : }
1042 : else{
1043 0 : taper = vpVal;
1044 : //taper = pow( vp_p(Int(r*inverseIncrementRadius_p)), (Float)iPower);
1045 : }
1046 : } else {
1047 0 : taper = 0.0;
1048 : }
1049 9772 : if (conjugate) {
1050 0 : taper = conj(taper);
1051 : }
1052 9772 : if (inverse) {
1053 0 : if (abs(taper) < cutoff ) {
1054 0 : compFlux(pol) = 0.0;
1055 : } else {
1056 0 : compFlux(pol) /= taper ;
1057 : }
1058 : } else { // not inverse!
1059 9772 : compFlux(pol) *= taper;
1060 : }
1061 : }
1062 9964 : }
1063 :
1064 : // Set the output component fluxes
1065 2491 : out = in.copy();
1066 2491 : out.flux().setValue(compFlux);
1067 :
1068 2491 : return out;
1069 :
1070 2491 : };
1071 :
1072 17 : void PBMath1D::summary(Int nValues)
1073 : {
1074 17 : String name;
1075 17 : namePBClass(name);
1076 34 : LogIO os(LogOrigin("PBMath1D", "summary"));
1077 17 : os << "Using " << name << " PB Class " << LogIO::POST;
1078 17 : PBMathInterface::summary(nValues);
1079 :
1080 17 : if (nValues > 0) {
1081 0 : os << "Primary Beam Sampled Data: " << LogIO::POST;
1082 0 : os << " r['] pb[@ 1 GHz] " << LogIO::POST;
1083 0 : Vector<Float> rr;
1084 0 : Vector<Float> pb;
1085 0 : viewPB(rr, pb, nValues);
1086 0 : for (Int ii=0;ii<nValues;ii++) {
1087 0 : os << rr(ii) << " " << pb(ii) << LogIO::POST;
1088 : }
1089 0 : }
1090 : os << "Max Radius at " << refFreq_p.getValue("GHz") << " GHz: "
1091 17 : << maximumRadius_p.getValue("'") << " arcmin " << LogIO::POST;
1092 :
1093 17 : };
1094 :
1095 :
1096 636 : Bool PBMath1D::ok()
1097 : {
1098 636 : if (vp_p.nelements() == 0) {
1099 0 : return false;
1100 636 : } else if (maximumRadius_p.getValue() <= 0.0) {
1101 0 : return false;
1102 636 : } else if (refFreq_p.getValue() <= 0.0) {
1103 0 : return false;
1104 636 : } else if (inverseIncrementRadius_p <= 0.0) {
1105 0 : return false;
1106 : } else {
1107 636 : return true;
1108 : }
1109 : };
1110 :
1111 :
1112 0 : void PBMath1D::viewPB(Vector<Float>& r, Vector<Float>& pb, Int n_pb, const Double freq)
1113 : {
1114 0 : r.resize(n_pb);
1115 0 : pb.resize(n_pb);
1116 0 : if(wideFit_p)
1117 0 : nearestVPArray(freq);
1118 0 : Int nSamples= vp_p.nelements();
1119 0 : for (Int i=0; i< n_pb; i++) {
1120 0 : pb(i) = norm( vp_p( (Int) ((nSamples-1)* (((Float)i)/(n_pb-1) ) ) ) );
1121 0 : r(i) = maximumRadius_p.getValue("'") * (((Float)i)/(n_pb-1));
1122 : }
1123 :
1124 0 : };
1125 0 : void PBMath1D::nearestVPArray(Double freq, bool printINFO){
1126 0 : LogIO os(LogOrigin("PBMATH1D", "nearestVPArray"));
1127 0 : Int ifit=0;
1128 :
1129 0 : Int nFreq=wFreqs_p.nelements();
1130 0 : for (ifit=0; ifit<nFreq; ifit++) {
1131 0 : if (freq <=wFreqs_p(ifit)) break;
1132 : }
1133 0 : if(printINFO)
1134 0 : os << LogIO::NORMAL1 << "Using beam model of frequency " << ((ifit==nFreq) ? wFreqs_p(nFreq-1) : wFreqs_p(ifit)) << " MHz " << LogIO::POST;
1135 0 : if (ifit==0) {
1136 0 : vp_p = wbvp_p.column(0);
1137 0 : } else if (ifit==nFreq) {
1138 0 : vp_p = wbvp_p.column(nFreq-1);
1139 : } else {
1140 0 : Float l = (freq - wFreqs_p(ifit-1))/
1141 0 : (wFreqs_p(ifit)-wFreqs_p(ifit-1));
1142 0 : vp_p = wbvp_p.column(ifit-1)*(1-l) + wbvp_p.column(ifit)*l;
1143 : }
1144 :
1145 :
1146 0 : }
1147 :
1148 : } //# NAMESPACE CASA - END
1149 :
|